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Interactive G!' Splines with Tangent Specification Method
Wou Seok Jou,t Kgung Hee Park' and Hee Seung Lee'

ABSTRACT

Spline curve scheme is the mosi valuable tool for the CAD of industirial preducts. Hence, the
development of a new, effective curve scheme can have immediate impact on the current design
industries. This paper develops and implements a new methodology for the -implementation of the
visually continuous ¢lass of splines which can produce a more flexible and diverse curve shapes.
This class of splines has advantages over existing splines in that il can accommodate wider
range of shapes while maintaining the interpolatory property of the ordinary cardinal splines.
Most importantly, we avoid using the previous method of implementing G' curves, where users
must. specify scalar values for the control of eurve shapes. We derive and implement an easy-to
-use transformation between the user-specified graphical 1angent vectors and the actual parame-
ters for the resulting curve. Since the resulting curve shape reflects original tangential direction
faithfully, CAD users can simply represent approximate curve shapes with proper tangents. Con-
sequently, a simple user interface device such as a mouse can effectively produce a various
spline curves using the proposed spline tool,

1. INTRODUCTION As a result, numerous curve schemes have
The exploration of the use of the paramet- been widely studied and put into practical
ric curves and surfaces can be viewed as the use until today. These parametric curves, col-
origin of computer aided geometric design. lectively called the splines, find their use in
such CAD areas as the design of car-body,

t A A Qe AFEFTYE 2ay aircraft, and general industrial products since
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nipulated in the form of the splines during
the design steps. Moreover, modern anirmation
techniques used in movie industries require an
extensive use of the spline curves for the
generation of motion path and inbetween
frames [1] during animation. Development of
a new, effective curve scheme can have im-
mediate impact on various industrial design
processes.

Splines can be classified into two catego-
ries. Interpolating splines exactly hit the con-
trol points given by designers during design
processes. It is this passing-throughness of
this class of splines that makes the imerpolat-
ing splines to be used whenever exact control
of the curve behavior is required. Cardinal or
Catmull-Rom splines belong to this class of
splines. Approximating splines, on the cther
hand, do not necessarily pass through given
control points. The control points n  this
sense, take the role of controlling the curve
behavior only remotely. The splines in this
category are B zier curves[6, 15], B-splines,
and-splines. However splines In this class
have advantage over the interpolating splines
in that they are smoother than the interpelat-
mng splines. Mathematically, this means that
the approximating splines have the continuity
of the second order derivatives (C2 continu-
ous) while the interpolating splines have that
of the first order derivatives (C1 continuous)
on each and every control point [2, 3].

While satisfying the property of the passing
-ihroughness of the interpolating splines, G’
splines have much more flexibility in control-
ling the curve shapes than the interpolating
splines. Since the finding of this class of
splines [4, 5, 6], the splines in this class are

termed “geometrically continuous” or “visual-

ly continuous.,” Most interestingly, the sphnes
show the same smoothness as the correspond.
ing Cl curves. They apparently look like
having the property of contiruity in the first-
order derivatives, although actually they do
not. In fact, the left and right derivatives of
G' splines share a common direction and they
may differ only in magnitudes. By allowing
the tangental magmtudes to differ widely,
we can freely control the curve shapes in the
the G' splines than the corresponding Cl
splines.

The property of the G' continuity is inves-
ugated in [7] and the application of this
tvpe of continuity 10 the approximating
splines appears in [4, 8]. The only endeavor
w produce a G' interpolating splines is in
[¢7. In this approach, the fact that the basis
funcuons of the cardinal spline [10] can be
expressed in terms of a Lagrange polynomi-
als [3, 11] 15 used and subsequently, the
Bezier conirol vertices are formed geometri-
cally for the produced piecewise Lagrange
curves. Although the existence of such con-
trol vertices 18 given without proof in the ap-
proach, by using such algorithms as recursive
subdivision [4] or de Casteljau’s algorithm
[67, these control vertices then lead to the B
zier curves, which in this case corresponds to
the G' cardinal splines. Nevertheless, this ap-
proach is purely algorithmic, “owing to the
algebraic complexity” [9] involved. Because
of this complexity, G' splines could hardly
find their practical use up to now. A mathe-
matical derivation of an explicit closed form
of the G' splines is in [12] and part of them
1s repeated in this paper only for a reference.
By using this mathematical equation form of
the G' splines, algorithmic complexity of the



apove approach is avoided, and ithus an easy
fremework for the implementation of G!
splines can be established.

In 1his paper, we further increase ihe
applicability of the developed equation by pre-
senting an Interacuve tool for the generation
of G' curves which will facilitate the imple-
mentation of G' splines in a general CAD en-
vironments. Using the proposed tool, the CAD
designers can easily acquire desired curve
shapes with the aid of a simple interface de-
vice such as a mouse.

Most importantly, the twol assumes no a
priori knowledge on the concept of splines
from the designers’ viewpoint This is in di-
rect contrast with the previous mehods for
the control of the curve shapes, where the
designers have to specify proper numerical
values depending on the degree of bias and
tension they intend. The resulting curve
shape reflecting the inputted numerical values
was difficult to guess before the actual draw-
ing of the curves, In other words, the design-
ers’ Imaginatica must be mobilized to predict
the curve shapes and it must be translated
into numerical scalar values in the previous
curve control schemes. Therefore, they have

to repeat the process until the desired curve
shape appears,

On the contrary, the process is reversed in
our G' tool. An imaginary curve drawn by
the designers will control the shape parame-
ters of the resulting curve. Proposed interface
algorithm directly interprets' the wvisual input
and translates its requirements into proper

parameters of the corresponding G' curve.
2. G' SPLINES IN A CLOSED FORM

Linear interpolation of a pair of control

points P, P: vields a line segment in a nor-

malized parametric form of
fla)y=(1-a)P, + aP»

where a is a parameter in the range (0<a=<
1). Given two such line segments (a) and g
(b), each representing line segments P\P. and
P,P: respectively, the linear blending of the
two basis functions produces a quadrauc Cl
spline m(s) such that

m(s) = (1-s)f(a)+sg(b)

2-4 2 P
=[s1] -3 4 -1 P2{ Eq.2
19 0 Ps

This curve interpolates the three control
points P, P; and P; while the normalized pa-
rameter s changes from zero to one inclusive-
ly. Notice that this equation 1s wvalid only
when the value of the parameter correspond-
ing 10 the point P» is set to 0.5, half the par-
ametric imerval. If we let the parameter
value corresponding to the point P: to vary
by assigning a new parameter u, we have
the following curve equation with more flexi-
bility 1n controlling the curve shape bv the

New parameter.

1 S S | 1
uy u  1-u 1-u
m(s)=[ s* 51 P B W 1
u u  1-u l-u
1 0 0
Py
P2
Bs | e Eq3

With one more repetition of linear blending
of two such quadratics, we get a cubic inter-

polating spline curve p(s) such that
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p(s)=1s?s* 5114 [ Py Py Py PL)T

RS S 1
ur2 u 1+ u v UL “vmis llv
g2 o 2 _ 1
A= 2u-4+ u 2 PRl —2u~1+ T U<.1_—i-%
1
Tu2my "2+% 0
0 1 0 0
------ Eq4

In this equation, u and v represent the pa-
rameter values of the corresponding control
points P, and P, respectively. Moreover, this
equation represents a curve ranging from the
point P; to P; while the parameter s changes
from zero to one inclusively. To draw the
curve p(s) between PP, the points Py, Pz P
» and P, are required and the. points P., P
P,, and P; are required to draw the curve q

- (s) between the points P; and P. Further-
more, to draw the curve p(s), the parameter
ul of the point P; and the parameter vl of
the point P3 have to be known. Likewise,
when the curve q(s) is to be drawn, the pa-
rameter of the point P; has to be u2, and
the parameter of the point P4 has to be vZ.
H we set u2 to be equal to vl, then we are
able to get a G' spline. That is, if we main-
tain the same parameter value on a given
control point while evaluating the curve left
to it and the curve right to it, resulting
piecewise combination of the curves becomes
visually continuous.

In the curves represented by the Eq. 4, the
direction of the left tangent is the same as
the right tangent, and the tangents differ
only in the tangential magnitude. In other
words, the left tangent is a scalar multiple of
the right tangent satisfying the necessary and

sufficient conditions for a spline to be visual

lv conunuous.

3. TANGENT SPECIFICATION METHOD
AND INTERACTIVE G' TOOL

How do we set the u, v values of the
above G' splines? If we let the designers to
specifv the scalar quantities corresponding to
them, then they will be left with the
responsibility of guessing the curve shape. By
trving some test values, they may find some
approximate parameter values for the desired
curve shape. In this case, the designers must
undersiand the relationship between the pa-
rameters and the resulting curve shapes, In-
cluding such concepts as the bias and tension
of the splines. Instead of the previous method
where the Eqg. 4 15 used in its naive form, we
derive its vector form and exploit the vector
property in our G’ toaol.

For our new tangent specification method,
we differentiate the spline expressed in Eq. 4
for a pair of splines centered at a given
point with respect to parameter s. Further-
more, we rearrange resulting matrix equation
in terms of point subtraction, namely Pi-Pj.
Resulting tangential relationship in the splines
can be written as

2
D= ﬁ(P‘.—P;)*'(l-k)(Pa‘PZ) .

Dn=k(P4—P3)*JJiEi(P3-Pz). ......... Eq5
winere DL is the left tangent and DR is
the right tangent on a given control point,
and k (= u2 = vl) is an arbitrary number
i: the range 0(k(l. Since the right tangent
is stil a scalar multiple of the left tangent,
this equation still satisfies the G' property.
One of the most distinguishing features of



our derivation is that now it can accommo-
date a vector notation which enables us to
use more intuitive graphical user interface.
More specifically, from the given control
points, vectors (P3-P2) and (P4-P3) can
readily be calculated. The only term remain-
ing to be determined from Eq.5 1s the shape
control parameter k, and this value must be
determined such that the constraints given in
Eq.5. are satisfied. Here we can see that the
k value depends not only on the magnitude
of vectors but alsc on the left and right tan-
gent which can be given directly from a user
specification.

In Eq5 we find that the right tangent DR
is a function of the parameter k, and the
chord lengths of line segments involved.
Therefore, once the chord lengths and the
right tangent are known, we can readily de-
rive the corresponding parameter value of k
in a siraightforward manner. Namely, with a,
b being the decomposed components of the
right tangent DR to the direction of the vec-
tor P2P3 and P3P4 respectively.

1e J _&I ;; ;: ...... Eq6

Moreover we can further refine Eq.6
through use of a vector calculation. Since the
Eq.5 states the vector relationship and not
the algebraic sum, care must be taken with
regards to the addition of terms. Upon geo-
metrical analysis of Eqb5, we can see that
the right tangent DR forms a diagenal in a
parallogram with edges a and b as in (Fig.
1). Using trigonometric functions, the angular
relationship is expressed as with a and b
being the angles formed by the right tangent
and the vector P,P; and P3P4 respectively.

k= -
. [ sinBe | _Pe-P3y ... 7
1 Y sinB, | Pi-F: l Eq

This is shown in (Fig. 1) where we have
five control vertices P1 through P; and the
incoming direction is defined to be the direc-
tion of vector PP, while the outgoing direc-
tion is defined to be the direction of PiP.
Here, the right tangent is denoted by DR
and the decomposition of the vector DR info
the corresponding incoming direction and out-
going direction is denoted by the vector a,»
and b. Notice that the desired tangent must
lie in the range of angle formed by the line
segments PsPyP.. There are two boundary
cases to be avoided here. If the tangent is
parallel to the line PsP., then the sin b com-
ponent of the right tangent becomes zero,
thus letting k approach infinity. On the other
hand, if the tangent is parallel to the line
segment P,Ps;, sin a becomes zero making it

impossible to evaluate the left tangent.

F=s
Incoming /
Direction

Outgoing
Direction

(Fig. 1) Decornposition of rght tangent

As a result of this derivation, we can con-
clude that if a designer gives an approximate
curve shape through tangential directions, we
can interpret the tangent vectors into proper
k values and use the k values to draw the
corresponding spline curves satisfying the G

tangential restrictions. More specifically, given
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the tangential directions, we measure the an-
gles formed by the tangent and the incoming
and outgoing direction, and then use the in-
formation together with the chord length in-
formation between control points to calculate
proper k.

The designers are required to specify the
direction of right tangent simply by dragging
a mouse from each control points., This tan-
gential information is then passed to our pro-
gram that interprets the tangenual angle into
a proper k value and thus a proper interpo-
lating curve which exactly reflects originally
specified tangential direction. To further facil-
ltate visual perception, our G, tool allows a
circle to be drawn around the endpoint of
tangent and the numerical values of the rele-
vant parameters are automatically displayed

as a reference,

4. RESULT

Prototype G' tool is programmed m “C”
language running on IBM PC 486 for the ar-
bitrary two dimensional sample data points
shown m (Fig. 2). Curves in those intervals
adjacent to the boundary points P,, P; are
not drawn as with the case of ordinary cubic

splines. (Fig. 3) shows the G' tool interpreta-

20
ne

O :Boundary points,
Not to be inlerpolated
& -Points of Interpolation

(Fig. 2) Position of sample data points

tion of the user input specified by an arrow
indicating the required curve shape. The tan.
gent pair is decomposed into four angular pa-
ramelers fal, a2, 6bl, and 6b2 by our G!
tool. Now these parameter values are substi-
tuted into Eg. 7 to obtain the corresponding
curve control parameter kl, and k2. Finally,
these k values are subdstituted into Eq. 4 for
the u, v values to obtain the desired curve
shapes by our G' tool. Experimental results
of our G' tool employing the tangent specifi-
cation method are shown in (Fig. 4) through
(Fig. 8),
drawn for the given sample points and the

where a family of curves are

user-specified tangential directions. For the
selected control points, a circle is drawn to
prompt for the designation of a tangential di-
rection, and this direction i1s specified as an
arrow inside the circle. (Table 1) shows the

intermediate parameter values used in our G'

oole

P3

, X e Uer-apaciied Brgantal input
g hd 6. angle betwean P2y and tangant at P
F2Z PS5 PS‘ B..- anpis between PaF4 and @mngent at Py
,. © By BNk batween PaPs and tangent &t Pa
k:.:‘-'-h— Bva: angle between PaPaand tangert xt Pa

P4 T ki ; shape control parameter 8t Ps

by k2 ; shape control perameter at Pa

(Fig. 3) Interpretation of user input by Tangential Speci-

fication Method

{Fig. 4) Horizontal direction at both points
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(Fig. 5) Incomming direction at 1st, out going direction
at 2nd point

(Fig. 6) Outgoing direction at 1st, incomming direction
at 2nd point

(Fig. 7) Incomming direction at both points

(Fig. 8) Qut going direction at both points

tool to produce the examplary curves upon
user specification of tangenual directions.
Here the notation fal corresponds to the
angle formed by the right tangent and the in-
coming vector at the point P; while faZ cor-
responds to the angle formed by the right
tangent and the outgoing vector at the same
point Pi. At the point P, 6bl andfb2 are de-
fined the same way. The notation k, and k.
corresponds to the shape control parameters
at the points P; and P, respectively.

(Table 1) Parameter values showing the intermediate
result of the G' tool

Figure | #al bl kl fa2 b2 k2

(Fig.2) | 45° 56.3° [0.40689] 56.3° 457 059311
(Fig.3) | 1.2° 100° |0.81263| 100° 1.2° |0.18737
(Fig4) | 100° 1.4° |0.09059| 1.4° 1007 [0.90941
(Fig.5) | 1.2° 100° |0.81263| 1.4° 99" 10.90953
(Fig.6) | 99° 1.6° 10.09612| 99° 2.3° 10.24169

Notice that the specified tangential direc-
tion immediately affects the final curve shape
thus validating the fact that designation of
tangents reflects final G' curve shapes faith-
fully. The length or the magnitude of the
right tangent has actually no effect in our G'
curves. Also note that the curve shape in
each interval is determined first, by the geo-
metrical spacing of sample data points and
second, by the tangential directions specified
at the both ends of the interval. In other
words, a pair of user-specified tangents de-
termines the behavior of the curve in that in-
terval.

The terms bias and tension [7, 13, 14]
usually represent the behavior of curves.
With a high tension value, the curve between
the pair of control points becomes closer to a

line. The bias is used usually in conjunction
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with & curve behavior near the conirol
pomis. If the curve is biased 10 incorﬁing di-
rection, the curve follows the directon of in-
coming vector when passing through the con-
trol points. If the curve is biased to the out-
going direction, the curve prepares its direc-
ton well before it hits the control points.
When the curve actually passes through the
control point, it has the tangential direction
of outgoing vector. In the proposed G' tool,
the bias and tension can together be con-
wrolled through the proper combination of tan-
gential directions at both endpoints of a
given interval.

For the test datas in (Fig. 4) through
(Fig. 8), chord length ratio of P.P; 10 PP, is
ser tol D 2.5, (Fig. 4)

resulting when the right tangents ar P; and

shows the curve

P, are specified 10 be horizontal. The curve
looks quite faithful to the original specifica-
tion of the tangential directions at both ends.
(Fig. 5) shows a variation in the tangential
directions. At P; the bias is given to follow
the incomung direction while the bias at P, is
given to the outgoing direction. As a result,
the curve maintains its incoming direction for
a while right after passing the point P; while
it tries to adjust itself before reaching the
point P.. Conseguently, the curve undergoes
two large inflection inbetween the control
points. Tension can be controlled in this way.
(Fig. 6) is exactly the opposite case of the
(Fig. 5). Here the direction of the incoming
and outgoing tangents 1s reversed and the
result is almost linear between the control
points achieving a highly tensioned curve.

In (Fig. 7), both the points of interest
have directional tangents of the incoming di-
rections. As a result, the curve exhibits a re-

flex only near the point P3, while in (Fig.
8), the reflexion is shifted to the area near
the poim P4. Notice that the modification of
the tangent at each control point affects only
the curves shapes adjacent to the control
point in our G' tool This property satisfies
the required tight locality of the splines [5, 6,
16], which is one of the most beneficial as-
pect of the piecewise splines.

Consequently, we can conclude that if the
users can approximately visualize the desired
curve shapes, they can visualize the tangen
tial direction at each conurol point. As the
experimental curves demonstrate, the
resulting curves produced by our G' tool can
faithfully reflect the criginal user’s intention

of the curve behaviors.
5. SUMMARY AND CONCLUSION

In this paper, we presented an interactive
G' o0l based on our mathematical derivation
of the ' splines. The vector relationship
used for the derivation of the G' splines
could easily led us to caleulate the transfor-
mation between user-specified tangents and
the corresponding parameter values at the
control points. By exploiting this fact, a sim-
ple user interface has been implemented and
tested for the various curve control schemes.
The experimental curves state that the intui-
tive tangents specified by the users can di-
rectly be mapped Into the expected curve
shapes. The biggest advantage of this tool
over conventional curve control tocls is that
the designers can stick to their visual percep-
tion and that they can ignore the mathemati-
cal details. A space curve scheme in three-di-

mensional space can readily be extended to



ihe  three-dimensional surface  generation
scheme using such technigques as the Coons
palch or bilinear transformation. Extension of
the G' tool 10 the three-dimensional surface

generation i1s undergoing in our laboratory.
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