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Abstract— Numerical simulation has been undertaken for the flow of test fluid M1 passing through the converging
channel system designed to measure the extensional viscosity of polymeric liquids. The constitutive equation
is an integral-type K-BKZ model with three relaxation times. The simulations have been performed for the full
range of experimental measurements in the system where the extensional deformation is dominant and the
deformation-rates are very high. Stable solutions have been obtained for the whole experimental range even
though the apparent shear rates reach 13005, Results of the simulations concerning wall pressure difference
between two pressure taps are compared with the experimental data measured from the pressure signals. The
simulations are in good agreement with the experiments for the low range of flow rates at 21°C and for all flow
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rates at 30C. The discrepancies at high flow rates of 21T is apparently due to the appearance of a stationary
bubble in the experiments that may have altered the pressure measurements and the instability of fluid M1.
The pressure and stress distributions from the simulations show the flow characteristics of the converging
channel system, which are difficult to verify by using experimental methods. The specially designed converging
channel geometry makes the fluid M1 deform at a constant rate of extensional deformation near the centerline
within the constant strain rates section. The extensional viscosities of fluid M1 obtained by simulations have
been compared with the ones from the experimental results. The results of extended channel, which has twice
longer length of constant strain rate section than James’ [1], are presented in order to obtain more developed
extensional viscosity to steady state and to show the geometry effect on the flow characteristics.

Keywords: Extensional viscosity, converginging channel rheometer, fluid M1, integral constitutive equation.

1. Introduction

One of the outstanding and well-recognized
problems in the rheology of polymeric fluid sys-
tems is the measurement of extensional visco
sity. Over the last two decades various techniques
have been described to measure this property and
specialist workshops have been conducted such
as the recent one at Chamonix [2]. At this meet-
ing it was soon apparent that the data from va-
rious instruments were significantly different par-
tly because different fluids were utilized, and a
pressing need for a cooperative measurement
exercise on a single fluid was articulated. The
comprehensive nature of the exercise immedia-
tely set constraints on the selection of the test
fluid owing to widely different capabilities and
limitations of different equipment. A test fluid
which could satisfy these conflicting constraints
was prepared at Manash University, which led to
the fluid’s being called M1. The fluid M1 consists
of a 0.244% polyisobutylene in a mixed solvent
consisting of 7% Xkerosene in polybutene. The
preparation of the test fluid and the manufactu-
rers’ specification on the constituents are detailed
by Nguyen and Sridhar [3].

In the present study, we examine an interesting
system used in the M1 project, namely the flow
through a converging channel so desinged as to
allow measurement of the extensional viscosity
of the polymer solution. The converging channel
flow was developed by James et al. [1] to measure
the step-input extensional viscosity denoted by
ne* [4]. In this case, the fluid undergoes no ex-
tensional deformation and then is suddenly sub-
jected to a constant rate of extension. Their idea

was to create this motion approximately by ma-
king the fluid pass through a converging channel
particularly shaped. The first section of the chan-
nel is a cylindrical tube so that the extensional
deformation can be taken as zero. The channel
then converges smoothly over some distance so
that the fluid within is extended at a constant rate.
The converging channel is the only system so far
which makes the fluid deform at a constant ex-
tensional deformation rate. In the other systems
(fiber spinning, opposing jets, falling drop and
open syphon and so on), the extensional rate is
not constant at each position of deforming fluid
in extensional viscosity measurement systems.

Park et al. [5] had tested this converging chan-
nel numerically and showed the flow characte
ristics of it. Extensional viscosity directly calcu-
lated from their simulation results was presented
and more reasonable method to calculate it from
experimental data was proposed. The extensional
viscosity obtained from converging channel is not
a steady state value. Therefore the extended
channel which has longer constant strain rate
section is needed in order to obtain the values
closer to steady state. The extended channel
which has two times longer constant strain rate
section than James’ channel [1] is handled nu-
merically.

Considerable success in modelling viscoelastic
flows has been achieved recently with an integral
constitutive equation of the K-BKZ type, proposed
by Papanastasiou et al. [6]. This equation has
been used to predict several well-known viscoe-
lastic phenomena [7-10]. It has also been used
for the modelling of the test fluid M1 by Chai and
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Yeow [11], who give the parameter constants for
this fluid at 21C. They used this equation in the
modelling of the gravity jet system for the fluid
M1 with considerable success. Park and Mitsoulis
[12] obtained reasonable results of circular entry
flow of fluid M1 using the K-BKZ equation with
the parameters determined by Chai and Yeow
[11]. They showed that the geometry effects play
an important role in the flow of viscoelastic fluids.
Their solutions reached up to the limit of the
experimental range with good convergence of the
numerical scheme. The converging channel sys-
tem was treated using the K-BKZ equation by
Park et al. [5] and they obtained the quantita-
tively good results. The effect of extensional mo-
tion has been recognized as an important key
factor to better understand and differentiate the
flow behavior of polymer solutions and melts. Qur
study reveals the flow characteristics in the con-
verging channel used to measure the extensional
viscosity and the effect of the length of constant
strain rate section on extensional viscosity.

2. Mathematical Modelling and Method
of Solution

The converging channel flow is governed by the
usual conservation of mass and momentum. For
an incompressible fluid under isothermal condi-
tions we have

Vev=0, e))
pv:-Vy=—Vp+V.T 2

where v is the velocity vector, T is the extra-
stress tensor, and p is the scalar pressure and p
is the density. In the converging channel, Rey-
nolds number is in about 10 order range and
apparent shear rate is in 1000(s™!) order range,
therefore the inertia can not be negligible in
equation (2) to obtain more reasonable solutions
in spite of much time consuming and elaborating
numerical scheme. The constitutive equation that

relates t to the deformation history is a K-BKZ
equation proposed by Papanastasiou et al. [6] and

further modified by Luo and Tanner [13] and is
written as
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where A, and a, are the relaxation times and
reaxation modulus coefficients at a reference
temperature, a and  are material constants, and
I, Ic-1 are the first invariants of the Cauchy-
Green tensor C and its inverse C™}, the Finger
strain tensor. 0 is also material constant written
as

second normal stress difference
N./N,=

first normal stress difference
=06/(1—-0) 4)

and is not zero for the fluid which has a non-zero
second normal stress difference. The fluid M1
passing through the converging channel is simu-
lated with the 8 value of —1/9.

The above constitutive equation is solved to-
gether with the conservation equations using the
Finite Element Method (FEM) with a special nu-
merical scheme to calculate the viscoelastic
stresses for the general case of flows with and
without recirculation [ 14]. Galerkin discretization
is maintained and the numerical algorithm for
convergence is Picard iteration as described in
Ref. [14]. For constrained flows without free
surfaces convergence has always been good even
for very high flow rates. Convergent solutions
have been obtained independent of mesh size,
provided enough elements are used and the so-
lution procedure advances slowly from low flow
rates (Newtonian behavior) to higher ones by
using a flow rate increment scheme [14].

3. Results and Discussions

Simulations for the test fluid M1 have been
undertaken using the integral constitutive equa-
tion (3) with parameters determined by Chai and
Yeow [6]. Table 1 shows the values of the pa-
rameters at various temperatures. With these
parameters it is possible to fit well the linear vi-
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Table 1. Material parameter values used in eqn. (3)
for fitting data of fluid M1 at 21C according
to Chai and Yeow [9] and values at 30C
and 40T for fitting experimental data given
by Binging et al. [16] and Hudson and Fe-
rguson [17] (@=500, =0.001, 6=—1/9,
p=900 (at 21C) and 826 (at 30T) Kg/m?®)

ko A (s) a; (Pa) Ai(s) a (Pa)
21T 21C 30C 30T
1 1.04Xx10° 550X10°" 553X10 7 550X10°"

890X107% 546X10° 4.73X107% 546X 10°
520X107* 3.06X10° 2.77X107* 3.06X10°

wW N

Shear (Extensional) Viscosity, ns(ns) (Pa.s)
First Normal Stress Difference, N; (Pa)

Shear (Extensional) Rate, 7(5) (s

Fig. 1. Model prediction of shear viscosity, first no-
rmal stress difference, and extensional visco-
sity for fluid M1 using eqn. (3) with data given
in Tabie 1. Closed symbols are experimental
data given by Chai and Yeow [11] and open
symbols are experimental data given by Bi-
nging et al. [16] and Hudson et al. [17].

scoelastic spectrum and also experimental data
for the shear and extensional viscosities and the
first normal stress difference [15-17] as shown
in Fig. 1. Note that the same parameters at 21T
have been used in previous studies [11,12], but
in the present work an additional constant 6 has
been added to account for non-zero second nor-
mal stress difference coefficient exhibited by the
M1 fluid according to experimental evidence
[15,16].

Figure 2 represents the converging channel
geometry as given by James et al. [1]. All di-
mensions are given in millimeters. There are two
cylindrical sections in the inlet and outlet of the
domain. The conical section follows the inlet cy-

. Conical
Cylindrical gection Constant Strain  Cylindrical
Section 7‘\:‘“ Rate Section Section
| 83.08

40.76 134934

Tapi
i
ol
z

|[e—>
17.4
25.0

1.86 — »—Round Corner
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Fig. 2. System configuration of the converging cha-
nnel used in the measurement of extensional
viscosity of M1 by James et al. [3]. All di-
mensions are in millimeters and the shape of
the constant strain rate section is given by
r%(z-90.10) = 1302 mm®.

lindrical section and induces the fluid to pass
though the constant strain rate section. There the
channel converges smoothly over some distance
so that the fluid within is extended at a constant
rate. In using converging channel flow for exten-
sional rheometry, the flow rate has to be high
in order to confine the shear effects to the wall
region and to create a core flow which is nearly
free of shearing and in which extensional de-
formation is more dominant than shear defor-
mation.

Partial view of the finite element mesh used
in the simulation is shown in Fig. 3. Mesh in Fig.
3(a) has the same geometry with James™ channel
[1], but the second channel in Fig. 3(b) is ex-
tended in order to obtain more developed ex-
tensional viscosity. The real mesh of Fig. 3(a) has
the value of z from —15.885R, to 268R,. Such
lengths were required in order to obtain fully
developed entry and exit profiles and total rela-
xation of stresses in the downstream direction.
Convergence was good for the whole experimen-
tal range of measurements.

The values of pressure drop are presented in
terms of the pressure coefficient Cp and Re. Cp

is Ap/% pV? where AP is the pressure drop

between the two taps (from tap 1 to tap 3, or from
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Fig. 3. Partial view of the finite-elements used in the
channel, and (b) extended channel.

tap 1 to tap 4) and V is the mean velocity at later
tap. The numerical results are presented in Fig.
4 and 5, together with the prediction from the
generalized Newtonian solution by James et al.
[1]. Our results of Newtonian fluid are nearly the
same with the generalized Newtonian solution.
For the non-Newtonian viscoelastic M1 fluids, the
pressure coefficient Cp vs. Re is compared with
James’ experimental data. The results of simu-
lation are in good agreement with James’ exper-
iments within small error limits. Although the
peculiar phenomena of M1 fluid at 21C [1], the
data show the same tendency that Cp decreases
with increasing Re.

In this study, the results from simulation are
compared using dimensional values with the ex-
perimental data obtained by James et al. [18].
Instead of giving dimensionless values (such as
pressure coefficients Cp and Reynolds number
Re), the dimensional values for the wall pressure
drop between taps and for the flow rate are pre-
sented in order to offer a better quantitative com-
parison with the experiments. The simulation
fits reasonably well with the experimental data
as shown in Fig. 6, where (a) and (b) correspond
to wall pressure drops between taps 1 and 3 and
between taps 1 and 4, respectively. At higher flow
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simulations of the converging channel system: (a) James’

rates, the experimental results show a peculiar
behavior in which pressure drop decreases with
increasing flow rate. This behavior at 21T is con-
trary to the general flow phenomenon. It may be
due to probable instabilities occuring with fluid
M1 at high flow rates and low temperatures.
McKinley et al. [19] have shown in the contrac-
tion flow that such polymer solutions become
unstable at some intermediate flow rate ranges
and may revert back to stable at higher flow rates.
A numerical solution based on the assumption of
steady state cannot take into account such phe-
nomenon.

This is apparently not the case at 30T, where
both simulations and experiments show a mono-
tonic increases of the pressure drop with flow
rate, as evidenced in Fig. 7. When the flow rates
are less than 1.0X10°m%s for 30T, the results
are virtually identical with the experimental
measurements. The discrepancies between simu-
lations and experiments are small for flow rates
higher than 1.0X107°m¥s. Thus the simulation
provides quantitatively agreeable results of M1
fluid behavior in the converging channel system.

Simulations also provide some useful extra in-
formation, which is rather difficult to obtain ex-
perimentally. James et al. [18] designed the con-
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Fig. 4. Pressure coefficient (Cp) as a function of
Reynolds number (Re) in comparison with
generalized Newtonian solution and James’

experiments [18] at 21T: (a) Cp from tap 1
and 3, and (b) from tap 1 and 4.

verging channel such as to have the fluid de-
formed at a constant rate of extension. In the
constant strain rate section, the velocity at the
centerline when plotted as a function of axial
distance, gives nearly constant slopes within the
test section, as depicted in Fig. 8. Thus the fluid
M1 is deformed at a constant rate of extension
near the center region within the test section.
The slope represents the extensional deformation
rate and its value is large when the flow rate is
high as was the case in the experiments in Fig.
9. When the flow rate is high, the inlet and outlet
region in the constant strain rate section have the

30°C Tap 3

30

—— Generalized Newtonian Solution

& Simulation Resuits of Newtonian Case
O Simulation Results of Fluid M1
O

James’ Experimental Data of Fluid M1

20

Cp

et ol 1
1 10 30

Re
(a)

30°C Tap 4

40

a SunulALlan Results of Newtonian Case
r D Simulation Results of Fluid M}
O James’ Experimental Data of Fluid M1

Cp

201

i 1 1 1 14 1} 1
0 10 30

Re
(b)

Fig. 5. Pressure coefficient (Cp) as a function of
Reynolds number (Re) in comparison with
generalized Newtonian solution and James’
experiments [18] at 30C: (a) Cp from tap 1
and 3, and (b) from tap 1 and 4.

disaccording values of strain rate (&) in Fig. 9. In
the case of relatively low flow rate, the strain rate
(&) is constant in whole range of constant strain
rate section. In the case of extended channel, the
axial distance which shows constant strain rate
is prolonged about two times longer in compari-
son with the James’ channel.

The first normal stress difference of short and
extended channel at the centerline is nearly zero
before the 45°-conical section, as shown in Fig.
10. However, it increases exponentially in the
conical section and the converging test section,
then is slowly relaxed in the outlet cylindrical
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Fig. 6. Pressure drop hetween two taps as a function
of flow rate in comparison with the experi-
mental results by James et al. [18] at 21T:
(a) pressure drop between tap 1 and 3, and
(b) between tap 1 and 4.

section to recover from its previously exten-
sionally deformed state. And the values of ex-
tended channel increase continuously in the lo-
nger range of axial distance.

Shear stress contours are presented in Fig. 11
and show that the region where the maximum
occurs is at the wall at the end of the constant
strain rate section, because the shape of the chan-
nel after this section does not subject the fluid
to any extensional deformation. The values of
extended channel in Fig. 11(b) are greater than
that of James’ channel. The narrower geometry
of extended channel in the down stream is the
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Fig. 7. Pressure drop between two taps as a function
of flow rate in comparison with the experi-
mental results by James et al. [18] at 30C:
(a) pressure drop between tap 1 and 3, and
(b) between tap 1 and 4.

cause of high shear stress values. First normal
stress difference contours are presented in Fig.
12. The minimum region is confined to the wall
at the end of the 45°-conical section because the
contracting shape of the channel makes the fluid
elements to be contracted in the flow direction.
The values increase rapidly in the constant strain
rate section and have a maximum near the end
of this section because the fluid elements within
this section are extended in the flow direction.
The contours of N, of short and extended channel
show almost the same values near the 45° conical
section, but value of N, is very high in the
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Fig. 8. Centerline velocity of fluid M1 as a function
of axial distance for different flow rates at 2
1C. The dashed and solid lines represent Ja-
mes’ and extended channel, respectively.
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Fig. 9. Extensional rate as a function of axial distance
for different flow rates at 21C. The dashed
and solid lines represent James’ and extended
channel, respectively.

stress difference exhibits larger value than the
downstream of extended channel in Fig. 12(b). In
the constant strain rate section, the first normal
shear stresses.

The extensional viscosities plotted in Fig. 13
are step-input extensional viscosities nz* [1,4].
But in this paper n; is used for n.* without any
distinction. The values of 1 are directly calcul-
ated from the simulation results of stress values

7000

1. Q=0.146x10"°m"/sec
6000 - 2. Q=0.086x10""m"/sec
3. Q=0.024x10""m%/sec
5000 |-
4000 +
3000 -

2000 -

1000 |-

T..—T.r at Centerline (Pa)

-5 0 5 10 15 20 25
Axial Distance, Z/R,

Fig. 10. Centerline first normal stress difference as
a function of axial distance for different flow
rates at 21C. The dashed and solid lines
represent James’ and extended channel, re-
pectively.

t. and t,, and &(=0v/dz) at centerline. The vis-
cosity in Fig. 13 is not steady state value. There-
fore it is developing toward steady state with in-
creasing axial distance. In the James’ channel, the
values of 1. develop up to the axial distance 9
at which the constant strain rate section is end-
ed in Fig. 13(a). But the extended channel gives
us higher extensional viscosities, as depicted in
Fig. 13(b).

The extensional viscosities from extended
channel are presented as a function of extensional
rate (¢) in Fig. 14. It increases with axial distance,
and shows slightly extension thinning in the case
of small value of axial distance. According to the
increasing axial distance, the extension thickening
effect appears in 10~50 of & The extension thin-
ning might be due to unsteady state values of
extensional viscosity. Up to now, we can be sure
whether the steady state extensional viscosity is
decreasing or increasing with strain rate. Another
cause of extension thinning is the fact that no one
knows the extensional viscosity of true steady
state, thus the apparent extensional viscosities
from fiber spinning data are used as steady state
values under pure uniaxial extensional flow co-
ndition to determine the material parameters in
K-BKZ equation (3). The steady state value of
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Fig. 11. Shear stress contours in the converging channel for flow rate of 0.086X107°m®s at 21T: (a) James’

and (b) extended channel.
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Fig. 12. First normal stress difference contours in the converging channel for flow rate of 0.086X 10~* m*/s at

21T: (a) James' and (b) extended channel.

K-BKZ model under simple uniaxial flow condi-
tion are nearly constant in the range of exten-
sional rate 10~100 in Fig. 1. This effect also
might influence the extension thinning behavior.
Nevertheless, a more study is needed to find the
more developed extenstional viscosity of steady
state.

s A6 d A 1%, 1994

4. Conclusions

Numerical simulation for the flow of the test
fluid M1 has been successfully carried out in the
converging channel where the extensional defor-
mation is dominant and the deformation rates are
very high. The working constitutive equation was
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Fig. 13. Extensional viscosity as a function of axial
distance at 21C: (a) James’ and (b) extended
channel.

an integral-type K-BKZ model with a spectrum
of three relaxation times.

Stable solutions have been obtained in the high
flow behavior of fluid M1 which is due to the
unstable flow rate ranges where the experimental
measurements were available. The results of the
simulation agree well with the experimental data
by James et al. [1] for all flow rates at 30C and
at low flow rates at 21C. However, at high flow
rates at 21C the simulations could not show pe-
culiar.

The test fluid M1 shows a constant extensional
deformation rate at least near the centerline in
the constant rate section of the converging chan-
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Fig. 14. Extensional viscosity as a function of exten-
sional rate for different axial distance of
extensional channel at 21C.

nel. The extended channel provides the longer
region in which the extensional strain rate is con-
tant. The first normal stress difference increases
exponentially in both the 45°-conical section and
the constant strain rate section, and is relaxed
slowly in the last cylindrical section. In the test
section where the pressure taps were located, the
normal stresses are larger than the shear stres-
ses, consequently the extensional deformation is
dominant.

Extensional viscosity directly calculated from
the simulation results is obtained, and it increases
with the axial distance. The extended channel
provides more developed extensional viscosity.
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