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1. Introduction

One important piece of equipment in a polyme-
ric film production line is a die. There are two
kinds of die for producting film. They are an an-
nular die for a film blowing process and a sheet
die for casting or coating process. The die design
technology of die manufacturers have been gra-
dually advanced over the past years. The internal
design of feedblock, manifold, and slit channels
became more and more sophisticated to meet the
requirements of producing high valued products.
Three-layer die is very common and five-layer
and even seven-layer die are being utilized in film
producing industry. However, film extrusion indu-
stry appear to have limited knowledge in the area
of die design due to the lack of proper analytical
means. Apparently, a trial and error approach has
been dominant in solving die related problems.
A need to enhance the die design understanding
is more demanding than ever as film products
become more and more diversified with exquisite
resins and as more than three dissimilar resins
are involved in film products.

In this paper we will review the basics that
are necessary in designing a sheet die and confine
our discussions in a single-layer die only. Before

we proceed further, let us take a look at the typi-
cal sheet dies that are commercially well-emplo-
yed. They are known as T-die, coathanger die,
and the inverted preland die depending on their
internal shapes. Regardless of the shape of a die,
the purpose of die design is to generate a uniform
flow of molten polymer that is transferred from
an extruder, and then, deliver it to a subsequent
take-off equipment.

The T-die shown in Fig. 1 is distinguished by
its relatively large and generally circular manifold
along with its distinct sliding lips. This die provi-
des excellent gauge thickness when used for pro-
cessing relatively low viscosity polymers which

Fig. 1. Schematic view of a typical T-die.
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Fig. 2. Schematic view of a typical coat-hanger die.

are typical of the extrusion coating industry.

The coathanger die, probably the most widely
used die throughout the extrusion industry, is
shown in Fig. 2. It is being offered by Extrusion
Dies, Inc. (EDI), one of the major sheet die manu-
facturers in US.A.. The flow uniformity is control-
led mainly by the diminishing manifold cross-sec-
tion along the manifold direction. The profile of
the manifold cross-section is designed in such that
a constant pressure drop is provided for each melt
flow path. Thus, as the melt flows along the mani-
fold, a small portion of the melt leaks from the
manifold and flows along the machine direction.
In this way the volumetric flow of each melt st-
ream remains uniform across the die.

The other die shown in Fig.3 is employed by
the Cloeren Company and is called as ‘Epoch’ die.
Instead of changing the manifold diameter, the
Cloeren introduced an inverted preland whose le-
ngth along the machine direction change across
the die. The preland length decreases while it
moves from the center of a die to the edges. A
profile of the preland length is designed to restrict
the flow in the center more than the flow in the
edges. One aspect of the Epoch die is a uniform
wetted surface across the width of a die. This
offers a minimum clamshelling effects providing
more uniformity across broad processing condi-
tions. The clamshelling is a phenomenon that the
die gap in the center tends to be wider than both
edges due to a difference in force at the center
versus the edges of a die.

3 A6 W A 135, 1994

Fig. 3. Schematic view of a the EPOCHR die.

2. Basic Equations for Die Design

In the first part of this section, simple descrip-
tions on non-Newtonian fluid will be reviewed
briefly. After the review, mathematical formulars
for a fluid flowing in a circular pipe and between
two plates will be introduced following a power-
law model. This is based on the fact that the melt
flow inside a manifold can be described as a Poi-
seuille flow in a long circular pipe and other sec-
tions in a die as a Poiseuille flow between two
parallel plates. These simplified flow models ac-
tually serve as bases for die design in industry.
Later in this section, a clear explanation will be
given on the utilization of flow models in descri-
bing the melt flow in a sheet die. One will see
how to determine the geometry of a sheet die
to ensure a uniform flow across a die.

2.1. Simple descriptions on non-Newtonian
fluid

A fluid whose viscosity varies as the shear rate
changes is called non-Newtonian fluid. Or, any
fluid whose shear stress deviates from a linearity
with respect to shear rate is defined as non-New-
tonian fluid. Polymeric materials are known to
exhibit non-Newtonian characteristics. Shear vis-
cosity of most molten polymers decreases as the
shear rate increases at a constant temperature.
The extent of changes in the slope of a viscosity
curve in the log(viscosity) vs. log(shear rate) plot
determines one of the non-Newtonian characteris-
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tics of material. There exist numerous viscosity
models that describe this viscosity vs. shear rate
curve. A very popular choice for a long time, es-
pecially in industry, has been the power-law mo-
del:

n=my" " (o))

Where the temperature dependency of m, con-
sistency index, is given as

m=m,Exp(—b(T—T,y) 2

In order to determine the power-law parame-
ters, m and n, one can plot the viscosity data on
a log-log paper. The slope of a straight line that
best fits the experimental data is n and the visco-
sity at a shear rate of 1.0s™! is m. Typical values
of n for some common thermoplastics are: poly-
ethylene, 0.3~0.6; polypropylene, 0.3~0.4; PVC,
0.2~0.5; and nylon, 0.6~0.9.

There is one problem with the power-law mo-
del: At low shear rates polymer melt viscosity
tends to be constant, while the power-law model
predicts infinite viscosity. Another viscosity corre-
lation that is popularly used in calculations invol-
ving polymer melt flows through extruder chan-
nels and dies is the following six parameter mo-
del:

logn=Ao+ AT+ A, T+ A;Tlog(y)
+Alog(y) + As(logy)’ 3)

The coefficient of each term is obtained by the
method of regression analysis on viscosity vs.
shear rate data measured at several different te-
mperatures. This expression fits the actual visco-
sity data better than the power-law model. Most
resin producers have their own data files descri-
bing the values of the six parameters for each
grade of resins they produce.

Let us now proceed to review mathematical for-
mulars for a power-law fluid flowing in a circular
pipe and between two parallel plates.

2.2. Flow in a circular pipe

For a steady and fully-developed flow in a cir-
cular pipe, the equation of motions in cylindrical
coordinates reduce to the following equation:

Design 3

(rt)+%’ ~0 @

|-

9
or
Upon integration of equation (4), we obtain

r  OP

2%

) )

Whilst for a power law fluid
t=m(y)" 6)

Combining these two equations and remembe-
ring that for a tube, y=(dV./dr), one obtains

dv, r , 0P v
2 _ |~ 2 7
dr [Zm 0z ] ™
Which yields on integration
— _n_ _1 Q U n+1)/m+C
V‘—(n+1)[ om a2 )] tf ®

The constant C may be calculated by bearing
in mind that when r=R, V,=0, from which one
obtains that

n 1 JP v
= —— (—= (n-+1)/n (n+1in_
Ve (n+ 1 )[ 2m ( 0z )] R La/R) L]

)
When r=0, V,=V,., thus the maximum velo-
city is
1 1 0P v
— - 2 (n+1)/n 1
Vo=~ () 5 (5. )] R (10)

From which one obtains a general expression
for a velocity profile in a circular pipe for a po-
wer-law fluid.

V.= V,,,,,,[l _ (%){n+ 1)/n] an

The equation for the overall output Q is

nn
3n+1

= SR SERYR oP(z)
Q=( Mg R [—az " a2

Thus, the pressure drop in a tube is

P __ 3+l Q
0z =2m( n )(nR3

YR 13)
It is also possible to relate the average velocity
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{V), to V,u and V,. Since the average velocity
V), is Q/R? rearranging in terms of V,.
1 oP

3n+1 " 2m o

<V>z: —( )l/nR(n +D/n (14)
On comparison with the equation for V., it
is seen that

n+1

V=G

) Vi (15)

Substituting for V.., one obtains

V.  3n+1

KONETS!

)[1_ (%)(n-#l)/n] (16)

If the radius of a tube is linearly decreasing,
like a truncated cone, the pressure drop for a tube
of length L is
AP Zm[Q 1 " RT¥—Ry ¥
Ar_Z2m7d _+3] TNy g7

L 3n n(n ) Ro_R, ) (A7)

However, for a small tube length, dz, one can
use equation (13) for a pressure drop, using the
following expression for R,

Ri(2)+Ro(2)
2

R= (18)

Where Ro(z) and R;(z) are the radii at the ent-
rance and at length L, respectively.

2.3. Flow between two parallel plates

By analogy with the derivation for a velocity
distribution in a tube, the following equation is
obtained for a flow between two plates.

P
t=h( oz ) (19)

By combining with equation (6), one obtains

_dv. :[EQ ]W

dh m 0z @0
On integration this yields
n 1 0P
= — n+1)/n
Vo= 5] e e @1

When h=H/2, V,=0

Hence

sk A6 A13, 1994

C=_ ( ni : )[;(Z_IZ) ):Il/nl:g](n+1)/n (22)

When h=0, V,=V,., so that

_( n‘r:- - )[;(% )]l/n[g](n-#l)/n (23)

Ve =

Combining the equation for V, and V,. yie-
lds

v,= V,m[l -2 )<"+1>/"] 24)

The overall volumetric flow rate can be descri-
bed as

dP(z)

Q )( )l/nw H(Zn + 1)/n(

— 1/n
2( 2n+1 )

(25)

Then, the pressure drop between two parallel
plates of length L is

AP 1, @
L 2TmeE O e

(26)

It is also possible to express V,. and V, in
terms of {V),, the average velocity, Q/WH. Rear-
ranging equation (25) in terms of V,

O=lanllm ] @

or
V= 2[ 2n11 ][l]l/"[é(% )]l/" Hn+ D
(28)

Combining this with the equation for V.. provi-
des

_ n+1
V=V 2 | 29)
and
V <V> ( 2n+ 1 )[1_(2*1-}11 )(n+1)/n:| (30)

For a Newtonian fluid (n=1), {V),=2/3 V,.
for a slit compared with <{V),=1/2 V,,,, for a pipe.

Pressure drop in a tapered slit of length L can
be expressed as
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AP m Q1 HL42"-‘H072"
==+ (e

L 2"“n [W(n 2)]( HO_HL )

3D

The shear rate can be determined by differen-
tiating the velocity profile, as is shown in equation
(7) for a tube flow and equation (20) for a slit
flow. For a tube flow the shear rate at the wall
is:

V. Nt1 Vs

W=

2
or n R ©2)

Y=
For a flow between two parallel plates the shear
rate at the wall is:

. :(3V2) — n+1 anx
Y=o *T 7 n H2

(33)

The shear stress can be calculated from equa-
tion (7) and the maximum shear stress at the wall
for a tube flow is

n+l V. ]” 34)

T,=my, = m[ R
n

and for a flow between two parallel plates is

nt+1l V. ]"

Tw= MYy :m[ n H/2

(35)

It should be noted that the onset of melt frac-
ture or melt flow instability occurs when the mag-
nitude of stress reaches a certain level.

2.4. Equations for sheet die design for a po-
wer-law fluid

After an introduction of the basic equations for
a flow in a pipe and between two plates, let us
now review past work on die design equations.
Many investigators discussed on the design equa-
tions (1-9). Carley [1] was known to be the first
to propose a design criterion for a sheet die. He
developed a unformity index, Ul which is the rate
of extrusion at the far end to that at the feed
end, which is shown in equation (36).

n L n
UI: 1— Z\1+n,2n
(1= o] (36)
@n+1/n
Where o= 3n+1 n H 1

n 2(211 + 1) R(3n+ D/n tl/n

R and L are the radius and the length of the
tube, respectively, H is the size of the slit opening,
t is the length of land. A plot, Ul against flow in-
dex, n, with geometric values as parameters, indi-
cates that the uniformity of flow can be improved
by increasing R and t, but by decreasing H and
L. Also, according to the index, a center fed die
will always be better than an end-fed die. Howe-
ver, in practice, both the radius of the manifold
and the slit opening have their own limits.

McKelvey and Ito [2] proposed other unifor-
mity function which enables die dimensions to be
established at a specified uniformity at particular
flow rates and pressure drops. The analyses sho-
wed that the flow index, n, of the power-law was
the key parameter determining the flow unifor-
mity. Their work is noted to be the one which
provided a concept of varying the manifold radius
and slit thickness.

Apparently, Chung and Lohkamp [3] developed
an equation for the varying radius of the manifold.
Let us review their work in detail here. The rela-
tionship between pressure along the machine and
manifold axis can be expressed as

P,=P, cos® (37

Where P, is the pressure gradient along the
machine direction, P, along the manifold axis, and
0 is the manifold angle.

The substitution of equation (37) into equations
(12) gives,

_m o1, VAR ()3n+ Din
Q) =( 311 ) Zm) (AP, cos9)"R(x)

(38)

Now we can obtain the inlet radius of the mani-
fold at x=0 from equation (38) using the boun-
dary condition of at x=0, Q,=Q/2 and equation

(25).
(Bn+1) 7/(3n+1)
=|— . H(2n+l)/(3n+l)
Ro [ 4n(2n+1) ]
~cosf™ 1/3n+1) (39)

It should be noted that the inlet manifold size
is a function of n, W, H, and 6.
The mass balance over a differential manifold
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length dx is,
4 n 1 1/n
dQ(x)= —sin6 2W ont1 om)
_H(2n+1)/n le/n dx (40)

The integration of equation (40) gives,

—_ n 1/n
Qx)=Q(0)~sinf 2W 2n+1 (Zm)

.H@n+ v, le/n 41)

Substituting equation (26) and (38) into equation
(41) with the boundary condition of R=R, at x=0,
one obtains,

— \lUn 1/n @Bn+1)/n
(3r1 1 )( ) (AP, cosf)"” R(x)
:( 3;:11 )(__ )1/n(APz Cose)l/n,RO(anH)/n
1
— —_— — ). (2n+l)/n.Ale/n
sm9( )( 2n+1 X Zm) H
42)
Rewriting equation (42) gives.
R(X)Bn +1/n — R0(3n +1/n
1 { n 1 1/n
. oW ' 2n+1 X 2m ) Her+rm
St )( n cosf'
( 3n+ 1 )
(43)

Now substituting sin0=W/2Lm and equation
(39) into equation (43) leads to

RI;Z) —a- L_’:n YD 1)

where Lm is the length of the manifold.

Equation (44) shows that manifold profile depe-
nds only on the flow index n. If the inlet radius
and the profile of the manifold are designed acco-
rding to equations (39) and (44), a coat-hanger
die is expected to produce a uniform thickness
sheet without the help of choker bars. Often the
cross-section of a manifold is non-circular. In this
case, the arbitrary cross-section is transformed
into an equivalent circle by using the following
equation

R,=2 S/C 45)

frHeh A6 A1%E, 1994

Where R,, is the equivalent radius, S the
cross-sectional area and C the perimeter of its
circumference.

Matsubara [4,5] attempted to introduce me-
thods of producing uniform melt flow residence
time across the die with a curvilinearly tapered
coat-hanger die. He obtained the following design
equations for the manifold radius R(x) and the
coat-hanger height Z(y).

_ m1/3(n +1) |— 1 + 311 n/(3(n+ 1)) 3 _ Vs
RO=""5 L2(1+2n)] HAL=)
(46)
and
K12
Z(y): [(L )1/3{ (L_y)Z/a_, k} 1/2

+k logl(L—y)¥+ {(L—y)%—k}m]]o’(47)

for y=0 to L—k*%, and where k is

" [ nH [ 1+3n ]2n/(1+n>]2/3 48)

= m(1+3n)/(1+n) 2(1+2H)

In equation (46), m is defined as the ratio of
the average residence time in the manifold to that
in the slit.

The non-isothermal flow analysis of a power-law
fluid in a sheet die was conducted by Vergnes
et al. [6] using an iterative finite difference me-
thod. Equations of motion and energy were solved
simultaneously to give pressure, temperature, st-
ream lines, and exit flow rate distributions.

2.5. Numerical approaches in die design

The use of numerical approach became popular
and commercially available die design programs
are now available from such organizations as Mac-
Master University in Canada, Polymer Processing
Institute and Scientific Process Research Inc.,, res-
pectively, in US.A.. Here, we would like to intro-
duce a general method of analyzing a flow in a
sheet die used in Flatcad® program, that are deve-
loped by J. Vlachopoulos from McMaster Univer-
sity and his colleagues [10]. Their approach to
analyze the flow in a sheet die is a control volume
method. The control volume method is a variation
of finite difference method in which integrated
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Fig. 4. A sketch of a die subdivided into control vo-
lumes.

forms of the differential equations are considered.

The internal flow passages of a die is divided
into regions. The regions can be represented by
simple geometrical shapes like straight or tapered
cylindrical channels and parallel or tapered flat
plates. Each region is divided into control volu-
mes. If the internal gap is divided into control
volumes, the flow equations can be solved inside
each control volume and then combined together
for all the control volumes of the grid to describe
the flow inside the whole die. Let us review the
method using the simplest geometry, that is flow
between parallel plates. A sketch of a simplified
“die” is shown in Fig. 4.

Fig. 4 shows a view on the horizontal plane of
the “die”. It is assumed that the gap thickness
h is constant everywhere in the control volume
grid shown in Fig. 4. The three divisions in the
x direction and the three divisions in the y direc-
tion create nine control volumes. The material en-
ters the “die” at the top edge of control volume
1, flows inside the “die”, and finally exits it from
the bottom edges of control volumes 7, 8 and 9.
The rest of the boundary of the “die” represents
the walls at which the normal component of the
velocity is assumed to vanish. Inside the die, the
material flows in both the x- and y-direction and
the velocity profiles are assumed to be locally fu-
lly developed. To be able to describe the flow
inside the “die” two independent flows must be
assumed. These two flows can be represented in

each control volume by the volumetric flow rates,
or the average velocities. For each control volume,
these volumetric flow rates account for two inde-
pendent variables, being the pressure the third
independent variable present in the mathematical
model. In Fig. 4, the variables associated to each
of the control volumes are identified. An impor-
tant assumption of the control volume method is
that the volumetric flow rates Q and q are cons-
tant in each control volume and have a step cha-
nge at the edges of the control volume. Since
there are three variables in each control volume,
three independent equations must be constructed
to describe the flow. By using the above mentio-
ned assumptions the volumetric flow rates can be
related to the pressure drops for each one of the
control volumes.

Stress balances for the two flow directions
are

Ot _OP _
0z ox
ot, OP
oy 0 49

Which can be rewritten as

T = Twzx

(50)

w N e |8

Ty — Tuzy

Where s=h/2.
Substituting equation (50) into (49) and integra-
ting

2T
(AP),— % Ax=0
h
2Ty
(AP), == Ay=0 G1)

Where x and y are the dimensions of the cont-
rol volume.
The shear rates for fully developed flow are

. 2nt+1 2Q
Tar n Ay
_ 20+l 2q
Vo= n  Axh? 62)
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Where Q and q are the volumetric flow rates
in the x- and y-direction, respectively.

The last conservation equation for a control vo-
lume is the continuity equation, that is the balance
between the flow entering and exiting the control
volume.

—Q*—q*+Q+q=0 (53)

For example, the pressure differences of control
volume 5 in Fig.4 are

(AP),=(P1+P1)/2— (Pa+P2)/2 (54)
for the x direction, and
(AP),=(P1s+P2)/2— (P +P2)/2 (55)

for the y direction.

These pressure differences, along with the
shear stress values can then, be substituted into
equation (51) to give

Pu+P;;  Pu+Py  2n+1  2n()
— _ A =0
2 9 n Ayh2 xQis
PutPy PutPy  2nt1 200
2 2 n Ayh2
(56)

The continuity equation for this control volume
takes the form

—Qs—qus T Qis+q16=0 67

Equation (56) and (57) describe the flow in control
volume 5 in Fig. 4. Similar equations can be const-
ructed for the other control volumes. By combi-
ning all the resulting equations, a complete set
of algebraic equations is created.

To be able to solve this set, boundary conditions
must be specified. The are:

— Qs+ Qs+qs=0 (58)
3=0, q1e=0, qn=0 (59
Pu=0, P,=0, Pu=0, Py=0 (60)
— Qe+ Qiz+qi3=0 (61)
Q4= Qu 62)

With the bove boundary conditions, equations (56)

3, A6 A13E, 1994

are solved using an iterative approach. A possible
iteration procedure consists in using the previou-
sly calculated volumetric flow rates in each control
volume to calculate the invariant I and the corres-
ponding viscosity for the new iteration. This itera-
tive procedure can be carried on until a small
predetermined tolerance is satisfied.

Temperature effects can be incorporated into
the model similarly. The viscous dissipation in
each control volume, the subsequent viscosity
changes of melt, and heat transfer between the
melt and the body of the die are considered in
the analyses. For any control volume of the grid,
the energy balance can be expressed as

@+ QT QT q*Tp= 2L ©3)

pCp

Where T,; and T,, represent the temperatures
in the top and left neighboring control volumes,
respectively, and, Ev and Er are the dissipated
energy per unit time and the transferred energy
per unit time between the melt and the body of
the die. The set of equations for the energy bala-
nce is solved separately from the set of equations
for the momentum balance. The solution of the
flow problems starts assuming that the tempera-
ture in all the control volumes is the temperature
of the material at the entrance of the die. The
results of the flow solution are then used in the
solution of the energy equations to calculate the
temperature distribution which, in turn, is used
to modify the viscosity of the material in each
control volume for the new flow solution.

3. Conclusive remarks

We have reviewed basic equations that are re-
quired in developing die design concepts. We un-
derstood how to relate a simple power-law fluid
model to the geometry of a sheet die, namely the
inlet radius and the profile of the manifold. Finally
we reviewed an approach of the control volume
method, which is served as a base of FlatcadR,
one of many commercially available sheet die de-
sign programs.
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