Dynamic Motion of Polyelectrolyte in a Composite Membrane: II. Molecular Study

막에서 전하고분자의 동적 현상 II. 미시적 연구

  • Park, Young (Supercomputer Computations Research Institute, The Florida State University, Tallahassee, FL 32306-4052 U.S.A.) ;
  • Lim, Hwa A. (Supercomputer Computations Research Institute, The Florida State University, Tallahassee, FL 32306-4052 U.S.A.)
  • Published : 1994.06.01

Abstract

Theoretical model for membrane transport of large polye!ectroiyte is presented. When the electric field is applied, the molecular conformation quickly orients in the field direction showing overshooting orientation. the predicted dependence of overshoot time and orientation upon field intensity and molecular size aids to understand the dynamic motion of molecules in membrane transport. The dynamics of the overshoot is associated with self-trapping conformations of molecule. The understanding of these effects supports evidences for the electrophoretic filtration of polydectrolyte in the polymeric membrane. This paper shows one example for molecular study in the theoretical review paper of membrane transport.

이 논문은 거대전하고분자의 막전달 현상을 위한 이론적 모델을 연구하는데 있다. 전기적 힘에 의한 전하고분자 물질의 형상은 빠르게 곧게 뻗으면서 진행되며, 곧게 뻗는 시간과 길이는 막 전달의 동적현상을 이해하는데 도움을 주고 있다. 빠르게 곧게 뻗을 때, 전하고분자의 두 끝이 전기힘 방향으로 동시에 끌리는 현상이 일어난다. 이같은 형식의 이해는 거대전하고분자의 막분리를 이해하는데 도움을 주고 있다.

Keywords

References

  1. Membrane Separations in Biotechnology W.C.Mcgregor,
  2. Journal of Membrane Science v.62 L.E.Bromberg,
  3. E,Elsevier Advances in Drug Delivery System J.M.Anderson,;S.W.Kim,
  4. Cheimcal Engineering Science v.45 P.E.Grimshaw,;A.J.Grodzinsky,
  5. Journal of Membrane Science v.56 W.C.Olson,;C.K.Colton,;M.L.Yarmush
  6. Nucleic Acids Res. v.15 C.B.Holzwarth,;C.B.Mckee,;G.Carter,
  7. Phys.Rev.Lett. v.62 J.Sturm,;G.Weill,
  8. Biopolymers v.27 M.Jonsson,;B.Akerman,;B.Norden,
  9. Journal of Chemical Physics v.55 P.G.de Genne,
  10. Dynamics of Polymeric Liquid R.B.Bird,;O.Hassager,;R.C.Armstrong,;C.F.Curtiss,
  11. The Theory of Polymer Dynamics M.Doi,;S.F.Edwards,
  12. Phys.Rev.Lett. v.61 B.Zimm,
  13. Engineering Rheology, R.I.Tanner,
  14. J.C.S.Faraday II, v.74 M.Doi,;S.F.Edwards,
  15. Biopolymer v.28 B.Akerman,;M.Jonsson,;B.Norden,;M.Lalande,
  16. Biopolymer v.24 O.J.Iumpkin,;P.Dejardin,;B.Zimm,
  17. J.C.S.Faraday II v.74 M.Doi,;S.F.Edwards,
  18. Phys.Rev.Lett. v.62 J.L.Viovy,
  19. Biopolymer v.28 G.Holzwarth,;K.J.Platt,;C.B.McKee,;R.W.Whitcomb,;G.D.Crater,
  20. Biopolymer v.28 B.Akerman,;M.Jonsson,;B.Norden,;M.Lalande,