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Optimal Design of a Covering Network?®

Young —soo Myung*

Abstract

This paper considers the covering network design problem(CNDP). In the CNDP, an undirected
graph is given where nodes correspond to potential facility sites and arcs to potential links
connecting facilities. The objective of the CNDP is to identify the least cost connected subgraph
whose nodes can cover the given demand points. The problem defines a demand point to be covered if
some node in the selected graph is present within an appropriate distance from the demand point.
We present an integer programming formulation for the problem and develop a dual —based solution

procedure. The computational results for randomly generated test problems are also shown.

1. Introduction

Consider a situation where each demand point(node) can be served only by a facility that
exists within some maximal coverage distance, say L, from the demand point. We say that a fa-
cility can ‘cover’ a demand point if that facility is within distance L from the demand point,
We also say that a subset of facilities can ccver all demand points if each demand point is
covered by at least one facility in the set. In the covering network design problem(CNDP), de-
mand points and potential facility sites are given and we are to decide where to locate a subset
of facilities that can cover the demand point. Moreover, we must connect the established facili-
ties for mutual interaction. Costs are involved when establishing facilities and links connecting
them. Therefore, the purpose of the CNDP is to identify the least cost connected network span-
ning the established facilities that can cover the demand points.

The CNDP has many real world applications. The CNDP model fits various problems to de-
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termine the location of regional service centers(e.g. public facilities, branches, distribution
centers) which should be connected by establishing or building links (e.g. highways, com-
munication links). For example, when a companv tries to establish regional marketing centers
that control the scattered sales offices and construct a communication network which
interconnects the established centers, the companv faces a CNDP.

Although the CNDP to our knowledge has no! been dealt with in any other research, simi-
lar problems have been considered by several researchers, Covering location problems where
connectivity condition among established facilities have been considered by Church and Schil-
lingl4], Current and Storbeck|6] and Pirkul anc Schillingl12]. Current and Schilling [5] also
dealt with a covering location problem where “he established facilities should be connected
via a ring. Kim and Tchal9] and Myung et al. 11} also considered a similar network design
model with connectivity constraints.

In this paper, we present a dual—based solut:on approach for the CNDP. The next section
considers integer programming formulations of the problem. Section 3 develops a dual —ascent
procedure for calculating lower bounds to the optimal objective value and also shows how to
construct a feasible solution for the problem. Section 4 gives the computational results for

randomiy generated test problems,

2. Model Formulations

Let K be the index set of all demand points und V the index set of potential facility sites,
For each K€K, we let V.2V be a subset of fucility sites that exist within distance L from
demand point k. We refer to the index of a link between two facilities sited at 7 and j as {j
ji and let E be the index set of all potential l.nks. Consider an undirected graph G=(V, E)
where V and £ denote the same sets as defined. then the CNDP can also be defined as the
problem of finding a subgraph G'=(VV’', E’) of (; at minimum cost which satisfies the follow-

ing conditions :

(1) V' covers K.

(ii) G is connected.

We use the following notation. Given a graph G=(V, E) and a set S of vertices, &(S)
represents the set of edges in E with exactly one endpoint in S while E(S) represents the

set of edges in E with both endpoints in S. The corresponding notions for a digraph D=(N,
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A) are as follows. For a set SEN, 4 (S) denotes the set of arcs {(7j)eA:i&S. j€SI, 6°(S)
=3 (N/S) and AS)=i(Gj) :i€S, jeS!. For simpicity, we write 4 () (resp. 8'(¢) or &(2)) in-
stead of & (i7}) (resp. 6 (1)) or 8(47)). If x is defined on the elements of a set M (typically
M is an edge set E, an arc set A or a vertex set V) then we denote }.. x for NcM by
x(N). The only exceptions are 8(-), & (), & (-), E(-) and A(-) which were defined pre-

viously,
The CNDP can be formulated as the followini: 0—1 integer programming problem :

(PI) Min ¥ fx + Y Fy
s.t. wWV)>1, ke K (1)
xS =y, + v, — 1, 1€SCV and j&S (2)
x,<y, and x,<y, {ijle E (3)
v, x,€{0.1}, ijieE, i€V (4)
where

if

1 if edge {77} is inclucded in the selected subgraph
0 otherwise

{1 if node 7 is included in the selected subgraph

o 0 otherwise

¢, = the nonnegative cost for establishing a link between facilities
at site 7 and J

F. = the nonnegative cost for establishing a facility at site ¢

The constraints (2) guarantee the existence ¢f a path between any pair of selected nodes.
The same tvpes of constraints as (2) are alsy considered by Balas [1] for formulating the
prize collecting traveling salesman problem. W thout the constraints (3), a selected subgraph
might contain a node not selected.

The LP relaxation of (P1) is somewhat loos:, For example, if all of y, variables have value
less than or equal to % in an optimal solutio:l. then the value of each x, can be 0. So we

consider another (—1 integer programming forriilation for the CNDP which leads to a tighter
relaxation than (P1). For this purpose, we tr-ansform the CNDP into a degree constrammed
Steiner arborescence problem on a directed sraph. Given a directed graph D=(N.A) with
N=UKUV, the Steiner arborescence problem is the problem of finding a minimum cost
tree spanning a given subset {7} JK of nodes such that there exists a directed path from 7,

the root vertex, to every member of K.
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Given an undirected graph G=(V.E) and the index set of all demand points K, we con-
struct a directed graph D=(N,A) corresponding 0 G as follows :

(i) N = iUV UK
(i) A = {rDieVIUIEDIIEV, and k€K GHijeV and i#5).

And for each (directed) arc (ij)€ A, we associate cost as follows :

¢, = F for all zeV,
¢ =ty + F; for all ijeV. i#]j
cie = 0 for all 7eV,, keK.

Then the CNDP on an undirected graph (=(V,E) can be transformed into a Steiner
arborescence problem on a directed graph D=(N,A)} where the number of arcs incident to the
root node should be no more than one, In ar. arborescence, a unique arc is directed into
every node except the root node. Therefore, we: can get rid of the node costs by adding F;
to the costs of all arcs entering 7. Let 7" be an obtained arborescence from a transformed de-
gree constrained steiner arborescence problem. From T, remove nodes {#}UK and the arcs ad-
jacent to them, and refer to T’ as the resulting subgraph. Note that at least one node in
each V, is included in 7 since T contains a directed path from 7 to each node k€ K. More-
over, T’ is connected since T is connected and only one arc is adjacent to the root node in
T. Then the underlying graph of T  is an optimal network of the CNDP. In this transform-
ation, arcs {(», 7) directing from the root node to each node in V, can be replaced by the
arcs directing from # to every node of V, for sume k€ K.

The constrained Steiner arborescence formulation of the CNDP is as follows :

(P2) Min (i,;eA Ci Wi
s.t. w(s*(M)<1, (5)
@) — 676 = —1, i=7
1, =k keK (6)
0, otherwise
fi < w; GHe A, keK (7)
fi =0, (i)e A, keK (8)

w; €10, 1}, tHeA (9)
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where w, is a binary variable that indicates whether or not arc (7) is selected in the optimal

solution and £ represents the flow of commodity &k on arc (Z).

As is usual in network design formulations, the linear programming (LP) relaxation of
(P2), gives the better optimal value than thet of (PI). Let (LP1) and (LP2) be the LP
relaxations of (P1) and (P2), respectively, both of that are obtained by replacing the inte-
grality restrictions on 0—1 variables with nonnegativity constraints, Let #(:) and F(-) denote
the optimal objective value and the feasible region of problem (-), respectively, then the fol-

lowing holds :
Proposition 1 v(LP2)=uv(LPID.

Proof :

Let (fw) be an optimal solution of (LP2;, and also let x,=w,+w, for all {{jl€ E and
y,=w(3 () for all i€V. Then we can show taat (xy) is a feasible solution of (LP1) with
the same objective function value. For each #€ K, by(6) and the fact that 3'(k)=4, A6 (k)
=1. And

W) = 5 we @) > T AEG) = FE ) = 1.

eV i€V

Therefore, (x,y) satisfies (1).
Now we show (x,) also satisfies (2) and ¢3). For this purpose, we need the following

fact.
Claim 1 There always exists an optimal solution (f,w) that satisfies

w6 (7)) < w6 (S)), (10)
for all ieS<V.

By the max—flow min—cut theorem, the projection of F(LP2) onto the w

variables can be expressed as (Maculan [10]) :

F, = {w: wo@) < 1,
w6 (S) = 1, r&S and SNK #¢ (11
w, = 0 ac Al
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Let (fw) be an optimal solution of (LPZ) such that w is a minimal member of

F,. There always exists such an optimal so.ution by the nonnegativity assumption of
cost coefficients. Suppose that w viclates tae inequality (10) for some S and ¢.

Among all such inequalities, choose the one for which |S| is munimal. If w,=0 for
all a3 ()/37(S)) then w(s ())=wld (S) and this is a contradiction. Let a=(.2}e(s”
NG (S) (ie. j€S) with w,>0. Since w, cannot be decreased without violating one
of the constraints defining F, (by the minmality), there exists R with »& R, RN
K+¢, acs (R) and w6 (R)=1. By submocularity of w(3(). we have w(s (S)+w(s
(R)2w(d (SURN+w( (SNR)Y). Since »&(SUX) and (SURNK #¢, (11)says that w(s
(SUR)) 2 1=w(5 (R)). Therefore, w(d ($)=>1=w(d (SNR)). This implies that w also
violates (10) for SNR and 7 Since je:S/R, we have [|SNRI<IS| and this

contradicts the minimality of S.

*

Using this fact, we can show that for all ;€S ZV and j&S, the following holds :

x(6(S) = % T’ (ww + wy)
KES IEVS
= w6 ) — ¥ wy + wldV/S) —  w
i€s 1TTNS

(¢
> w(s (G) — /;s w, + wd () — Wy

3
1EVs

V&

w@ @) + wd Gy — 1
=y +y — 1

In addition, x;=w(5 N+w(d ¢))—w(d (ij)), aad by the inequality (10), w(3 () <wls (i )
and w(d (D) <w(3 ({is)). Therefore, {(x.y) also sat sfies (3). [ ]

Without the constraint (3), (P2) is the multicommodity flow formulation of the Steiner
arborescence problem which was presented by ‘Wong [13]. Using the special structure of the
model, he developed a dual ascent procedure which finds dual feasible solutions for the LP
relaxation of the problem. The obtained dual solutions provide lower bounds to the optimal
solution value, Since (P2) has almost the same structure as Wong's model, we can develop
an algorithm for solving (P2) by slightly modifying Wong's dual ascent procedure. The

details of our algorithm will be given in the next section.
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3. Solution Procedure

In this section, we present a dual ascent method that generates a lower bound on the opti-
mal CNDP value, and also develop a heuristic that constructs a primal feasible solution for
the CNDP. Our dual ascent algorithm is based on the degree constrained Steiner arborescence
formulation, (P2), since its LP relaxation not only provides a tight lower bound but also has

a nice structure based on which an efficient dual algorithm can be constructed.

3.1 A Dual Ascent algorithm

Here, we develop a dual ascent method tha generates a feasible solution for the dual of
the LP relaxation of (P2). The obtained dual feasible solutions provide the lower bounds for
the CNDP. Several researchers [2,3.7,13] have proven that dual ascent algorithms are ef-
ficient for solving network design related mode's due to their special structures.

Consider the dual of the LP relaxation of (P2).

(D) Max T vl —
s.t. V- U< ol GpeA, keK (12)
T ow, - IG)y < c, (ipeA (13)
u, = 0, i A, keK. (14)

In this formulation, the dual variables, 3 ¢'. and ), respectively correspond to the
constraints (5), (6), and (7). And I((zj)) is an indicating function of an arc which is set
equal to 1 if i=# and 0, otherwise. In other -words, I{-) shows whether an arc is adjacent
from the root vertex 7.

If 5 is given for (D), the resulting problem cecomes the dual of the LP relaxations for the
Steiner arborescence problem which was deal! with by Wong [13]. Thus we can construct
the ¢ values by directly using his dual ascent algorithm. His procedure, which we call
DAPI1, is to increase # for some k€K whii2 maintaining the feasibility. Here. we briefly
present Wong's dual ascent algorithm. For th- given values of the dual variables, let s, de-
note the slack in constraints(13) and Z, be th= dual objective value. And aiso let A*=i{ij)e€
Als,=0! and G*=(V.A%. For each k€ K. we d:fine N(k) as the set of nodes that are connec-
ted to node &k in G* N(k) also contains k. For jater use, we assume that the increase of v is

restricted to a subset of demand points K € K.
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algorithm DAP1

begin

while there exists k€ K* such that »& N(%) do

begin

d; ;= min{s;|(ij)e A, je N(k)} for all i & N(k) ;

A := minld;|7& N(k)} .

1* 1= argmin d; ;
sy 1= s5—A for all GHeS(NK)) ;
Zp 1= Zp+A

N = NWUir

end ;

end:

We initially set y and v} for all k€K equal to zero and perform the DAP1 with K =K.

After DAP1 terminates, we consider the increase of y, The increase of y decreases the dual

objective value but creates slack s, for all i€§ ). So our strategy is then to increase y only

when the unit increase of such a variable causes a unit increase in at least one ¢% for k€ K.

Let VY =1ieV;ls,=0 and V*(k)=V*,NN() for all k€ K. Note that V*{k) is not empty for

any k€ K after completing the DAP1. Suppose that we have two distinct elements %, and £,

of K. If V¥(&)NV*{k;)=¢, then the unit increase of y and the resulting unit increases of s,

for all 7€67(») enable vy, and v, to increase b a unit. Our algorithm selects such pair of

elements in K, if any, and increases the corresponding dual variables,

objective value also increases. This procedure can be specified as follows :

algorithm DAPZ ;

begin

while there exists a pair of elements £&; and k., in K such that

V&NV k) =¢ do

begin

A, = minis;|GHESNUED/S ()} ;
A; = minis;|(G)€ S (NE/S ()

As a result, the dual
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A = min (A, A) :

v =3+ A
s, = s. + A for all i€V, ;
Z,:= Z, —A;

Update N(k) ;

K = {k, k) and execute the DAPI1

K = K and execute the DAP1 :
end ;

end .
3.2 Heuristic Procedure

Here we develop a heuristic algorithm whicl. finds a primal feasible solution for the CNDP.
Our procedure is a basically add—drop heuristic. We select a node one by one under a cer-
tain sequence until the selected subset of nodes covers K. The sequence of selecting nodes
are determined as follows : let V* be a set «f nodes selected so far, then for each node 7&
V* we calculate the two values, MC. and MK, MC. is the additional cost needed when
establishing facility ¢ in addition to V* This cost includes the cost of establishing a link to
connect 7 to some node in V* and the fixed cost to establish a facility at site i. MK, is the
number of customers which ¢ can cover but no element of V* can do. Then our procedure
selects a node with the minimum MC/MK, ratio and includes it into V* until V* covers K.

Then by constructing a minimum cost spanring tree with node set V* we can obtain a pri-
mal feasible solution and an upper bound for the optimal value. Moreover, the solution might
be improved by deleting some element of V* so our procedure checks whether the deletion
of some node in V* decreases the cost and if so, we remove it from V* as far as the remain-

ing node set covers K.

4. Computational Results

Our solution procedure was coded in FORTRAN I and implemented on an IBM 386DX
(20MHz) personal computer. Test runs were made on a series of randomly generated

problems. The underlying graph of each test problem is a complete graph. Note that network
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design problems on a complete graph are most difficult to solve. For each k€K, the
elements of V, are randomly selected but the average |V, |/|V| ratio is specified before. We
test the problems with different |V,{/|V| ratios.

{Table 1) shows the computational results for each test problem with the different combi-
nation of K, V. and |V, [/IV] ratio. In {Table 1>, the fourth column in each table shows the
average lower bounds as a percentage of the ipper bound. Our algorithm solved the large
scale problems within the reasonable time and the quality of the obtained lower and upper

bounds are also satisfiable.

{Table 1} Results for Test Problems
Problem Size

V] K| Vil /1VI(%) LB /OPT(%) CPU(sec)
5 5 (.2 100.0 0.05
5 (L5 100.0 0.05

5 (.7 100.0 0.06

3 (1.2 100.0 0.11

8 (1.5 100.0 0.06

8 (.7 100.0 0.17

10 (.2 100.0 0.11

10 (.3 100.0 0.05

10 1.7 100.0 0.10

10 5 (.2 100.0 0.06
5 (.5 100.0 0.05

5 .7 100.0 0.06

8 (.2 100.0 0.11

8 () 100.0 0.03

8 .7 100.0 0.11

10 (.2 100.0 0.11

10 (.5 38.6 0.22

10 (.7 100.0 0.27

20 10 (.2 95.5 0.33
10 () 100.0 0.16

10 .7 100.0 0.22

15 02 100.0 1.10

15 0.5 91.7 (.99

15 0.7 94.1 0.71

20 r.2 G92.7 2.8H

20 0.5 89.5 1.48

20 L7 100.0 0.44

30 10 (.2 96.3 0.55
10 .5 79.6 (.33

10 07 95.8 0.33

15 C2 97.4 1.15

15 .5 36.0 1.43

15 .7 92.0 1.37

30 .2 91.7 4.78

30 .5 82.4 5.99

30 7 100.0 1.65
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