모의류사의 쪽거리 차원

FRACTAL DIMENSION OF SIMULATED SEDIMENTS

  • 발행 : 1994.09.01

초록

하구수리계에 있어서 점착성류사의 운동은 응결과 응집(aggregation) 현상에 의해 크게 좌우되며, 이들 현상에 의하여 의결된 입자들의 크기, 모양, 강도는 그 퇴적율과 그리고 부유류사와 오염물질의 변동과정에 영향을 미친다. 본 연구에서는 Brownian 운동에 의해 지배되는 이동성 부유영역과 중력에 의해 지배되는 정체성 부유영역으로 분리하여 점착성입자들의 응집과 응결과정을 모의하였다. 이동성 부유영역에 있어서는 Smoluchowski 모형중 입자들의 무작위 회전을 이용한 최대연쇄 모형으로 응집물질의 사영들을 도출하였으며, 그 회전반경에 의해 사영들의 쪽거리 차원을 구하였다. 저에성 부유영역에서의 응집물질(Brownian 영역을 벗어나 침강하는 응집물질)는 비구형 입자들의 침강으로 간주되어진다. 최종 침강속도 차이로 이들 응집물들은 재차 충돌, 결합하여 보다 큰 응집 입자들을 형성하며, 이들 최종 응집입자들의 사영이 모의되어진다. 최대 Feret's 직경과 Minkowski's sausage logic 개념들을 이용하여 모의되어진 사영들의 둘레 길이에 대하여 쪽거리 차원들을 구하였다.

Cohesie sediment movement in estuarine systems is strongly affected by the phenomena of aggregation and flocculation. Aggregation is the process where primary particles are clustered together in tightly-packed formations; flocculation is the process where aggregates and single particles are bonded together to form large particle groups of very low specific density. The size, shape and strength of the flocculants control the rate of deposition and the processes of pollutant exchange between suspended sediments and ambient water. In estuarine waters, suspended sediments above the lutocline form the mobile suspension zone while below the lutocline they form the stationary suspension zone. Suspended particles in the mobile zone are generally in a dispersed state and the controlling forces are the Brownian motion and the turbulent flow fluctuations. In the stationary suspension zone, the driving force is the gravity. This paper discusses the settling and particle flocculation characteristics under quiescient flow conditions. Particles are entering the study domain randomly. Particles in the mobile suspension zone are simulated by using the Smoluchowski's model. Flocs created in the mobil suspension zone are moving into the stationary suspension zone where viscosity and drag effects are important. Utilizing the concepts of the maximum Feret's diameter and the Minkowski's sausage logic, the fractal dimension of the flocs within the stationary suspension is estimated and then compared with results obtained by other studies.

키워드

참고문헌

  1. J. of Physics, Pt. A : Math. Gen. v.18 Computer Simulation of Chemically Limited Aggregation Brown,W.D.;Ball,R.C.
  2. J. Physics. A : Math. Gen. v.17 Hierarchical Model for Irreversible Kinetic Cluster Formation Botet,R.;Jullien,R.;Kolb,M.
  3. J. Colloid and Interface Science v.147 no.1 Void Size Distribution in Simulated Fractal Aggregates Ehrburger-Dolle,F.;Mors,P.M.;Jullien,R.
  4. Physical Review Letters v.53 Scaling Behavior and Cluster Fractal Dimension Determined by Light Scattering from Aggregating Proteins Feder,J.;Jossang,T.;Rosenqvist,E.
  5. Aggregation and Fractal Aggregates Jullien,R.;Botet,R.
  6. J. Phys. v.A17 Hierarchical Model for Chemically Limited Cluster-Cluster Aggregation Jullien,R.;Kolb,M.
  7. Hydraulic Engineering '93 v.2 Fractal Dimension of Aggregated Sediments Kim,H.S.
  8. MSc Thesis, Department of Ocean Engineering, Florida Atlantic University Settling of Fine Particles Kim,H.S.
  9. Estuarine Transport Processes, Belle W. Baruch Library in Marine Sciences, No. 7 Aggregation of Suspended Particles in Estuaries Krone,R.B.;B.Kjerfve(ed.)
  10. The Fractal Geometry of Nature Mandelbrot,B.B.
  11. J. of Colloid and Interface Science v.24 Morphology of Aggregates Ⅰ. Calculation of Shape and Bulkiness Factors; Application to Computer-Simulated Random Flocs Medalia,A.I.
  12. Proc. 3rd Nat'l Conf. on Dock and Harbour Eng. Fine Sediment Stratification in Coastal Waters Mehta,A.J.
  13. Geometric Probability Moran,P.A.P.;Kendall,M.G.
  14. Bulletin Internationale de l'Academie des Sciences de Cracovie v.8 Contribution a la Theorie de l'endrosmose Electrique et de Quelques Phenomenes Correlatifs Smoluchowski,M.von
  15. J. of Colloid and Interface Science v.25 A Theoretical Model of Floc Structure Sutherland,D.N.
  16. Natture v.226 Chain Formation of Fine Particle Aggregates Sutherland,D.N.
  17. Chemical Engineering Science v.26 Floc Simulation ; The Effect of Collision Sequence Sutherland,D.N.;Goodarz-Nia,I.
  18. J. of Hydraulic Engineering v.117 no.5 Drag Coeffecient and Fall Velocity of Nonspherical Particles Swamee,P.K.;Ojha,C.S.P.
  19. J. of Colloid Science v.14 A Numerical Approach to the Problem of Sediment Volume Vold,M.J.
  20. Physical Review Letters v.47 no.19 Diffusion-Limited Aggregation : A Kinetic Critical Phenomenon Witten,T.A.;Sander,L.M.