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Abstract: This papr studies the dynamic effects of polyelectrolyte in the multilayered membrane. It is found that elec-
trophoretic convection in the fluid phase can be used to accelerate the speed of the polyelectrolyte. The model in the
membrane separation is studied via interactions between fluid and solid phases. The spectra evaluation using the opera-
tor theoretic method is performed for the parametric studies of the physical properties in the membrane process. The
findings of this paper shoould be useful in guiding the design of separation devices. This paper shows one example for
macroscopic study the theoretical review paper of membrane transport.
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1. Introduction and purification processes. Current interest has fo-
cused on the purification of polyelectorlytes such as

The electrophoretic transport of polyelectrolyte in proteins and polymer colloids. A mumber of theoret-
multiphase-layer system such as membrane has an ical, empirical approaches have been made to model
important application in a wide range of separation the electrophoretic filtration and separation through
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membranes[1, 2]. Most of these separation pro-
cesses have considered the transport of polyelec-
torlyte across the polymeric membrane. Although a
number of studies have been devoted to the funda-
mental problems of membrane process, there have
been few detailed predictions of intraconvective
transport under an electric field. Intraconvective
transport is of current interest in separation proc-
ess. Opong and Zydney[3] have considered hydro-
dynamic model to determine the hindrance factors
in ultrafiltration membrane. Lu and Rodrigues {4]
have studied the effects of intraconvection on sepa-
ration through mass balance of an inert tracer in-
side the membrane. Electrodialysis [5] employs
fixed—charge membranes to extract pure water
from a salt solution. The membranes are positioned
at the top according to the ionic charge they allow
to pass. The result is to separate pure water and
salt solution by an electric field across a set of
membranes. Most of theses membrane processes
have considered the transport of solute across mem-
brane or through continuous membranes of unvary-
ing properties. Many mathematical models have not
predicted the dynamic behaviour of polyelectrolyte
inside the membrane. This paper 1s macroscopically
to study the convective—diffusive transport in mul-
tilayered membranes in the presence of electric
field. Physical properties including porosity, electro-
phoretic convection, and diffusion coefficient may
vary simultaneously from layer to layer in the com-
posite membrane. The purpose of this paper is to
show how intraconvective transport of polyelectro-
lytes influences the filtration of membrane via inter-
actions between bulk fluid of fluid phase and mem-
brane of solid phase. The general model for electro-
phoretic filtration will be developed for a M-layered
membrane process. The M-layered membranes may
present an approximation of a matrix with con-
tinously varying properties or a system of stacked
membranes. The “model problem” will permit, with-
out loss of generality, an appropriate illustration of
the most important characteristics of the problem
while keeping the algebraic details at a munimum.
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Furthermore, the three-laye problem retains the
most relevant aspects of the steady state and dy-
namic behavior of the electrophoretic transport re-
lated to more complicated transient problems.

An operator theoretic approach is used to solve
the molar species continuity equation [6]. the spec-
tra evaluation using the transport differential opera-
tor will be performed to show the parametric stud-
ies of the physical properties on the concentration
profiles of polyelectrolyte.

2. Theory

2. 1. General Formulation for M-ayered Membrane

The general species continuity equation for spe-
cies “i” in a homogeneous medium “m” subject only
to an electrical force and molecular diffusion can be
given [7] by

0Cim

ot =V (I)Lmvcnm)——'v * (Cn,mFun,mZi.qu;m)

(1

The species molar concentration, electrophoretic mo-
bility, and diffusion coefficient in the membrane
layer are given respectively by ¢, U and D, ... F
is the Faraday constant. ¥ is the electrostatic po-
tential and z is the valence of polyelectrolyte. A
schematic of the M-layered membrane system is
shown in figure 1. The subscript m indicates the
mth region of the composite membrane layer. The
electric field in general is given by the solution of
the Poisson’s equation. Electrolyte concentration of
bulk fluid i1s assumed to be diluted in order to ne-
glect molecular adsorption effect. If electroneu-
trality in each membrane layer is assumed and if it
Is assumed that the diffusion coefficients are inde-
pendent of concentration, multiplication of equation
(1) by Fz and summing over all species [8] at
steady state leads to

N N
FVH(Z D aCinzim) = + V(X0 oF 002’ 0 V)
=1 =1
(2)

If a single species, denoted by subscript s of a
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Fig. 1. Schematic picture in a M-layered membrane.
polyelectrolyte with a small diffusion coefficient, the

left hand side of equation (2) becomes zero by
electroneutrality as

N N
D.[gl Crim +%T”q.mzs,m] = ngsq,m&m =0 (3

Thus, integration of equation (2) leads to the Ohm’s
law[7]

_ 1 -1 _ v
vlp‘—N—————Q—(d) 4)
Equzze

where [ is the current, Q is the electrical resistance,
V is the electrical field and d is the length of each
membrane layer. Note that this equation implies
that although the field gradient is constant within
specific layer, it may differ from layer to layer. The
species equation, after removing subscript “s” for
convenience, and assuming one-dimensional trans
port In membrane process, is

0Cn _ V., den

- _um(_— m azcm
ot L™ ox

+D"‘-ax_2 (5)

In the model formulation each layer is assumed to
be a different phase, and therefore flux and equi-
libuium boundary conditions are required at the M-
1 interfaces. The total fluxes at the internal bound-

aries between each composite membrane must be
equal and are given by

_DmH%—;T‘I + Cm+lum+l({‘)m+l=—Dm_3%:— + cmum(%)m

(6)
at x'=x/, ; m=12,3,--- M~1
The distribution coefficent of species, 8, gives the
linear phase equilibrium

ﬂn+lcm+lzﬂmcm (7)

at xX'=x, , m=1,2,3,--- M-1

Boundary conditions at the external boundaries, 1. e.
at x’=L must also be supplemented to the above set
of internal boundary conditions. For the case of a
fixed concentration in the outer regions these condi-

tions are
Bici=LAico at x=0 (8)
BMCM=BLCL at x’=L (9

For polyelectrolytes in porous media these distribu-
tion coefficients represent the fractional pore avail-
able to polyelectrolyte.

Equation (5) is commonly used when the poly-
electrolyte of interest does not contribute to the
electrical current. This again assumes low concen-
tration, small diffusion coefficient, and low electro-
phoretic mobility for the polyelectrolyte of interest.

Membrane J. Vol.4. No.2., 1994
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As the concentration increases the polyelectrolyte
of interest will begin to contribute to the electrical
current and the dilute solution assumption will no
longer hold. Under these circumstances it would be
necessary to solve the Poisson equation simul-
taneously with equation(1) for all the electrolyte
species concentrations. This is a highly non-linear
problem. One important consideration of the M-lay-
ered model considered as shown in Figure 1 is the
possibility that the field per unit length(V/L), can
vary from region to region in an arbitrary fashion.
Thus a non-linear field variation can be imposed
without altering the solution methodology.

Equation(5) is analogous to the standard convec-
tive-diffusion equation with the convective term
given by the electrophoretic mobility multiplied by
the electrical field per unit length. The nondimen-
sional form of the differential equations in (5) and
boundary conditions (6), (7), (8) and (9) are
given below. The dimensionless variables are

A
ZLDl Pe _ um(f)mxo
= 2" Dn
_Dn _ X BiCe
¢m—‘DO’ ——L,Cm— A (10)

and the transformation variable is C,=C., exp(-Pen,
s/2)
The differential equation (5) and boundary condi-
tions can be written as
Cn 1 0Ca
or =il P

and C.(0)=C, at s=0, C,(1)=C, exp(-Pey/2) at

s=1

Pel.Ca
- T] (11)

rm(sm)¢m _& Cm(sm) — I‘m-H(Sm)qu-H
3 L gs TP g ==z
| 8Cus Cosi(5a)
[ o +Pen = ]

Cor(82)n(Sn) = Cos1(8n) Tori(Sw) al =5, , m=1,
2,3, ,M=-1

where ro(s,) =exp(Pensn/2). lllustrations of the ef-
fects of the parameters on the solution concentra-
tion profiles will be discussed in order to descibe the
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dynamics of the polyelectrolyte accumulation in the
system.

Several physical parameters such as the Peclet
number-the relative ratio of convective electropho-
retic transport to diffusive transport, ¢-the relative
ratio of diffusion coefficients, and B.-the equilibri-
um distribution coefficients are included in the mo-
del given by equation(7). The model can accurately
describe variations from layer to layer in the
system. For example, a variation in § represents a
pore gradient type transport where the pore space
available for a particular molecule varies from layer
to layer ; and a variation in Pe(i. e. the ratio of
electrophoretic convective motion to diffusive trans-
port) will occur if the mobility changes from layer
to layer.

2. 2. Solution Methodology

When M-layered membrane has a uniform stag-
nant boundary layer, the membrane is bounded by
two stagnant boundary layer regions of the fluid
phase. The formal solution to the transient problem
can be constructed from equation (5) and the initial
—boundary value problem reduces to

—%_[TJZLU%-RJ 1 k=1,2,-,M (12)
where
L 0 u
L= .Lk. U= 1twl,
0 .L. u.M
L= —@(%—Pj*z) k=23, -, M—1

I is a unit matrix. L, are M differential operations
in each membrane layer and R, can be obtained
from self-adjoint boundary conditions. The solution
to the transient problem is solved using operator
theoretic method [6]. The solution associated with
this differential operation is explained in appendix .
In the transient analysis for three-layered membrane,
we assume to have the same thickness of boundary
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layers in the upper and lower regions, i. e., s,=1—s,.
Transient solution is written as

Cilx, )= é u(s, A)exp(—Ar)
[<C(r=0), u>+ jo’ Rexp(Andr]  (13)

The inner product <, > in equation (13) is given
in Appendix L. Equation (13) can be separated by
the exponential term and the steady state term as

Clx, ) =C*(x)+C(x, 1) ; k=1,2,3 (14)

where
Ci'(x, )= 1gm‘.ltl.(x, Adexp(—Ar)
[- [ Reexp(iricr) (15)

The steady solution is analytically calculated from
ordinary differential equation of equations (11) in-
stead of using the spectral steady state solution.

3. Result and Discussion

A complete analysis of the multi-layered mem-
brane in the transient state, and a full description of
the effects of system parameters including diffusion
coefficient, electrophoretic convective velocity, and
porosity, on the dynamic problem is discussed in
this section. Diffusion and electrophoretic convec-
tion are assumed to govern the transport in both
fluid and solid phases. Hydrodynamic convection is
neglected in order to give a representation of what
would be occuring in the stagnant boundary layer
of membrane in the fluid phase. The electrical field
is assumed to be the same in the membrane as in
the fluid phase of boundary regions because the cur-
rent carrying ions can readily penetrate the mem-
brane. Concentration profiles in the membrane and
In the boundary layer around the membrane can be
calculated from the solution of the model equations
(11). In the model equations, the dimensionless
Peclet number is the major control variable of the
electrophoretic convection and diffusion in each
membrane layer. Electrophoretic convectivediffu-

sive transport in the membrane can be analyzed
through two different Peclet numbers in the fluid
phase(Pe, ; Pe,=Pey) of bulk fluid and solid phase
(Pe; ; Pe,=, -,=Pey_,) of membrane. Transient
concentration profiles in the membrane and in the
boundary layer surrounding membrane are associat-
ed with the electrophoretic convective fluid velocity.
Figure 3 shows several of these concentration pro-
files at different Peclet numbers when M is equal to
three. At small peclet number in the fluid phase(Pe
1), the transport of poly-electrolyte is governed pri-
marily by diffusive transport, thus the concentra-
tions of polyelectrolyte on the two boundary regions
of the membrane become nearly equal as seen in
Figure 2(a).

If Pe, is greater than Peclet number in the mem-
brane (Pe,), the ratio of the convective transport in
the membrane to that in the boundary layer exceeds
the ratio of diffusive transport. The electrophoretic
convective transport may be influenced in porous
membrane than the diffusive transport driven by
concentration gradient. When an electric field is ap-
plied, polyelectrolyte will transport from the bulk
fluid into and through the membrane. The flux of
polyelectrolyte that is transported to the pores of
the membrane from the fluid phase must equal the
flux transported through the membrane. Figures 2
(b)—(d) show that the concentration gradients are
seen to get steeper as the electric field is increased.
It is necessary for the concentration profiles in the
interphase region of membrane to increase in order
to maintain equal fluxes in the membrane and fluid
phases. The transient rate to approach at steady
state in the membrane is significantly reduced as
polyelectrolyte penetrates farther than x=s,. This
concentration increase may depend on both the
magnitude of Pe; induced by the electric field and
on the size of the polyelectrolyte. The increase of
concentrations in the interphase region between
solid and fluid phases is related to a very fast dy-
namic speed to approach to the steady state. The
dynamics in the membrane process can be related
to the dynamics of the individual layer problems of

Membrane J. Vol.4. No.2., 1994
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Fig. 2. Transient concentration profiles when y,27,.

M-layered membrane. The convection effects for
dynamic behavior of polyelectrolytes need to be con-
sidered from the structures of the spectra of charac-
teristic equation (19). It can be mathematically rec-
ognized through the position of the eigenvalues by
the asymptotic vertical lines of characteristic equa-
tion. Convection effects in three-layered membrane
can be strongly varied by the physical parameters
of each layer. This can be applied to study mass
transport of M-layered composite membrane in
steady state.

Convection effect in M-layered membrane is en-
hanced due to interations between layers. As Peclet
number of each membrane layer gradually increas-
es to the x~direction of electric field, concentrations
of each layer increase linearly due to faster electro-

phoretic convection of each layer as seen in Figure

dludal, A44 A 2%, 1994
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3(a). When Peclet number of every layer equally
increase, concentrations can be significantly in-
creased by stacked effects of multilayer as polyelec-
trolyte penetrates from layer to layer. This indi-
caties that electrophoretic convection in each layer
can be accelerated by different physical properties
such as membrane porosity and diffusion ratio in
each layer. Figure 3 shows that concentration pro-
file at fifth layer of six-layer membrane is signifi-
cantly increased with electric field. Electrophoretic
acceleration of polyelectrolyte in each layer is also
related to number of layer. Figure 3(b) shows that
as the number of membrane layer increases step by
step from M=3 to M=10, concentrations signifi-
cantly increases in multier membrane layer as mem-
brane porosity 4 gradually increase from layer to
layer. Concentration(M-1)th layer membrane can
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brane(M=6).
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where k=1, 2, ---6.

be unexpectedly increased with electric field by con-
trolling membrane porosity 8 and diffusion coeffi-
cient’s ratio ¢ of each layer. This Kind of structual
composite membrane can be sufficiently designed,
the separation of polyelectrolye can be enhanced by
the controls of physical properties as well as num-
ber of membrane layer affecting intramembrane
transport.

In case of Pe,/Pe;»1, small value of Pe, does
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Fig. 4. Transient concentration profiles when 71 <Y
7:=0.25 and y,=100.

not affect the transient concentration profile inside
membrane even when Pe, varies over a wider
range. It is obvious that the electrophoretic convec-
tion in the fluid phase plays an important role in af-
fecting the increase of concentration profile inside
the membrane. The dynamic speed of polyelec-
trolyte in the membrane is significantly reduced in
case of Pe,/Pe»1 as seen in Figure 3. But tran-
sient rate of polyelectrolyte increases in the lower
boundary region of fluid phase. Polyelectrolyte
reaches the steady-state sooner than the membrane.
At low electric field, polyelectrolyte retains a globu-
lar shape and relative ratio of mobility ideally ap-
proach 1/3 in the polymeric gel[9]. But diffusion
coefficient in the membrane is greatly smaller than
that on free solution. This indicates that Pe,/Pe; can
be practically much greater than 1 in only low elec-
tric field. Higher value of Pe, can be considered by
slower diffusive transport and/or faster convective
transport. In this case, the total flux of equation (6)
increases in the membrane. High total flux of
polyelectrolyte in the membrane affects fast convec-
tive velocity in the lower boundary layer region.
This observation is a result of equal flux boundary
condition in the lower interphase boundary region
of fluid phase. This is caused by convection effect in
the membrane. From results of Figures 2-4, the
build~up of concentration in the membrane is

Membrane J. Vol.4. No.2., 1994
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Fig. 5. Porosity effect in M-layered membrane.
1. A=1, =05, =04, 3=03, 5=0.2,
B=1. and ¢, =0.5, Pe, = 10.
2. B=1., =05, #=0.6, 5,=0.7, 5=0.8,
G=1. and ¢, =0.5, Pe,=10.
3. Bi=1, 5=0.9, f=1.and $=0., Pe,=10.
4. B=1., =05, §=1. and $=0.5, Pe,=10.

strongly dependent on electric field in the f{luid
phase as well as convection in the membrane. In
order to enhance electrophoretic convection of
polyelectrolyte in the membrane, several factors
such as the size of polyelectrolyte, the concentration
of electrolyte, pH and pore size must be considered.

Table 1. Steady State Solution of M-layered Membrane

Pe.s
2

Cn=an, exp(

For example, reduction of polyelectrolyte-to—pore
size ratio or dilution of electrolyte concentration
must be checked.

The effect of membrane porosity of dynamic
speed Is closely related to the electrophoretic intra-
particle transport. Figure 5 shows how the concen-
tration profiles significantly vary with porosity in
the presence of electrophoretic convection. In the
case of Pe,/Pe>1, polyelectrolyte moves fastly
through larger porous membrane with electric field.
Transient concentration in the membrane is signifi-
cantly lower and flatter in large porous membrane.
In M-layered membrane, the concentration in each
layer can be significantly changed by different
membrane porosity in each layer. As porosity of
each layer increases gradually in the M-layered
membrane, the polyelectrolyte moves faster from
layer to layer. Concentration of each layer gradual-
ly increases due to faster convection as shown in
Figure 5. But in the reverse case of Figure 5, con-
centration significantly increases with larger porosi-
ty in comparison when membrane porosity has con-
stant value In any membrane layer. Polyelectrolyte
in each layer is stacked due to smaller porosity of
each layer. Also when porosity in each membrane

layer is irregularly changed, concentration profiles

Pe.s

}+b, exp(———)

2

an=0y +N vy, m=2, 3,4, ,Mand ;=1
bty = bugy =+ =bokn=N

Km = ¢mpem/ﬂm

- B exp(—Pey) —ay
5 exp(—Pey) —dy

1
371:4—47,@)&
K Pe
_X’Elf _}:l; _axxfx_ _a,x’l
Po= D, p.= D, Q= D, __—D,,
m-1
U =MEXp [ 3 (Pe—Pe.) S} m=2, 3, M
i=1
m-! m-1 1 1 m-1
ym:ypexp[ 121 (Pe,—Pe.\) S]—[ 7‘_,1 (;—K Yexp( 21 Pe—Pe. ) s,)exp( —Pe S)} Tm=2, 3,0, M
= i= | b1 i=
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have optimal profiles as seen in F igure 3(a). The
variation of porosity in composite membrane plays
an important role to enhance concentrations. This
may be utilized to design the membrane device for
ele-trophoretic separation.

4. Conclusion

A complete analysis of the multi-layered mem-
brane in the transient state, and a full description of
the effects of system parameters Including diffusion
coefficient, electrophoretic convection velocity, and
porosity, on the dynamic problem has been pre-
sented. The methodology is complete a priori charac-
terization of the solution with minimal computa-
tions. Furthermore, these calculations can be great-
ly guided for dynamic effect of membrane trans-
port. The advantge of the intraconvection is to
make possible the acceleration of the speed of
polyelectrolyte in the separation process. The speed
of polyelectrolyte in the membrane can be con-
trolled by the electrophoretic fluid velocity in the ex-
ternal space of the separation system. Transport in
M-layered membrane can be significantly varied by
continuously varying properties of each layer. Con-
vection effect in multilayer membrane is found to
be enhanced by different physical properties of each
layer as polyelectro-lyte penetrates from layer to
layer. The variation of permeate fluxes with mem-
brane is much more influenced by membrane porosi-
ty. Therfore, the diffusion and electrophoretic con-
vection of polyelec-trolyte into and out of pores of
membrane can be determined for efficient separa-
tion. This separation is a function of the ratio of Pe,
/Pe,. The study in this paper is useful in guiding the
analysis and the design of devices on laboratory and
other scales required for a variety of separations.

Nomenclatures

A,, B, Integration constants
c. Species molar concentration

C Dimensionless species concentration

d Length of membrane layer

Dy Species diffusion coefficient

D, Diffusion coefficient of electrolyte

D, Diffusion coefficient of polyelectrolyte

D(L) Domain of the differential operation L
Faraday constant
Direct-sum Hilbert space
Electric current

F

H

I

I Unit matrix
k Layer of the composite media

L Total length of M—composite membrane layers
L Matrix form defined in equation(12)

Ly M differential operations in each membrane
M Layer number of multilayer membrane

Pe,  Peclet number

R, Expression defined by equation(18)

S Dimensionless length of each layer
U Matrix form defined in equation(12)
\' Electric field

x’ Dimensional spacial coordinate

X Dimensionless spacial coordinate

z Valence of polyelectrolyte

Greek Symbois

¢ Relative ratio of diffusion coeffients( D./D,)

A Porosity of the membrane

% Variable defined in equation(17)
Dimensionless time in three layer problem
Eigenvalue
Normalization factor of the eigenvector

r
A

£

v Electrostatic potential
2 Electric resistence

<

, > Composite inner product
Subscripts

k,m Layer of the membrane

0 Upper boundary layer of membrane
L Lower boundary layer of membrane
M Total number of membrane layers

Membrane J. Vol.4. No.2., 1994
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Appendix 1

The M differential operations in each membrane
layer are defined from equation(11) by

Pe?,

2
=_¢k(d—2 ) where k=1, 2, 3+, M,
ds
The domain associated with this differential opera-
tion is given by

D(L)={weH and LweH : w(0)=0,
uk+l(sk)rk+l(sk) ;

B d Uk+1
P (S
Bt ds

)rk-H(Sk)

<d “*—Pek r(s,) ;

k=1,2, 3, ,M-1, un(1)=0}

The composite differential operator defined in the
Hilbert space, H, is given by L={L, D(L)}.Hisa

Wadagl, A4 A23, 1994

direct sum of Hilbert spaces defined as

with inner product of the form
M
<wy, Wy = .121 Ouy, W), (16)

In the above equation u;={u}, )=1, 2 are vectors
in each Hilbert space, the &'s given by

rea(s) ) By _q g, M=1

S =0 oy B

with 8,=1 and 6 >0 for all j=2, 3, 4,-, n

The eigenvalue problem associated with the opera-
tor L is given by LU=AU. The above equation
yields

duk

+Q2k(A)uk_
where
Pek
Q= A_Yk,7k2¢k—4‘ a7

Eigenfunctions of L that belong to different eigen-
values are orthogonal each other. The general solu-
tion of equation(16) can be written as

u =k { A (Qu X) +Bk§k(Qk, x)}

where £.(Q,, x) and §(Q., x) are either trigonomet-
ric function(when the arguments are real) to
hyperbolic function(when the arguments are imagi-
nary). With no loss of generality, we can take £.(Qs
x)=sin (Qu,) and {(Q, x)=cos (Quwy). uy are
eigenfunctions in the fluid phase when k=1, M,
while u, are eigenfunction in the solid phase when k
=2, 3,--, M—1. the value of x can be calculated by
normalizing the eigenfunctions in H. The coefficient
A, is set equal to 1 and the other coefficients of A
and B, are determined by applying the correspond-
ing inner product equation to the boundary condi-
tions of D(L).
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For the particular case a single membrane sur-
rounded by two equal sized stagnant fluid layers is
considered, in equation(12) given by M=3, w,=s,,
=1, Pe,=Pe, for k=1, and w,=s,~s,, ¢=¢,, Pey
=Pe, for k=2, o, =1—s,, $=1, Pe,=Pe; for k=3.
And R, in equation(12) is given for M=3 by

R, =Qi[1+exp{Pe,—Pe;}(s;—s,) J( As)exp( —Pey)
(18)

The eigenvalues for equation(17) are obtained from
the characteristic equation yielded by the transport
operator L as

Pe[ ., . P&, 1. 77 @
B(/)(P—eg.Qﬁ 4 {a B¢)] " tan(Q:s:)

[ PeQ, 2Q, ]

PeBptan(@s) | an(@Qu(si—s)) (13)

Each cotangent function of equation(19) has a
group of asymptotic vertical lines. These vertical
lines play an important role in the calculation of
eigenvalues of the composite operator L since they
are bounds between which the eigenvalues of the
composite operator L are located. The asymptotic
vertical lines are indicated as F=(nn/s,)*+Pe?/4
and S,=(nx/s,+;—s.)¢+Pe2/4. The bisection nu-
merical method is used to calculate the eigenvalues
and the asymptotic lines, between which is defined
the range over which to search for roots. There are
either one or two roots in each region bounded by
consecutive asymptotic lines.
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