Journai of the Korean
OR/ MS Society

Vol. 19, No. 2, August 1994 153

An Introduction of Machine Learning
Theory to Business Decisions

Hyunsoc Kim*

Abstract

In this paper we introduce machine learning thcery to business domains for business decisions.
First, we review machine learning in general. We gi s a new look on a previous learning framework,
version space approach, and we introduce PAC (probably approximately correct) learning paradigm
which has been developed recently, We iilustrate major results of PAC learning with business

examples. And then, we give a theoretical analvsis or devision tree induction algorithms by the frame-

work of PACU learning. Finally, we will discuss implications of learning theory to business domains.

1. Introduction

There are two major approaches to studying ‘earning. Cognitive scientists try to develop
theories and models of learning observable in hum s and other animals. Researchers in Artificial
Intelligence develop theories and models of any tvpe of learning. Those theories and models do
not necessarily involve lving organisms. Our seus here is on learning as studied by Al
researchers.

Knowledge acquisition for expert systems is a t me consuming process Lhat has bedeviled many
attemupts at fielding expert systems applications. . ohnsen [12] coind the term “puradox of exper-
tise” which describes a phenomenon that the more n expert knows, the less able is he ar she ar-
ticulate that knowledge. Since expert often finc it hard to articulate their exeprtise, many
researchers are trying to develop alternative krowledge acquisition methods such as machine
learning.

in this paper we introduce machine learning tisery to business domains. In Section 2, we re-

view machine learning in generai. We will give new look on a previcus learning framework,

*

Department of Management Information Systems. Kool min University

- Hyunsoo Kim RESREE A

and introduce PAC (probably approximately correct) learning paradigm in Section 3. We also il-
lustrate major results of PAC learning with examples. In Section 4, we give a theoretical analy-
sis of decision tree induction algorithms by the framework of PAC learning. Finally, in Section 5,

we will discuss implications of learning theory to business domains.

2. Machine Learning

In this section we summarize different views of learning and learning strategies. We also dis-

cuss differences of terms in machine learning.

2.1 Views of Learning

There are several different point of views of learning. Cohen and Feigenbaum [6] lists four

views of learning.

(1) any process by which a system improves its performance.
(2) the acquisition of explicit knowledge
(3) skill acquisition

(4) theory formation and discovery

The first view, improving performance on a given problem, is the most studied form of learn-
ing. Valiant [42] describes learning as “the phenomenon of knowledge acquisition in the absense
of explicit programming.” This view of learning grew out of research in problem solving.

The second view, the acquisition of explicit kncwledge is a more limited view of task perform-
ance. For example, most expert systems have an explicit collection of rules. Neural nets learn but
the knowledge is not explicit.

Skill acquisition refers to the phenomenon wheresby one becomes more proficient at a task with
practice. Finally, theory formation and discovery views learning from the process of scientific
discovery of principles and theories.

Our focus in this paper is on the first two view of learning.

9% 2% An Introduction of Machine lLearning Theory to Business Decisions 155

2.2 Learning strategies

There are several basic learning paradigms or learning strategies. Of particular interests are
[6]: rote learning, learning by being told (advice taking), learning from examples (induction),
and learning by analogy. A brief description of the four learning situations follows. Suppose that
a learning system is embedded in an environmen: of interest and a knowledge base is used by
the performance element. Here the knowledge bas: is a collection of knbwledge and the perform-

ance element is a system performing tasks by usirg the knowledge base.

1. Rote learning : The environment supplies knowledge in a form that can be used directly by
the performance element. The learning syst¢m just needs to memorize the knowledge for
later use. Though rote learning is a rudimeitary type of learning, this is widely used in
daily human life.

2. Learning by being told : Here the environment gives vague, general purpose knowledge or ad-
vice. A learning system must transform this high-level knowledge into a form that can be
used readily by the performance element. Davis’s [7] TEIRESIAS is an example of this type
of learning.

3. Learning from examples : In learning from examples, examples are given to the learning sys-
tem. The system generalizes these examples ‘o find higher level rules that can be used by
the performance element. This type of learning has a long history under the name of “induc-
tion” and is a powerful method of acquiring knowledge.

4. Learning by analogy : If a system has available to it a knowledge base for a related perform-
ance task, it may be able to improve its »wn performance by recognizing analogies and

transferring the relevant knowledge from the sther knowledge base.

Some researchers add more types of learning to the above four types of learning. For instance,
Shaw et al. [37] list two more types of learning, learning by competition, and learning from ob-
servation and discovery.

Learning situation can also be categorized by scttings where learning takes place. Learning can
take place in the following two broad settings :

(1) ‘supervised’ learning : a teacher (or an al-knowing oracle) is present. The presence of
teacher removes ambiguities from the training se.. The machine can then learn much more rap-
idly and efficiently.

(2) ‘unsupervised’ learning : the learning system has no instructor but must acquire knowledge
on its own. The training set may be full of ambtiguities which the learning algorithm must re-

solve on its own. If the training set is not suffic:ently large, the learning algorithm may fail to

136 Hyunsoo Kim R AL

perform at an acceptable level.

The above mentioned learning strategies reflec, a decreasing reliance of supervision and an in-
creasing complexity of the inference process. For example, in rote learning, the teacher directly
supplies information. No inference is needed. Leuarning by analogy involves litlle supervision but
requires a complex inference capability.

Within each general strategy, we employ difierent inference mechanisms to varying degrees.
The main inference mechanisms are deduction and induction. Deduction moves from general
truths to specific cases whereas induction moves from specific cases to generalizations.

Deductive information processing is “truth preserving.” All ‘truths’ classified by the deduced
information are implied by the initial informat rn. Hence, new information preserves the facts
contained in old information. Deriving specific lacts from general rules or developing new rules
from old ones are deductive procedures.

Inductive information processing is ‘falsity preserving” The induced information correctly
categorizes all fallacies contained in the initial knowledge. Using raw data or examples to estal
lish raws, rules or general patterns, are examples of inductive procedures.

Inductive learning is generally considered syn nymous with learning from examples. However,
Angluin and Smith [2] distinguish inductive in‘zrence {i. e. , inductive learning! {rom learning
from examples. They say that work in artificia’ intelligence (i. e. , learning from examples) is
more concerned with cognitive modeling than the work in inductive inference, and less concerned
with formal properties such as convergence in tae limit or computational efficiency. A learning
algorithm is said to learn a concept in the limit if, after some finite number of examples, the
learner’s hypothesis is correct, and thereafter 21 the learner's hypotheses remain correct | 18].
Convergence in the limit does capture notion tlzt the learner will eventually discard any false
hypotheses, and that in finite time this progression will ultimately converge io a fixed, correct
rule. The computational complexity of a learnini; algorithm is defined if and oniy if the algor-
ithm converges [2]. Computational efficiency car: be considered as an additional importani prop-

erty of an inductive learning algerithm in practica.

3. Learning Theory

There has been an explosive growth in the thenry of learning quite recently. Mitchell's version
space [25], Valiant’s PAC (Probably Approxim:tely Correct) learning [1, 42}, and Haussler's

t s

researches [9, 10, 11] are important building bloss for the learning theory. In general, learning

A

5255 An Introduction of Machine

19

R

G

searning Theory to Business Decizions 157

theory considers three aspects of the learning pr
computational efficiency. An acceptable learnin
storage and time limitations to produce an ac
means some polynomially bounded measure. Conce

This is the percentage of instances correctly cla

well suited for description or classification tasks.
tern-matching task.

Storage efficiency indicates ‘how costly’ is it 1
that system developers must manage well. Thus,
demonstrates improved performance.

Computational efficiency reveals ‘how long” the
any application is having the computational prc
number of steps.

In this section we look at the main stream lea

considerations.

3.1 Mitchell’s Version Space

Mitchell [25] gives an elegant framework for
and illustrates this framework by analyzing the

We start with basic definitions and terminology U

Definition 3. § :

1. The instance space : The instance space is tl}

of a concept can be expressed in a feature-base
stance spaces can be defined by the wvalues of :
necessarily relevant. Feature (or siructure)-based
instance to include several objects, each with its

that define a structure between objects. For exar

foliowing attributes and binarv relations [10 . Per

Attributes : . size (small, medium, iar
. shape (convex, nonconve
Binary relations
. distance-between (touch
. relative-position {on-tog

wcess | concept accuracy, storage efficiency, and
¢ algorithm must operate within reasonable
eptably accurate concept. ‘Reasonable’ usually
y. accuracy shows ‘how well’ the system leamsv.
sified by the learned concept. This measure is

However, it may not be appropriate for a pat-

v the system to learn. Memory is a resource

superior memory management for a given task

svstem takes to learn. A desirable property for

~ess by which the machine learns be a small

‘ning theory in terms of these three important

viewing the process of learning from examples
rocess of learning simple conjunctive concepts.

sed in his framework.

e space of all objects of interest. Each instance

or attribute-based form. Attribute-based in-
fixed set of attributes, noi all of which are
imstance spaces can be defined by allowing each
own attributes, and allewing binary relations
1ple, define an instance space consisting of the
nissible values appear in parentheses.

)
)

ng, nontouching)
-of, under)

158 Hyunsoo Kim BEgE 2

Then (size=small, shape=convex) is an example of an instance of an attribute-based instance

space. The following instance is an example of a structure-based instance space.

(size=small, shape=convex)
(under, touching) t I (on-top-of, touching)

(size=large, shape=noncorvex)

2. Hypothesis space : The hypothesis space is the space of all plausible hypotheses. It is often

called the rule space.
3. Inductive bias : A mechanism whereby th: space of hypotheses is restricted or whereby
some hypotheses are preferred, a priori, over others reflects the inductive bias.

4. Conjunctive concepts : Concepts described by logical expressions involving only conjunctions

(i. e. , AND operations) are called conjunctive concepts.

5. Disjunctive concepts : Concepts described hy logical expressions involving only "disjunction

(i. e. , Inclusive OR operations) are called disjunctive concepts.

6. Target concept : The target concept is the true concept. A learning system tries to find the

target concept.

Mitchell's framework of learning can be describad as follows. Let us assume that we are trying
to learn some unknown target concept, f, defined on the instance space. This target concept can
be any subset of the instance space.

This may or may not be a conjunctive concept. Assume we have a set of examples of this tar-
get concept. Each example is generated by “sampling with replacement”, and is one of following
two cases.

Case 1. An instance satisfying the target concept.
Case 2. An instance not satisfying the target concept.

An example in Case 1 is called a “positive example”, and an example in Case 2 is called a
“negative example”. We label each example accordingly. We call these labelled examples a sample,
S, of the target concept.

We assume a hypothesis space, H, restricted to only conjunctive concepts. This is an inductive
bias. Then the task is to produce a conjunctive voncept that is consistent with the sample or to
detect when no conjunctive concept is consisten! with the sample. By “consistent” we require
that a concept contains all instances of positive examples and no negative example.

The version space is the set of all hypotheses 1. =H that are consistent with the sample. Since
the version space depends on the hypothesis space, we denote the version space with respect to
the hypothesis space H. The version space is emply in the case that no hypothesis in H is con-

sistent with the sample.

F19% HR An Introduction of Machine 1.earning Theory to Business Decisions 159

Mitchell shows that the learning task (and related tasks) of producing a conjunctive concept
consistent with the sample can be solved by keeping track of only two subsets of the version
space — the set of the most specific hypotheses and the set of the most general hypotheses.
These sets are updated accordingly as new examplis are given.

Here we consider a finite instance space, and w: assume no examples are in contradiction each

other. There are two cases for the target concept

Case 1 : The target concept f € H
Case 2 : The target concept f & H

For Case 1, the version space reduces until it -ontains only the target concept f, as examples
are added to the version space. For Case 2, the vcrsion space reduces until it becomes the empty
set. Note that for both cases, the version space ~educes to an informative terminal state which
can tell the result of the learning task. If we stoj- before one of the terminal states is produced,
then the learning task is incomplete and the curreat result is not as useful.

We say that the version space is exhausted wit1 respect to H (we abbreviate this as “w. r. t.
H”) if the version space is reduced tc one of tie above terminal states (i. e. , is reduced to
either the target concept f or an empty set).

Consider the situation that the version space «cntains only one hypothesis h, where h is not
the target concept. If the target concept f is not .n element of the hypothesis space H, then this
situation may occur. For this situation, we assunwe that it is always possible to generate a new
example which eliminates h from the version spac: The version space will be empty and then be
exhausted.

Mitchell’s approach to inductive learning is t¢ sample until the version space is exhausted.
Stopping short of an exhausted version space leaves one with incomplete learning. However, the

two subsets of version space bound the space whe e the target concept may exist.

3.2 Problems of Mitchell’s Framework

There are two practical problems with Mitche I's approach. The first is that it may require
too many examples to exhaust the version space | J].

The other problem is that even if we monitor only the two sets, the set of the most specific
hypotheses and the set of the most general hypotieses, the storage needed can still become expo-
nentially large as we build up examples [9].

These problems with the version space appro:ch are overcome by incorporating probablistic

160 Hyunsoo Kim

ideas [42]. In the following we give a concis. presentation of this new idea by the help of
Haussler [9)'s articulation. Here we will not require the complete exhaustion of the wversion
space. Instead, we will require that a version sojace is “probably almost exhausted”. (This term
will be formally defined later.) This idea will do away with the first problem.

To handle the second problem, we will not tr y to remember the exact version space. Instead,
we will require that any hypothesis from an “alirost exhausted” version space will accurately ap-
proximate the target concept.

Hence, we replace Mitchell’s idea of remembe:ing all consistent hypotheses by a more elegant
idea of drawing enough examples needed for a “-obably almost exhaustion”™ of the version space
and then finding an hypothesis (or hypotheses) -onsistent with these examples. Following Defi-
nition 3.1 gives a formal definition of e-exhausticrw

Definition 3.1 : [Y] Given a hypothesis space L., a target concept f, a scquence of examples S of
f, and an error tolerance & where 0<e<1, the v rsion space of S {w.r.t. H) is eexhausted (w.r.t.
f) if it does not contain any hypothesis that his error (“error” will be formally defined in the

next subsection)} more than with respect to f.

3.3 Efficient PAC Learning

Now we introduce a formal definition of Piopbably Approximately Correct {PAC) learning
based on the idea of an “almost exhausted” versicn space defined in the previous subsection. The
concept of computational efficiency is also verv raportant for a learning algorithmn Lo be practi-
cal for larger problems. The PAC learning parccigm was introduced by Valiant in 1984, This
model requires that a polynomial bounded algorithm identify a concept using a random sample,
whose size is polynomially bounded, such that a learned concept has a high probability of being
close to the true concept. Angluin and Laird [1 coined the terminology PAC learting. A more
precise definition follows.

Let X be the instance space of interest. The targev concept f maps X into !0,i,. Similarly, for

any other concept h, we have
h o X — 0.1

The error, d(hf), of a learned concept h is tha probability of the instauces incorrectly classi-

fied by h. That is,

d(h,f) = Prob ix€X : hix) £ f(x).

F19% H29% An Introduction of Machine .earning Theory to Business Decisions 161

Prob{ | is determined by an arbitrary sampling distribution, D, over X. Learning is ac-
complished by processing a learning procedure m a sample of instances called the training
sample. Sampling is assumed to be with replacemet with samples drawn independently.

For 0<e¢, 4<1, a learning procedure is said to be a probably approximately correct (with re-

spect to D) identification of the target concept f f
Prob {d(hf)>e} < 4.

We say that above learning procedure is an eficient PAC identifier if it is a polynomially
bounded algorithm which identifies a concept frora a random sample, whose size is polynomially
bounded.

As we see in the definition, the PAC learnin: model is defined for {0,1}—valued functions.
Haussler [11] gives a generalization of the PAC learning model that is based on statistical de-
cision theory and can be applied for multi-valued discrete functions, real-valued functions and
vector-valued functions. In this generalized mode the learning system receives randomly drawn
examples, each example consisting of an instance x€X and an outcome y< Y. The learning sys-

tem finds a hypothesis
h:X—+A

that specifies the appropriate action a€ A to tak for each instance x, in order to minimize the
expectation of a loss function L(y,a). Here X, Y and A are arbitrary sets, L is a real-valued

function, and examples are generated according to arbitrary joint distribution on X x Y.

3.4 The Performance of a Learning Algorithm

As we have seen in the definition of PAC lear ing, two measures of learning performance are

relevant. The first is sample complexity, and the s 2cond is computational complexity.

1) Sample Complexity : The sample complexity is the number of random examples needed to
produce a hypothesis that with high probability has small error. It is defined by taking the
number of random examples needed in the worst case over all the target concepts in the class
and all the probability distributions on the instan:e space.

2) Computational Complexity : The computali.mal complexity is the worst case computalion
time to produce an hypothesis from a sample of a given size.

We use big-O notation to denote both complexit es.

Vapnik [44] was the first to give a character zation of the sample complexity of a learning

162 Hyunsoo Kim EERSETRet

alogrithm. Below Theorem 3.2 gives a sufficient sample size for PAC identification. (Also see
(31

Theorem 3.2 : Let N be the number of rules in the hypothesis space H. Let f be the target
concept. If h is any hypothesis that agrees with at least

m = (1/¢) In (N/§)
random samples, then
Prob {d(hf) >¢} <5§.

However, the above bound is very loose, and if the size of an hypothesis space is not finite,
such as the set of intervals on the real line, the method cannot be applied.

So, there is a need to improve this bound. To improve the sample complexity we may use sev-
eral different measures of a hypothesis space other than the number of rules in the hypothesis
space [9, 44]. Two other combinatorial parameters which measure the characteristics of a hy-

pothesis space are given below.

Definition 3. 3 : (Growth function, VC dimension’

1. Growth function (zz(m)) : The growth function, ny{m), is the maximum number of

dichotomies (i. e, the maximum number of wayvs of partitioning a set into a set of positive
instances and a set of negative instances) induced by hypotheses in H on any set of m
instances.

2. Vapnik-Chervonenkis dimension of H { VCdin:(H)) : Let I be a set of instances in X. IfH

induces all possible 2" dichotomies of I, then we say that H shatters I. The Vapnik-
Chervonenkis dimension of H, denoted by VCdim(H), is the cardinality of the largest finite
subset I of X that is shattered by H, or equivalently, the largest m such that the Growth func-
tion my(m)= 2". If arbitrarily large subsets of X can be shattered, then VCdim(H) ==,

The following theorem gives one of the main results using the VC dimension. (See (4, 97 for
more details)

Theorem 3. 4 : [4] Let H be any nonempty hvpothesis space, and let d be the VC dimension
of H, where d is finite. Let f be the target concept. For any 0<e<l, if h is any hypothesis that
agrees with at least

m=min [(1/&)[In(1/8)+ In [H|, (1/&){ 4 log(2/8)+8d log(13/&) } | random samples, then

Prob {d(hf) =&l <§.

Below we give some examples of the above three measures for the hypothesis space, and give

an illustration of Theorem 3.2 and Theorem 3.4.

FBI9% H2w An Introduction of Machine learning Theory to Business Decisions 163

Example 1 : the case of |H| < ®

Consider the following attributes of a firm. Suppose we are to characterize successful firms

using the following list of attributes.

Attributes Values
INDUSTRY TYPE ELECTRONICS
BANEKING

AUTOMOBILE

SIZE LARCE
MED UM
SMAIL
STRATEGIC PLANNING YES
DEPARTMENT NO
MIS DEPARTMENT YES
NO
CURRENT RATIO GRE/TER THAN 3.0

BETWEEN 15 AND 3.0
LESS THAN 15

DEBT-EQUITY RATIO GREATER THAN 0.7
LESS THAN OR EQUAL TO 0.7

Suppose H is a conjunctive concept. Since each attribute can either be a term of a conjunctive
concept or not, the number of rules in H is |H| = 34" = 1,728. That is, N = 1,728,
Hence, by Theorem 3.2, the learned concept h hus error & with probability 1—3 after
(1/&) (In{1/48) + In 1,728)
= (1/¢&) (In(1/8) + 7.455)

random independent examples, regardless of the uiderlying distribution governing the generation
of these examples. Note that the number of exam les required grows slowly compared to the size

of the hypothesis space.

For ¢ = 0.1 and 4 = 0.05, Theorem 3.2 shows -hat the number of examples required for PAC

learning is

m = (1/&)(In(1/6) + In 1,728) = 196.

164 Hvunsoo Kim

In other words, a learned concept h has error less than 109 with probability 95% after 140
random examples, regardless of the underlying distribution.

From Haussler {9 Theorem 3.6, the VCdim(H' for pure conjunctive hypothesis satisfies
n < VCdim(H) < 2n

where n is the number of attributes. Thus

=)
IA

VCdim(H) < 12

For ¢ = 0.1 and 6 = 0.05, Theorem 3.4 shows that the number of cxamples required for PAC

learning is

m = min { (1/&){In(1/8)+In 1,728), (1/&)! 4 log(2/3) + 8d log(13/&)!”
= min ;: (1/0.1)(In{1/0.05)+In 1,728),
(1/0.1)1 4 log(2/0.05) + 8%12 log(13/:.1)}]
= 196

In this case, we could not improve the sample complexity because VCdim(H) is not less than

In{HI.
Example 2 : the case of |H| = =

Suppose we wish to learn the range of liab lities to assets ratios within which successful
companies operate. The instance space X is the interval [(,1]. Let the hypothesis space H be the
intervals [x, v: with 0<x<y<l plus the emjty set. Since there are an infinite number of
intervals in [0, 17, [H! =%, The growth function for H is determined as follows.

Consider the single example with value 0.6. Th: instance 0.60€ X can be labelled as + (a posi-
tive example) by the concept [0.5, 1] and — (a 1egative example) by the concept |0, 0.5]. Hence
(1) =2=2"

Consider two examples with values 0.3 and 0 3 The following four conceots give all different

partitionings of two examples.

[0.1, 04] gives (+,—) :
104, 0.7] gives (—,+)
10.2, 0.7 gives (+,+) : and
[0.4, 05] gives (—,—).

Thus ny{2)=4="2"

q19% H2%R An Introduction of Machine I earning Theory to Business Decisions 165

Now consider three examples with values a, b, and ¢, where a<b<c. Since no disjunction of
intervals is allowed, no concept in H can classif (a, b, ¢) as (4,—,+), but all other classifi-

cation combinations are possible.

Thus 7,(3) = 7 < 2.
Therefore, VCdim(H) = 2.

Since there are infinite number of intervals on the real line, the number of rules in H is |H|
= . That is, N = o,

Hence, by Theorem 3.2, the learned concept h s error ¢ with probability 1—3 after o ran-
dom independent examples.

For ¢ = 0.1 and § = 0.01, Theorem 3.4 shows :hat the number of examples required for PAC

learning is

m = min [o¢, (1/0.1){ 4 log(2/0.01) + 8%2 iog(13/0.1)}]
= 1429.3

In this case, we have improved the sample cor plexity because VCdim(H) is considerably less

than In|H/{.

4. A theoretical analysis of Decision Tree Induction Methods

A decision tree can be expressed as a disjun Tive concept. Each path in a decision tree
corresponds to a conjunction of variables (with values), and all pathes having the same class in

their leaves can be combined with disjunctions. Fir example,

1({Outloock=sunny) and (Humidity=normal)) or

(Outlook=overcast) or ({(Outlook=rain) and Windy=false))}

is a disjunctive concept, P, represented by a ecision tree in Figure 4.1. Here we have four

attributes having values in parentheses.

1. Outlook (sunny, overcast, rain)
2. Temperature (hot, mild, cool)
3. Humidity (high, normal)

4. Windy (true, false)

166 Hyunsoo Kim BEAEMEE

' [Outlook]*

’— sunny overcast rain
|
[——[Humidity]—, P l——[Windy]——‘

high normal true false

| i | |
N P N P

* ¢ [] denotes an attribute.

[Figure 1] A decision tree learned from a training set
4.1 Learning Disjunctive Concepts
We begin with the definition of the DNF (Disjunctive Normal Form) concept.

Definition 4.0 : A disjunctive normal form (DNF) expression is any sum m,~+m,+-~+m, of
monomials where each monomial m; is a product of literals. Here “sum” means an inclusive OR
operation and “product” means an AND operation. A literal is either a variable (i. e., an attri-

bute with value) or the negation of a variable. An expression is monotone if no variable is

negated in it.

For the case of monotone DNF expressions, having a bound, k, on the length of each disjunct
(we call this a k-DNF concept), Valiant [42, 43] showed that a PAC concept can be learned in
polynomial time from negative examples with the sample complexity O(n,), where n is the num-
ber of variables. Haussler [9! improves this result by using a dual greedy method which is a
variant of the “star” methodology of Michalski [2!]. The improved bound is O((log kn)?).

Rivest [34] showed k-DNF concepts without a monotonicity restriction are polynomially
learnable using decision lists. A decision list is ¢n extended “if-then-elseif-else” rule, where the
tests in “if” parts are conjunctions of literals drawn from 2n literals. (See Rivest 1987 for the
precise definition.) Compared to decision trees, dzcision lists have a simpler structure, but the
complexity of the decisions allowed at a node is greater. Let k-DL be the set of all Boolean
functions defined by decision lists, where each fuaction in the list is a term of size at most k.
k-DNF(n) is a proper subset of k-DL(n), where n is the number of variables used in the ex-
pression. Rivest shows that k-DL is polynomial-sized and polynomially-identifiable. If a class of

formulae is polynomial-sized and polynomially identifiable, then it is polynomially learnable. How-

F19% F2k An Introduction of Machine Learning Theory to Business Decisions 167

ever, computation of the “shortest” decision list 'onsistent with a given sample is an NP-hard
problem [34].

4.2 Learning Decision Trees

A decision tree has much expressive power in the sense that it is concise and that there is no
limitation on the attributes and classifications a.lowed, and is a more complex structure than
the DNF concepts or decision lists. Therefore li-tle theoretical research has been done on de-
cision trees, and most research on learning a decision tree is based on heuristic reasoning.

There are a number of algorithms for learning decision trees [23, 24, 28, 30, 31, 32, 33, 41].

Most algorithms involve three main stages:

1) Construct a complete tree able to exactly cla-sify all the examples.
2) Prune this tree to give statistical reliability.

3) Process the pruned tree to improve understar.dability.

Some algorithms adopt pruning techniques while they construct a decision tree.

In the following we give a theoretical analysis on decision tree induction algorithms. One of
the popular learning algorithm is ID3. ID3 is easy to implement and has given excellent results
in a number of applications. ID3 operates on dornains where instances can be represented by a
finite vector of attributes.

ID3 construct a decision tree as follows:

Algorithm 4.0 : (ID3)
1. If all instances are either positive or negatie examples, then the tree is a single leaf node
of corresponding sign.
2. Otherwise
a. Let 1 be an attribute that optimizes sone criteria for choosing an attribute. Create a
node labelled with i.
b. Partition the instances into k groups. For 2ach partition, form a branch from the node to

a decision tree recursively constructed.

In Step Za a large number of different criteria have been used, including information measure
[32], a chi-square contingency table statistic [72], probability measures [23], gain-ratio [32],
Marshali correlation [19], and others [23].

In Step 2.b., partitioning can be accomplished i1 many different ways. For nominal or discrete

168 Hyunsoo Kim GRS N X I

T E Ak

attributes, the most common partitioning is along each possible value of attributes. For
attributes with a large number of values incliding real valued attributes, the instances are
typically split into two.

To determine the sample complexity for PAC-liarning using Theorem 3.4, we have to determine
the Vapnik-Chervonenkis dimension of the hypotiesis space H.

Let C; be the cardinality of the set of the permissible values for atiribute i, 1<i<n, where n
is the number of attributes that define the doman X.

Then,

d=0C X C - xC x - x C,

is the total number of distinct instances in X.
Since each distinct instance can be classified as positive or negative, the total number of

concepts that can be defined by decision trees on X is

2" = |H!.

For a sample that consists of d distinct instances (i. e., the whole instance space X) , the

maximum number of possible concepts induced bv H is 2, therefore

VCdim(H) = d.

Applying Theorem 3.2 and 34 with [H{=2", z1d VCdim(H)=d, we can derive the sample size
needed for probably approximately correct learnir g using inductive decision trees. Following The-

orem 4.1 summarizes this.

Theorem 4.1 : (Sample complexity for ID3)

For any given e and 4, with O<e, 61, if the s ample sizc is at least
[In(1/6) +d In2 " /g

then an induced decisicn tree using ID3 will have errar less than or equal to e with probability

greater than 1-—4.

As we see from the above Theorem 4.1, ID3 dies not satisfy efficiency property of PAC learn-
ing since sample complexity is not polynomial on the number of attributes, n.

In the following we will discuss PAC learning algorithms for decision tree induction. First
PAC learning algorithm for decision tree inductiim was introduced by Ehrenfeucht and Haussler

|8]. We need the following definition of the rank of a decision tree to show a theoretical result.

A9 2k An Introduction of Machine .earning Theory to Business Decisions 169

Definition 4.2 . (the rank of a binary decision tree

The rank of a binary decision tree Q, denoted 1.9Q), is defined as foilows :

(1) If Q=0 or Q=1 then r(Q)=0.
(ii) Else if r. is the rank of the 0—subtree o Q and r, is the rank of the 1-subtree, then
r(Q) = { max(r, r,)) if r. # r,

lr, + 1 (= r, + 1) otherwise

Let T, be the set of all binary decision trees over the attribute set V, of rank at most r, and

let F| be the set of Boolean functions on the ins:ance space X, that are represented by trees in

T..

Theorem 4.3 provide sample complexity of a d:cision tree induction algorithm, Find(S.r). (See

'8] for the details). Here, S and r denote sample, and the rank of a decision tree, respectively.

Theorem 4.3 : For any n>r>-0, any target function f€F?, p<n, an equally likely probability dis-

tribution D on X, and any 0<g, 4<1, given a saiple S derived from a sequence of

m = (1/&) {{en/r) In{8n) + In(1/8)

random examples of f chosen independently accrrding to D, with probability 1-4, Find(S:r)
produces a hypothesis h&F, that has error at mdst e

As we see from the above sample complexity, he above learning algorithm satisfies efficiency
property of PAC learning paradigm.

In the following we give an example of a decis on trec to illustrate the above result. Here we
use a decision tree predicting loan default of con panies, from Messier and Hansen [20]. In Fig-
ure 4.2 we have altered their final tree to express all the variahbles as binary variables. The exact

meaning of high and low for each attribute is giv:n below :

Attributes low _high

Current Ratio < 192 > 1512

Long-term Debt / Net Worth < A4 > 486

Lo Long-term Debt/Net Worth < .0-¢ > .046 and < .436
Working Capital /Sales < 202 > 222

Net Income / Total Assets < LMC > 100

Net Income /Sales < 0 > 010

170 Hyunsoo Kim HESER 2e

Current Ratio

loy/ \ high

Long —term Debt
Default Net Worth
(10)*
high
Lo Long —term Debt Working Capital
Net Worth Sales
/ \high low / \ high
—Net Income No Default Net Income No Default

“Total Assets " Sales

(11) (4)
low / \ high / \ high

Default No Default Default No Default
(1 (N 1) (4)

* : The number of examples in each terminal nodc.

[Figure 4.2] Decision tree predicting loan default

Now we give the sample size sufficient for PAC learning of the above decision tree. Here the
number of attribute is 6, and the rank of the decision tree is 2. Therefore, by Theorem 4.3, the

number of examples, m, sufficient for learning a decision tree of rank two is

for = 05 and § = 0.01, m = 525, and
for = 0.1 and § = 0.0, m = 2,621.

The above algorithm assumes that there is a decision tree which classifies all the examples
correctly. However, the assumption of perfect classification does not hold in business environ-
ment in general since business data are often incomplete, and exposed to noise. Also, there could
be some hidden attributes which affect decision rnaking considerably. To overcome this problem,
pruning techniques are widely used in decision iree induction methods. There are a number of
pruning techniques [24, 28, 33]. In the following we give a theoretical analysis considering prun-
" ing.

Suppose we need a more concise decision tree of rank one from the above decision tree of rank
two in Figure 4.2. By a PAC pruning algorithm Prune(r,k,Q,8), from Kim [13], following decision
tree is obtained. Here S denotes sample, Q denotes decision tree, k and r are the rank of desired

decision tree, and the rank of original decision tree, respectively.

FI19% EIW An Introduction of Machine l.earning Theory to Business Decisions 171

Current Ratio

low / \ higl

Default Long —term Debt
(10)* : Net Worth
/ \hxgh
No Default Working Capital
(12:1)* Sales
Net Income Default
" Sales

low / \ high

Default No Default
(1) (4)

* ¢ The number of examples in each terminal nod:.

* 1 12 examples are in No Default, One example i: in Default.

[Figure 4.3] A pruned decisior tree predicting loan default

Following Theorem 4.4 and 4.5 provide sample complexity of a decision tree induction algor-

ithm with pruning. The details are found in Kim 13..

Theorem 4.4 : For any n>r>(, any target functicn fE€F%, p<n, an equally likely probability dis-

tribution D on X, and any 0<e, §<1, given a san ple S derived from a sequence of

m > [2/{& (1-2u,)% {{en/r) In(8n) + 1n(2/8)}

random examples of f chosen independently accord ng to D, with probability 1—4§ , Find(S,r) and
Prune(r,k,Q,3) using tree labelling produces a hypothesis h€ FY that has error at most & Here e

is the base of the natural logarithm, and

oy = 0.5 = (05)" " forn >r =1
toe = 0.5 — {1+(n—-r) (05)% (05 ™ forn 21 > L

172 Hyunsoo Kim i

Theorem 4.4 shows that the decision tree witl rank at most r on n variabies can be lcarned
with pruning with accuracy 1—e and confidence -3 in time polynomial in 1/& 1/4, 1/(1-25)
and n for fixed rank r, allowing one unit of time¢ to draw each random examples. Thus, pruning
has increased the number of examples we must obtain, but stil retains its polvnomial sampling
characteristic. The above sample sizes in Theoram 4.4 can be reduced by using Laird’s |18}

improved bound on learning from noisy examples. Theorem 4.5 presents this bound.

Theorem 4.5 : Assume 0<e, 0<1/2. For any n>; >{, any target function {£F’, p<n, an equally
likely probability distribution D on X, and any (<g 0<1/2, given a sample S derived from a

sequence of

m > [1/%e(]~exp(—{(05)(1—24,)))) i(en/ In(8n)+In(l/6)!

random examples of f chosen independently according to D, with probability 1—0, Find(S,r) and
Prune(r,k,Q,S) using tree labelling produces a hypothesis h€ F} that has error at most .

Now we give sample sizes sufficient for learn ng a decision trec with pruning. We use the
above decision tree of rank one pruned from an nduced decision trec of rank two. Here n=8,
k=2, and r=1. Then, by Theorem 4. 4, the numler of examples, m, sufficient fur learning a de-

cision tree of rank one is

for € = 05 and o = (.01, m = 560,609, ani
for ¢ = 0.1 and & = 0.01, m = 14,015,240.
The above sample sizes are very large becausc of the loose hounds of e 2nd Flo Since k=2,
usr can be substituted by the least upper bound of the pruning error, iy, =0.25. In f{act, |F.| <

N=2" for any value of r. With these tighter bo.nds the number of examples, m, sufficient for

learning reduces to

for e = 05 and ¢ = 0.0, m = 6,356 and

for & 0.1 and 6 = 0.01, m = 158,895,

By using Theorem 4.5 and tighter bounds for ir and F. the sufficient sample size could be
reduced as follows :

For ¢ = 0.499 and 6 = 0.01, m = 833,
for ¢ = 02 and § = 0.0l, m = 2,084, and

9% B2k An Introduction of Machine I :arning Theory to Business Decisions 173

for ¢ = 0.1 and 0 = 0.0I, m=4,163 are obt ined as the number of examples suffcient for

learning.

Hence, the learned concept(that is, a pruned d cision tree of rank at most one) h has error

less than 10% with probability greater than 99% fter 4,168 random independent examples.

5. Discussions

Business environments are dynamically changin:. there are many variables to be considered,
some hidden attributes may affect business decisic ns seriously. Also, business data contains noise
in the attributes or noise in the classifications.

PAC learning theory provides a theoretical frarwework to analyze Al induction algorithms in-
cluding decision tree induction algorithms. We arc able to analyze the concept accuracy (predic-
tion accuracy), computational efficiency (learning or training time) and sample complexity of
various induction algorithms by this learning fram work.

There are other important researches for the 1sage of Al induction algorithms for business
environments. As we see in the above examples, s mple size sufficient for PAC learning is often
very large, while examples and data are often viry costly in many business environments. in
practice, many Al induction algorithms applied 1o business decisions {mainly on classification
tasks) have used very small number of examples [5, 20i. For those cases. posterior error analysis
methods are developed and used to assess the corcept accuracy of AI induction algorithms 14,
16 .

Also, there are rescarches to find theoretical co ditions of pruning where pruning is beneficial
for concept accuracy as well as concept simplificatibon 15 .

With the introduction of learning theory tc¢ bu iness domains, rules or concepts learned from
induction algorithms are able to bc used in busin ss decision making or in expert systems with

more rigorous error estimates and predetermined cnfidence level,

Refere 1ces

(1! Angluin, D. and Laird, P, “Learning From Noisy Examples,” Machine Learung, Vol. 2,
(1988), pp. 343-370

174 Hyunsoo Kim RS R

[2] Angluin, D. and Smith, C. H., “Inductive Inference: Theory and Methods,” Computing
Surveys, Vol. 15 (1983), pp. 237-269.

[3] Blumer, A., Ehrenfeucht, A. Haussler, D. and Warmuth, M., “Occam’s Razor,” Information
Processing Letters, Vol. 24 (1987), pp. 377-380.

[4] Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth, M., “Learnability and the Vapnik-
Chervonenkis Dimension,” Technical Report UCSC-CRL-87-20, University of California,
Santa Cruz, CA. 1987.

[5] Braun, H. and Chandler, J. S., “Predicting Stock Market Behavior Through Rule Induction :
An Application of the Learning-from-Example Approach,” Decision Sciences. Vol. 18 (1987),
pp. 415-429.

[6] Cohen, P. R. and Feigenbaum, E. A., Th Handbook of Artifictal Intelligence, Vol 1,
Reading, MA : Addison-Wesley, 1982.

[7] Davis, R., “TEIRESIAS: Applications of Meta-Knowledge,” in Knowledge Based Systems
in Artificial Intelligence (pp. 227-408), R. Davis and D. Renat (Eds.), New York:
McGraw-Hill, 1982,

[8] Ehrenfeucht, A. and Haussler, D., “Learning Decision Trees From Random Examples,”
Proceedings of the 1988 Workshop on Computational Learning Theory (pp. 182-194), San
Mateo, CA: Morgan Kaufmann, 1988.

[9] Haussler, D., “Quantifying Inductive Bias Al Learning Algorithms and Valiant’s Learning
Framework,” Artificial Intelligence, Vol. -6 (1988), pp. 177-221.

[10] Haussler D. “Learning Conjunctive Concepts in Structural Domains,” Machine Learning.
Vol. 4 (1989), pp. 7-40

[11] Haussler, D., “Decision Theoretic Genera ization of the PAC Model for Neural Net and
Other Learning Applications,” Technical Report, UCSC-CRL-91-02, University of California,
Santa Cruz, 1990.

[12] Johnson, D. E., “What Kind of Expert Should a System Be?,” Journal of Medicine and
Philosophy, Vol. 8 (1983), pp. 77-97.

[13} Kim, H., PAC-learning a Decision Tree with Pruming, Ph. D. Dissertation, Department

[14] Kim, H. and Koehler, G., “The Accuracy ol Decision Tree Induction in a Noisy Domain for
Expert Systems Construction”, Proceedings of ‘93 Korea/Japan Joint Conference on Ex-
pert Systems. pp. 303-313, Seoul, Korea, 1993,

[15] Kim, H. and Koehler, G., “An Investigaticr on the Conditions of Pruning an Induced De-
cision Tree”, The European Journal of Operational Research. forthcoming.

[16] Kim, H. and Koehler, (¢, “A Theoretical Analysis on the Pruning Techniques for Decision

BI9% 2R An Introduction of Machine l.earning Theory to Business Decisions 175

Tree Induction®, Proceedings of the Decisicn Science Institute Second International Con-
ference, pp. 709-712, Seoul, Korea, June 1993

[17] Koehler, G. J. and Majthay, A., “Generaliz: tion of Quinlan’s Induction Method,” Depart-
ment of Decision and Information Sciences, University of Florida, Unpublished Manuscript,
1988.

{18} Laird, P., Learning From Good Data ani Bad. Doctoral Dissertation, Department of
Computer Science, Yale University, New Haven, CT, 1987.

[19] Marshall, R., “Partitioning Methods for Cl ssification and Decision Making in Medicine,”
Statistics in Medicine, Vol. 5 (1986), pp. 517 -326.

[20] Messier, W. F. and Hansen, J. V., “Inducing Rules for Expert Systems Development,” Man-
agement Science, Vol. 34, No. 12 (1988), pp. 1403-1415.

[21] Michalski, R. S, “A Theory and Methodo 5gy of Inductive Learning,” Artificial Intelli-
gence, Vol. 20 (1983), pp. 111-161.

[22] Mingers, J., “Expert Systems--Experiment: with Rule Induction,” Jouwrnal of the Oper-
ational Research Society, Vol. 37 (1986), pp. 1031-1037.

[23] Mingers, J., “An Empirical Comparison of Sclection Measures for Decision Tree Induction,”
Machine Learning. Vol. 3 (1989), pp. 3197 {2.

[24] Mingers, J., “An Empirical Comparison of I'runing Methods for Decision Tree Induction,”
Machine Learning, Vol. 4 (1989), pp. 227 —213.

[25] Mitchell, T. M. “Generalization as Search ® Artificial Intelligence. Vol. 18 (1982), pp.
203—226.

[26] Musen, M. A, “Automated Support for Bu lding and Extending Expert Models,” Machine
Learning, Vol. 4 (1989), pp. 347 —375.

{27] Natarajan, B. K., Machine Learning : A Ticoretical Approach., San Mateo, CA : Morgan
Kaufmann, 1991.

[28] Niblett, T., “Constructing Decision Trees it Noisy Domains,” Proceedings of the Second
European Working Session on Learning pp. 67—78), Bled, Yugoslavia : Sigma Press,
1987.

[29] Nunez, M., “The Use of Background Kniwledge in Decision Tree Induction,” Machine
Learning, Vol. 6 (1991), pp. 231 —250.

£30] Quinlan, R., “Discovering Rules from Large Collection of Examples : A Case Study,” In D.
Michie(Ed.), Expert Systems in the Mi roelectronic Age (pp. 168—201). Edinburgh:
Edinburgh University Press, 1979.

[31] Quinlan, R, “The Effect of Noise in Concep . Learning,” In R. S. Michalski, J. Carbonell, T.
Mitchell(Eds.), Machine Learning : An Artificial Intelligence Approack. Vol. 11, Chap-

176

Hyunsoo Kim MEEGRT R PR

[32]
[33]

139]

140]

[42]

{43

[44]

ter 6, Los Altos, CA: Morgan Kaufmann, 19¢°.

Quinlan, R., "Induction of Decision Trees.,” Machine Learning, Vol. 1 (1956), pp. 36— 106,
Quinlan, R., "Simplifying Decision Trees,” International Journal of Man— Machine Studies.
Vol. 27 (1987), pp. 221 —234.

Rivest, R., “Learning Decision Lists,” M achine Learning. Vol. 2, No. 3 (1987), pp.
229—246.

Shaw, M. J. and Gentry, J. A, “Using an Expert System with Inductive Learning to Evalu-
ate Business Loans,” Financial Managemeni Vol. 17(1988), pp. 45—56.

Shaw, M. J. and Gentry, J. A., “Inductive Learning for Risk Classification,” IEEE Expert.
Vol. 5(1990), pp. 47 —53.

Shaw, M. J., Gentry, J. A. and Piramichu, S, “Inductive Learning Methods for
Knowledge —Based Decision Support : A comparative Analysis,” Computer Science in

Economics and Management. Vol. 3 (1990}, up. 147 --165.

| Simon, H., “Why Should Machines Learn?” In R. S Michalski, J. Carbonell, T. Mitchell

(Eds.), Machine Learning: An Artificia, Intelligence Approach. Vol. 1 (pp. 25-37),
Palo Alto, CA: Tioga, 1983

Spangler, S., Fayyad, U. M. and Uthurusamy . R., "Induction of Decision Trees from Incon-
clusive Data,” Proceedings of the 6ih Intery ational Conference on Machine Lcarning (pp.
146 ~150), San Mateo, CA: Morgan Kaufman., 1989.

Tsai, L. and Koehler, G. J., “The Accuracy o Concepts Learned from Induction,” Decision
Support System. forthcoming.

Utgoff, P., “Incremental Induction of Decisiol Trees,” Machine Learning. Vol 4 (10303, pp.
161 —186.

Valiant, L. G., "A Theory of the Learnable,” Communications of the ACM. Vol. 77, No. 11
(1984), pp. 11341142,

Valiant, L. G., “Learning Disjunctions of {'onjunctions,” Proceedings of the Gth Inier-
national Joint Comference on Artificial Intolligence (Vcl. 1. pp. 560--566), Los Angeles,
CA: Morgan Kaufmann, 19%5.

Vapnik, V. N., Estimation of Dependencics Based on Ewmpirical Data. New York:
Springer — Verlag, 1982.

Weiss, S. M. and Kulikowski, C. A., Computer Systems that Learn. lLos Altos, CA: Morgan
Kaufmann, 1991.

