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Variations in the amplitude and phase distributions of an incident Gaussian beam are derived analyti-
cally when it propagates through a photorefractive crystal in the presence of another strong beam
and resulting photorefractive grating that is phase shifted by other than 90° relative to the intensity
grating. In the presence of the photorefractive grating the beam is shown to propagate along a straight
line in a new direction with an increased wave number.

1. INTRODUTION

When two coherent optical beams interact in a pho-
torefractive crystal and result in a photorefractive gra-
ting that is phase shifted by 90° with respect to the
incident intensity grating, energy of one beam is trans-
ferred to the other beam while there is no change
in the phase fronts of the beams."™ In this case the
propagation of the beams in the crystal can be well
explained with Maxwell's equations by assuming of
plane waves and slowly varying envelopes. When,ho-
wever,the intensity grating results in a photorefractive
grating with non-90° phase shift,because of photovotaic
effect,applied electric field,™"! moving grating™®' and
so on,the phase fronts of the beams should be changed
during propagation through the crystal. Recently, it has
been observed that an absorption grating can arise in
a photorefractive crystal due to difference in absorption
cross sections of the full and empty traps,which is in
phase with the intensity grating,and therefore change
the phase fronts of the beams.!*’ In most caseshowe-
ver,it has been just described qualitatively as they
cause the phase fronts of the incident beams to change
and the resulting photorefractive grating to tilt and
bend in the crystal'

In this paperthe variations in the amplitude and
phase distributions of an incident Gaussian beam are
derived analytically,for the forst time to our knowledge,
at a steady state by assuming a photorefractive grating

453

with non-90° phase shift in a photorefractive crystal.
In the calculation a weak “signal” is assumed to have
a Gaussian intensity profile and another strong “refe-
rence” to have a planar phase front. In the presence
of the photorefractive grating it is assumed that the
amplitude and phase distributions of the weak signal
are modified by a multiplication of slow exponential
functions in the transverse plane, while the strong re-
ference remains unchanged in the crystal. In this case,
the interference fringe is first obtained from the assu-
med expressions of the beams. Next, the standard
band conduction model''* is solved for space-charge
electric field by using the intensity distribution and
by assuming no movement of charge carriers along
the bisector of the beams. Then, the exact amplitude
and phase distributions of the weak signal is derived
by forcing the beam to satisfy Maxwell's equation in
the presence of the resulting photorefractive grating
with non-90° phase shift in the crystal.

1. THEORY

Fig.1 shows geometry of a photorefractive crystal
and two incident beams used in our calculations. The
weak signal is assumed to have a Gaussian intensity
profile only in one direction parallel to xz-plane and,
therefore,no variation in its amplitude and phase along
y-axis,for simplicity in calculations. The strong refere-
nce is assumed to have a planar phase front for the
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%] 1. A weak signal with a Gaussian profile interacts
with a strong reference with a planar wave
front in a photorefractive crystal. xz-coordina-
tes are to represent the crystal and the strong
reference while ¢n-coordinates to represent
the weak signal in the crystal.

simplicity as before. The beams are assumed to cross
each other such that the bisector is parallel to the ent-
rance surface normal, or x-axis in Fig. 1. In addition
to xyz-coordinate system,another coordinate system is
defined such that {axis is parallel to the propagation
direction of the weak signal and n-axis is perpendicular
to faxis and parallel to xz-plane. Since a function rep-
resented in one coordinate system can be easily trans-
formed into the other at later times,the weak signal

can be represented by & and 5 axes as e (r, t):%x
Elexp[-;—iQrf +iP+tk, E~1wt | +c.c, when there is no
photorefractive grating in the crystal,while the strong
reference by x and z axes as e:(r, t)I%Ezexp[i ka'r

—twt]+cc Here @ and P are Gaussian beam para-
meters, k£, and k., are wave number of the weak signal
and wave vector of the strong refernce, respectively,
r is position vector represented in xyz-coordinates,
is angular frequency, and c.c stands for complex conju-
gate. It is noted from the expression of the weak gignal
that the point, {&=n=0, corresponds to the center of
beam waist of the weak signal. If there is no photoref-
ractive grating in the crystal,the Gaussian beam para-
meters can be obtained from Maxwell's equations as

Q=k/({—1&) and P:%iln(l+i§/éj>), where & is Ra-

1
yleigh range and a factor of E) in P results from

our assuming of no variation along y-axis.!'?

In the crystal, a photorefractive grating with non-90°
phase shift can decompose into a 90°-phase-shifted co-
mponent and an in-phase component. The 90°-phase-
shifted component changes the envelope of the weak
signal as a function of the distance from the entrance
surface of the crystal, which is what the conventional
slowly varying envelope approximation (SVEA) is ba-
sed on. In a similar way one may assume that the
in-phase component changes the phase of the weak
signal as another function of the distance from the
entrance surface. Since the conventional SVEA predicts
the envelope of the beam to vary exponentially along
the entrance surface normal, one can thus assume that
the photorefractive grating changes both amplitude and
phase of the weak signal exponentially in the transve-
rse plane of the beam,starting from the point where
the plane meets the entrance surface of the crystal
In addition,we assume that the photorefractive grating
makes the weak signal displace in its transverse plane.
Therefore,in the presence of the photorefractive gra-
ting with non-90° phase shift and at a steady state,we
assume the electric fields of the weak signal and the

strong reference as''
1 .. . . .
e (r, t):EEl exp[Ean‘+zP+zk1~lwt]
expl(S+iDn+ (&~ &E)cotBl +iU+cc] (1)
1 . .
e (r, t):EEzexp[z ko r—iwt]+c.c. 2)

Here S represents a photorefractive gain resulting
from the 90°-phase-shifted component and 7" a phase
front change resulting from the in-phase component.
& is the value of &axis at the entrance surface and,
therefore, {n+(&—&)cotf) represents the distance of
a point (§ 7n), measured in the transverse plane, from
the entrance surfance of the crystal. U represents the
transverse displacement of the beam, which depends
only on ¢ Then we obtain the resulting interference

fringe as

1 1
I z):10+Emloexp[»ixz]exp[?ouip] X
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expl(S+iT){n+ (- E)cotd) +iU, ]+ e, 3)

where K is the magnitude of the grating wave vector
defined by K=k,—k,. When the reference is much st-
ronger than the signal, E;|>>E,, the modulation index
can be assumed to be m=~2 E,E,/|E,|* and the average
light intensity I, to be constant in the crystal.

When the light intensity distribution is given in the
crystal as in (3), the band conduction equations can
be solved for space-chage electric field as follows. To
ignore higher-order spatial harmonics the intensity
modulation m is assumed much smaller than unity.'**!
Then, the excited charge carrier density, #, empty trap
density, Ny, and space-charge electric field, ey, can be
assumed to have the same spatial variation as the inte-
nsity distribution. By inserting the expressions for n,
Ny and e, into the band conduction model and by
assuming a steady state one may obtain the space-cha-
rge electric field. Since, in this casethe band conduc-
tion equations become highly nonlinear, a numerical
method is required for the exact solution. However,
an approximate analytic solution can be obtained by
assuming the gradient of the intensity distribution
along x-axis to be negligible compared with that along
z-axis. This approximation can be written as

w/&<<sin 6, (Y]

where w is beam width measured in the crystal, &
is Rayleigh range, and 8 is an angle between the weak
signal and the entrance surface normal. With the con-
dition of (4) the space-charge electric field can be ob-
tained in the same way as for two incident plane wa-
ves.

1 | S
e = Em E. exp[ — iKz]exp[Ein + zP]

expl (S +iDn+ (&~ &)cotbl +iUnl+ce, (5)

In the presence of an applied field E,, for example,the
complex amplitude E, can be obtained,in a photorefra-
ctive crystal where hole is the dominant charge carrier,
as

— _Eq) - lKK}; T/q
1+ (KZ/KOZ)(I _iqu/KKH n l

(6)

Losc

where Kj is Boltzmann constant, 7" is temperature, ¢
is absolute value of electron charge, K, is Debye wave
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number, and 2z is a unit vector in z-axis.

The space-charge electric field modulates the electric
susceptibility in the crystal via the linear electro-optic
effect. Then,the nonlinear polarization for the weak si-
gnal results in the crystal as

AP(r, Y= - a)[a,,-(R-eﬂ)JE Esexplikyr—iot] +cc,

where g 1s vacuum permittivity, €, is the second-rank
dielectric tensor, R is the third-rank electro-optic ten-
sor. In the presence of the nonlinear polarization the
weak signal should satisfy the wave equation, VZe,+k,’
e+ (w/ce,)Y AP, =0, where ¢ is speed of light in va-
cuum. By assuming S and T to be much smaller than
kitan@ and magnitude of U, dQ/d& dP/dE and dU/dE
to be much smaller than k£, we can reduce the wave
equation to

n]@ k,%§]+ n[z’Q(S+i’1‘)7QU‘k]ZJZ]+

. > . .
|iQ— 20, +i2k, (S +iTDcot0— i & JnirgEL|=0
ok o
@

where n, is refractive index of the weak signal and
vy is effective electro-optic coeffient given by #,=R-3.
Since the equation should be satisfied regardless of
a value of n, each bracket should be zero in the crystal.
Using the equation @=k,/(¢—i&) in the second bracket
we obtain

S+ +C

U= : ,
=iy

®

where C is a constant to be determined later. If the
Gaussian beam parameters ¢ and P are assumed to
follow their equations of motion even in the presence
of the photorefractive grating, the first bracket beco-
mes zero automatically and the third bracket gives ex-
pressions for § and T as

S=(w/2cm*r 41, [E, Jtan 6. 9)
T'=—(w/2cn*r4R, [ E,]tan 6, 10)

where I, and R, stand for imaginary and real parts,res-
pectively.

We next obtain propagation directions of the energy
and phase of the weak signal as follows. Egs. (1) and
(8) give the transverse amplitude distribution of the
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1 ) 1 ’
weak signal as exp[ - TQ, (n— An*+ 7(),» A n)‘],

where @; represents the imaginary part of @ and An
a transverse displacement of the amplitue distribution
given by An=(T&+SE~C)/ky. Then, at the center of
the amplitude distribution,or at a point (£ n=An), we
can obtain the propagation direction of the phase front

1.
by taking the gradient of the phase, y=ik ¢+ ;lQ,rr’

+iP +iT{n+(E— &eotb + iU, n, as grad(y)=k, E+TH.
In the equations @, P, and U, represent real parts
of the respective functions and & and # are unit vectors
in & and n directions, respectively. In the calculation
of the gradient, S and T are ignored whenever they
compete with %,. We note in the equations of An and
grad(y) that the propagation directions of the energy
and phase of the weak signal are the same regardless
of a value of C. We obtain the value of C from the
boundary condition that the transverse displacement
of the weak signal should be zero at the entrance sur-
face of the crystal as

C=S&H+ T4 (1D

This gives the transverse displacement of the beams
as An=T(¢— &)/k.. By inserting (8) and (11) into (1)
we obtain

1 1 .
etr, ="k, exp[EiQ[ 17+ 2T k(& —igom)
FiP+ (S HITHE- /f])cote]exp[ ik é—iwl]+ee (12)

which is the electric field of the weak signal in the
presence of the photorefractive grating with non-90°
phase shift at a steady state.

III. DISCUSSION

In conclusion,we show an analytic expression of an
incident Gaussian beam, for the first time to our know-
ledge,in the presence of a photorefractive grating with
non-90° phase shift in a photorefractive crystal. Qur
calculation shows that the beam propagates in a new
direction, k15+Tﬁ, with an increased wave number
of &, \/m and that the center of the beam disp-
laces by An=T(&~ &)k, in its transverse plane. When
the incident plane formed by two incident beams is
parallel to xz-plane of a BaTiO; crystal, for example,

with an applied electric field along +C axis,our calcu-
lation shows that the beam always tilts towards the
entrance surface normal, or x-axis in Fig. 1, regardiess
of the orientation of the +C axis and of the type of
the dominant charge carrier. Qur method may be also
used for calculation of the electric field of the weak
signal in the presence of a moving grating or an absor-
ption grating.
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