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A Formulation of Hybrid Algorithm for
Linear Programming

Koonchan Kim*

Abstract

This paper introduces an effective hybridization of the usual simplex method and an interior
point method in the convergent framework of Dembo and Sahi. We formulate a specific and
detailed algorithm(HYBRID) and report the results of some preliminary testing on small dense
problems for its viability. By piercing through the feasible region, the newly developed hybrid al-
gorithm avoids the combinatorial structure of linear programs, and several other interesting and

important characteristics of this algorithm are also discussed.
1. Introduction

Besides the well-known classical method of simplex by Dantzig[3] for solving linear program-
ming problems, especially in operations research and management science, there are a number
of interior point methods that have been developed since 1984, beginning with the projective
scaling method of Karmarkar[7]. These interior point methods can be divided largely into
three categories and they are projective scaling method[7] pioneered by Karmarkar, path-fol-
lowing method[13] originated by Megiddo, and affine scaling method[5] proposed by Dikin.

Many variants of the affine scaling method have been further developed, proposed, and
implemented on practical problems by numerous researchers ; primal affine scaling[2, 20], dual
affine scaling[1], and primal-dual affine scaling methods{14], to name a few. Nazareth[16] has
proposed a nullspace version of primal affine scaling method(called primal null-space affine
scaling method), and its properties and the results of the implementation on some of the
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non-trivial problems have been studied and reported in Kim and Nazareth[9].

Basically, these two types, the simplex methed and interior point methods, comprise the sol-
ution techniques of linear programming. Some characteristics of the simplex method are vertex
following, finite processing, and dependence of the combinatorial structure of a linear program.
On the other hand, some of the characteristics of an interior point method are polynomial .
time complexity, infinite processing, and independence of the combinatorial structure of a lin-
ear program. Hence, each type has its distinctive characteristics, merits, and shortcomings.

Recently, a number of researchers have discussed and studied the possibility of combining
the simplex method with interior-point techniques in order to produce a more effective linear
programming method by utilizing and taking advantage of their special characteristics. For
example, Nazareth[16] discussed the merits of augmenting one linear programming technique
by another and proposed a way to hybridize the primal simplex method with an affine scaling
method, but no extensive experiment or research has been performed in this direction. In [8],
an attempt has been made in combining the simplex method with an interior point method in
the setting of Dantzig-Wolfe decomposition. It illustrates the use of interior points of
subproblems in decomposition procedures to alleviate some of the computational difficulties
that plague decomposition algorithms. Kortanek and Shi{10] studied a hybrid algorithm that
consists of an interior point algorithm followed by a purification algorithm to obtain a dual
basic optimal solution. However, the effectiveness of correlating the two central types of tech-
nique of linear programming has not been studied fully and realized yet. '

The purpose of this paper is to investigate the effective hybridization of the two techniques,
specifically, the primal simplex method and the primal nullspace affine scaling method using
the idea of Nazareth{16]. From the structural point of view, an important advantage of the
primal null-space affine scaling method is that it integrates well and naturally with the primal
simplex method, as can be seen in later sections. These two methods will be integrated in the
algorithmic convergent framework of Dembo and Sahi[4] to form a hybrid algorithm(HY-
BRID) for linear programming. The actual convergence proof of the algorithm will be studied
and reported in the subsequent paper. Rather, we state some of the features possessed by this
hybrid algorithm which will be formulated in section 3.2. The method
e can be initiated with any suitable feasible point

(e.g., on a facet of the feasible polytope),
® avoids the combinatorial structure of the problems,

e utilizes as many variables corresponding to the negative reduced cost as possible in defining
descent directions (relaxing steps),

e does not have to use all the variables in defining descent directions (restricted steps) as in
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any interior point method, and
¢ contains the usual simplex method and a combination of simplex and interior point
method (as determined by the value of x defined in section 3.1).

This paper is organized as follows. In section 2, we define relaxing and restricted
steps that can be fitted into the convergent framework of Dembo and Sahi. In section 3,
we first describe an overview of the hybrid method and then formulate a specific and
detailed algorithm(HYBRID). The results of the preliminary experiment on the viability
of this hybrid .method are reported and discussed in section 4. Finally, a few concluding

remarks are given in section 5, with directions for further research in this area.

2. Relaxing and Restricted Steps for Hybrid Models

In this section we review the two methods that become an essential part of forming a hy-
brid model and redefine them as relaxing and restricted steps. Consider the following stan-
dard form of linear program(LP):

minimize ¢x
s.t. Ax = b (1)
x =0,
where ¢ and x are n-dimensional vectors, and b is an m-dimensional vector, and A is an mXn

matrix of full row rank with m<s.
2.1 Relaxing Steps

In the primal simplex method, the coefficient matrix A in (1) is partitioned into A=[B]|
N where columns of B and N correspond to the basic and nonbasic variables, respectively.
Without loss of generality, we assume that B consists of first m linearly independent columns
of A. Let x°=[x°px°v]" be a nondegenerate basic feasible solution of (1), i.e., x°3>0 and x°y
=0, and let 2°=c"x°

It can be shown that the simplex method can be interpreted as a method of coordinate de-
scent in a reduced space, see [16], by making a transformation of variables

x=x"+ZAxy (2)
where Z is an n#X(»—m) matrix of full rank for which AZ=0, i.e., Z spans the null space of
A. Z is defined to be



190 Koonchan Kim BESEHBaE

_— ~1
z= [ BN } 3)
Inxn
where n=n—m. The resulting réduced space, called linear local reduced model, is given as
minimize(Z%c)" Axy+2°
2y +an=0 (4)

By solving (4), the associated descent direction in the original space (1) is given by
Ax=x—x"=ZAxy (5
In determining a descent direction at each iteration, the usual primal simplex algorithm
chooses a single coordinate, for example, the one with the most negative reduced cost. How-
ever, the simplex method can be extended to determine a descent direction by changing as
many coordinates simultaneously as possible. This can be done by incorporating one or more
coordinates corresponding to the negative reduced cost(From now on, we shall understand ex-
tended simplex method to mean what we have just described). For peggied variable[17], i.e.,
for a nonbasic variable which is not at a zero level, we want to increase the value of the
nonbasic variable (x°%). if (Z%¢)T < 0 and to decrease the value of the nonbasic variable
(x°y). from positive value if (Z7¢)T > 0. Then, a combination of these x’s will give us a de-

scent direction in the extended simplex method. We call this step a relaxing step.
2.2 Restricted Steps

We let ° > 0 be an interior point of (1). In like manner, we partition A=[B|S], where
columns of B correspond to the basic variables and columns of S correspond to the so-called
superbasic variables. Of course, x° can be partitioned as x°=[x°sx°s]", and note that both x°5
> 0 and x°s > 0. Let 2°=c"«".

By making a similar transformation of variables

x=x"+ZAxs, (6)
where Z now is defined to be ‘
—-BS
Z = ' 7
[ Iixan ] @

such that AZ=0, we obtain the following quadratic local reduced model around x°
minimizeas,e (ZTc)TAxs+-2LAx§ZTD,‘ZZAxs+z° (8)

where D,=diag(x°;, x°;,+,x°,). The readers are referred to [16] for more detailed steps.

The soluti;m for the quadratic local reduced model (8) is explicitly given as
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Axs=—((Z'D;’Z1)"Z"c 9)
by direct differentiation, and the associated descent direction in the original space (1) is
given by

Ax=x—x"=ZAx;s (10)
We will call this a restricted step. By substituting (7) in (9) and rearranging, we obtain
a more convenient computational form

[I+MlAxs= —c, (11)
where A¥s=D;'Axs, ©=DsZi, Ms=DS'B'D;'B'SDs, and Ds=diag(xi, #3-.xn)and Ds=
diag(x‘.’,.+1, Komt25"*" s x:)

Some properties of this algorithm, such as the property of descent direction when Ax
in (10) is approximated (actually, AX¥s in (11) is approximated by inexact conjugate
gradient method and this yields an approximation of Axs since Axs=DsA%s) and the ex-
perimental implementation on a number of non-trivial problems are investigated in (9] in
conjunction with employing a basis change strategy. It changes basis B periodically in
every p, say p = b, iterations just as in the case of the simplex method which changes

or updates its basis in every iteration. The change is based on the size of the current

iterate and the sparsity of B.
2.3 Similarity in Structures

In the previous subsections, we mentioned about the partitioning of the coefficient matrix
A. The partition is done not only for the simplex method(A = [B|N]) but also for the pri-
mal nullspace affine scaling method(A = [B|S]). Moreover, the basis matrix B is changing
periodically towards an optimal basis B* for Both cases; every iteration in the simplex method
and every p iteration in the primal null-space algorithm. These observations clearly show that
the structure of the two methods is very similar, and this is one of the reasons behind the
motivation of hybridizing the two methods in a way to form an effective linear programming
technique. Fortunately, the Dembo-Sahi convergent framework given below provides an excellent

arena in which the two methods can be fitted in very naturally.
2.4 Dembo-Sahi Convergent Framework

We present the convergent framework of Dembo-Sahi[4] in order to describe the overall pic-

ture of how our hybridized algorithm is structured.
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Al. Dembo-Sahi Framework

START with x° feasible
(Major iteration; index k)

IF optimal at x, THEN exit.
(Minor iteration)

ELSE compute a relaxing step, p.
and an acceptable point x} =x.+a.p.
set y « xf

WHILE a constraint relaxation condition is not satisfied at y,
compute a restricted step p
and an acceptable point y* = y + ap,
set y = y* and repeat.

ELSE k<« k + 1
X =y

Start a new major iteration

End

3. Hybrid Procedures

The idea of formulating the hybrid algorithm(HYBRID) is as follows. In section 2.1 we de-
fined a relaxing step as a descent direction taken by the extended primal simplex method.
We let this step be coincided with the relaxing step in the Dembo-Sahi convergent frame-
work. We also defined a restricted step as a descent direction taken by the primal null-space
affine scaling method(described in full detail in HYBRID). This time we let this step be
coincided with the 7estricted step in the Dembo-Sahi framework. In this way, the two
algorithms are naturally fitted into the convergent framework of Dembo and Sahi. The
relaxing step is mainly being used to adjust many variables in the active set, i.e., to give a
good descent direction, and the restricted steps are being used for suboptimizing within the

current active set, i.e. , identifying a good basis.
3.1 Combining Techniques

Suppose a linear program is given in the standard form (1). Let x° be any initial feasible
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solution. Here, x° need not be a vertex nor a strictly interior point. Let 0 {( § { 1 be a
feasibility tolerance by which a variable x; is classified as so-called basic, superbasic and
nonbasic variables(terminology of Murtagh and Saunders[15]) and 0 < x < 1 be a frac-
tion used in step 2 of the hybrid algorithm to determine the number of coordinates to
be used in defining the descent direction as a relaxing step. It can be seen that by set-
ting k = 1 and starting at a vertex, we obtain the usual simplex method, and by setting
k¥ = 0, all the negative reduced cost variables are involved in defining a descent search
direction.
The algorithm is initiated with x° and a partition

A = [BISIN] (12)
where B, S and N correspond to the columns of basic, superbasic and nonbasic variables,
respectively. Here, x; is a nonbasic variable if 0<xj<¢J and it is a basic or a superbasic
variable if x/)>3. We assume that there are at least m variables x;)6 among which the
basis matrix B consisting of m linearly independent columns can be selected. Let m, s

and ¢ be the number of columns in B, S and N, respectively. Note that then n = m +
s + ¢

We define
—-B’'S —-B’'N ‘Axp
Z=(ZZy]= Isxs 0 and Ax = | Axs (13)
0 I Axy

and make the convention that s=0 means that the matrix S and Z5 do not exist, and we
have an analogous convention when #=0. I stands for identity matrix. Clearly, AZs=0 and
AZy=0 and hence Zs and Zy span the null space of A.

Now, a relaxing step is determined from the linear local reduced model (4) by considering
only the basic and mombasic variables from the foregoing partition (12). The computed step Axy
from the local reduced model (4), in turn, gives a good descent direction in the original space.
It is obtained by replacing Z in (2), (3), and (4) by Zy in (13). A feasible step is taken in
this direction and a new point is determined. Then, starting at this current point, several re-
stricted steps Axs are determined from the quadratic local reduced model (8) by considering
this time only the basic and superbasic variables in (12). In this case, Z in (6), (7), and (8)
is replaced by Zs in (13). These steps identify a good basis. The associated descent direction
in the original space for each step is given by Ax=ZyAxy and Ax=ZsAxs, respectively.
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We note here that in both models the same basis matrix B is used in defining steps, and A
xs=0 when the linear local reduced model is initiated and Axy=0 when the qradratic local
reduced model is applied. These two steps then give one cycle of the combined method and
also corresponds to one major iteration in the Dembo-Sahi framework. The process is repeated
until a stopping criterion is satisfied.

To see this more clearly, we illustrate the scheme in 2-dimensional space (see Figure 1). Let
x° be a starting point and x* be an optimal solution. Starting from x°, relaxing step and re-
stricted steps taken in order are shown in the Figure 1. Repeated applicatioan of these two
steps will eventually find an approximate optimal solution. It is apparent that each cycle of
HYBRID algorithm gives a descent direction since each of the two methods, simplex and

affine scaling, has descent properties.

3.2 The Hybrid Algorithm

Finally, we outline the algorithm HYBRID below by integrating the extended simplex
method and the primal nullspace affine scaling method in the Dembo-Sahi framework.

Algorithm HYBRID

Given NSMIN, IMAX, JMAX, ¢, exas and 6

START with x’ feasible,

STEP O : k « 1

(Major iteration ; index k)

(Optimality Criterion)

STEP 1 : IF(Zlc)=—¢, j=1¢ and | (Z%); | € ¢ j=1,-sTHEN exit.
ELSEIF(Z%c),> —¢, j=1,-¢ GOTO STEP 4

ELSE compute a relaxing direction p,,

STEP 2:

2A : (Axy) < max [0,—(Z30)), =1+ | Ouwa < minjy..(Zic);
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Figure 1. Relaxing and Restricted Steps in 2-D Space

x* optimal
« solution

restricted.
steps

restricted
steps relaxing step

relaxing
step

initial #“y0
feasible
- solution
IF (Axy) € x| 6m | THEN
Axy) < 0, j=1,-t
2B:p. <« Zy Axy
Compute an acceptable point y=x"+ap, by taking as
large a step as possible along p, without violating a constraint.
2C : a, « max[a>0|x*+ap,>0]
2D :y « x*to,p.
STEP 3: Update basis matrix and revise the partition of variables,
namely s, ¢, S, and N (see comments below)
(Relaxation Condition)
If there are at least NSMIN superbasic variables, then start a minor iteration.
Else, start a major iteration.(typically NSMIN=2)
IF NS(# of superbasic variables) < NSMIN GOTO STEP 7
ELSE start minor iteration.
STEP 4 : (Minor iteration : index 7)

i« 1

4A : DO WHILE :<IMAX
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Dy « diag(xy,+ %), D, < diag(Xmip %)

(D5 and Ds are defined in section 2.2.)
4B : Compute a restricted direction p by the CG algorithm.
STEP €GO : Let Axs < 0 |
r « -DZlc
d - r
(CG iteration ; index j)
je1
STEP CGl:Form q « [[+DsSTB’D;?B'SD;ld by the following steps :
w < SDd
Solve Bv=w
w <« Dgv
solve B'v=w
¢ < DSTv+d

r'r
STEP CG2: g « L
d'q
Axs < Axst+pd
r+ < r—fq

If(Ir+ 1 <ecoa or j = JMAX)exit

rir:

TSR
d « ri+yd
r < ry
j=j+1
Go to STEP CGl
4C : p <« ZsDsAxg
Find an acceptable point y: < y+a.p by taking the largest possible step along p without
violating feasibility.
STEP 5:a; « max[a>0|y+tap > 0]
¥+ < y+0a.0(0 is a pullback constant, 0<0<I)
i=1+1
Yy < ¥+
GOTO STEP 4A
SETP 6 : Select a new basis using the basis change strategy and

revise the partitions.
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STEP 7 : Start a new major iteration :
X ey
k=k+1
GOTO STEP 1

END

3.3 Comments

In step 1, the reduced costs are computed efficiently as follows: Solve BTn=cp for = ;
Zic=cs—S™n : Zic=cxy—N"n(the vector ¢ is also partitioned as ¢=[cs c5 cx]”

In step 2A, by setting k=0 we change as many variables simultaneously as possible (i.., all
the variables corresponding to the negative reduced cost are involved). By setting x=1 and
starting at a vertex, we obtain the usual simplex procedure with entering variable chosen to
have the most negative reduced cost (resolved arbitrarily if there is a tie). When 0<x<1,

then only a subset of the variables corresponding to the negative reduced cost are involved in

defining a descent direction.
In step 2B, p, can be also efficiently computed as follows : Form Ax y=NAxy ; solve Bv=Ax

~  then

[ —v
b = Axy

In step 3, when a relaxing step is taken, usually only one basic variable will drop to zero if
problems are nondegenerate and some nonbasic variables become superbasic variables. A leav-
ing variable from the basis can be identified if the value of any basic variable is less than
0. An entering variable can be chosen from the superbasic variables whose value is greater
than 4, and at the same time, is linearly independent with the rest of the columns of the
basis. This can be accomplished by a standard dual simplex procedure of defining a price vec-
tor n'=¢/B! and finding a column of S, say s, for which n’s; is nonzero (here e denotes a
unit vector with nonzero element in position /, and index / corresponds to the basic variable
that leaves the basis). Once the entering column has been found, the basis factorization can be
updated. It could happen that more than one basic variable becomes tight at this step, in
which case the updating procedure is repeated.

Step 4 gives the restricted steps by the primal null-space affine scaling algorithm, see [9].

The system of equation in (11) is approximated by the iterative method of conjugate gradi-
ent(CG).
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In step 6, a new basis is determined based on the size of the current iterate and the spar-

sity of columns to be included in a new basis.

4. Experimental Results

Our objective in this section is to demonstrate the viability of the combined method devel-
oped in the previous section by applying on small dense problems. We make this experiment a
basis for the development of more effective combined techniques (interior point methods and

the simplex method) for linear programming.
4.1 Test Problems

We utilize the variants of Kuhn-Quandt problems. These problems are of the form
minimize ¢’x
s.t. Ax < b (14)
x = 0,
where A is a small dense m X7 matrix with integer elements chosen at random in the range 1
to 100. The numerical range for integer elements of the vector b is from 5000’to 10000 and for
the vector ¢ is —1 to —9. This choice will guarantee that the problems are bounded and that
an initial feasible solution is readily available. Also, many of the problems created in this pro-
cedure are nondegenerate. By adding slack variables, (14) can be expressed in the standard
form of (1).

4.2 Results and Discussions

Table 1 displays the detail of the problems tested and the results obtained. The size of
selected test problems is given in the first column, and column 2 shows the value of the par-
ameter § used for each problem. In each of the test problem, the matrix A includes an appro-
priate identity matrix, and x is set to zero in all cases. We used the origin as an initial
starting point and set the maximum number of minor steps JMAX and the maximum number
of CG steps JMAX to be 5 in each test problem. We assigned NSMIN = 1 for the con-
straint relaxation condition, i.e., the minor iteration in HYBRID is started if there is at

least one superbasic variable. The stopping criterion for the main iteration(outer loop) is
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specifically given in step 1 of HYBRID ; here, the optimality tolerance e=1.0Xx107° is
used. We set £ea=1.0%10"* and 6=0.9 throughout the whole operations.

We have coded our hybrid algorithm in GAUSS(similar to MATLAB). Column 3 gives
the number of cycles of the algorithm HYBRID. Each cycle of HYBRID consists of sev-

eral CG iterations, and the last column presents an average number of CG iterations for
each HYBRID cycle.

Table 1
HYBRID Test Statistics
Size of A o HYBRID Avg. CG
10x 30 0.1 6 17
10x 40 0.01 4 14
20 40 0.01 4 15
20 x50 0.01 5 17
2060 0.1 5 19
30x60 0.01 7 24
3070 0.1 7 20
30x80 0.1 5 18
40% 80 0.1 7 24

For these test problems, though small and limited, the number of cycles of HYBRID for
each problem was low as we expected, and 7 was the largest number of cycles we observed
among these results. It appears that the number of cycles is increasing very slowly as the size
of the problems is increased. Also, as the solution approached an optimal point, the number of
CG iterations, not shown here, was reduced considerably in several cases. The solutions(objec-
tive function values) we obtained were at least within 4 significant digits accuracy in com-
parison with the results obtained by the pure simplex method(also implemented by GAUSS
but not shown here).

To be a comparable method to any other existing method for linear programming, HYBRID
should have the following properties: low npumber of cycles required even if the size of
problems is increased and low number of CG iterations required in each HYBRID cycle. The
hybrid algorithm described here seems to have the above properties, and it appears to be of
worth further study on practical problems.

One disadvantage of the combined method is that if a problem is degenerate, in fact, many

practical problems are degenerate, choosing an appropriate ¢ is rather a difficult task. One
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possible remedy to overcome this difficulty would be to perturb data slightly, but again much
research has to be done in this direction. In this experiment, we used x=0 for all the

problems tested, but when different values of k¥ were used, we obtained the similar behavior.

5. Conclusions and Further Research

In this paper, we formulated and studied a hybrid algorithm based on the simplex method
and an interior point method. The hybridized method has some distinctive features and the
results obtained from the preliminary computational experiments are encouraging. We point out
especially that the successful formulation and implementation of this hybridized method is due
to the particular characteristics of both primal simplex method and primal nullspace affine
scaling method. Even though the hybridized method is tested only on small dense
nondegenerate problems and further development and testing are definitely needed, it provided
a foundation work on the development and effective integration of interior-point techniques
with the simplex method. Some directions for further research in this area includes finding a
feasible point quickly and cheaply(not necessarily a vertex nor an interior point), obtaining a
better constraint relazation condition in HYBRID, level2 implementation(see [18] for termin-
ology) on practical problems, and the theoretical study of convergence of the algorithm HY-
BRID.
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