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Design of Equal -Cost Bifurcated Routing Algorithm : A Case
Study Using Closure Approximation

Bong Hwan Lee!

ABSTRACT

In this paper, we propose an equal-cost bifurcated routing algorithm which may be useful in practical
computer network design problem. The performance of the routing algorithm is evaluated using the
conventional Monte Carlo simulation and a transient queueing approximation. The relative errors between
the closure approximation and the Monte Carlo simulation was fairly small The closure approximation
may be used to evaluate the performance of the load splitting algorithms, which results in considerable
execution time reduction. The performance of the proposed algorithm is compared to that of the known
algorithms based on average packet delay. For networks that have many non-dispint equal-paths, the
proposed algorithm performed better than other algorithms

1. Introduction

Transient queueing approximations have
been used in order to provide transient queue
statistics comparable to the results from
conventional Monte Carlo simulations. The
closure approximation of the M/M/1 queueing
system is extended to the general Jackson
network to obtain transient queue statistics.
Approximations are necessary since a closed
form solution for the transient behavior of a
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network of queues remains an Intractable
problem. In this paper, the performance of
the closure approximation has been evaluated.
The routing protocols considered in this study
are link state routing algorithms such as the
ISO IS-IS(Intermediate System-Intermediate
and OSPF(Open Shortest Path
First) routing protocols [1, 2].

One of the new features of the ISO IS-IS
and OSPF routing protocols is load splitting.

System)

If there exists multiple equal-cost routes for
a given destination, the protocol discovers all
distributes

the equal-cost routes and

incomming traffic over them. This traffic



distribution feature is not available in IGPs
(Interior Gateway Protocols) like RIP[3],
where a single route is chosen for each
destination. The algorithms by which traffic
is distributed over the equal-cost routes is
not specified in the protocols;it is dependent
upon protocol implementation. In this paper,
we consider three different load splitting
algorithms including the proposed one. The
performance of the algorithms is compared
using the closure approximation to ensure the
usefulness of the approximation in a practical
network design problem.

In Section 2, we describe the closure
approximation. The third section introduces
the bifurcated equal-cost routing algorithms.
In Section 4, we present the test cases and
criteria.  The  fifth
presents simulation results. The final section

performance section

summarizes the resulis presented.

2. Closure approximation

We consider a closure approximation based
on a Jackson network model to estimate
transient behavior of computer networks. The
definition of Jackson network is described in
[4]. Jackson’s theorem says that the network
acts as if each node is an independent M/M/
1 queue. In the theorem, it is shown that the
joint probability distribution of the number of
customers in the system can be written as a
M/M/1

distribution only in steady state condition.

product of marginal probability
Recently, a set of differential equations for
statistcs in a Jackson
derived[5, 6]. The

differential equations for the Jackson network

transient queue

network have been

transient mean at queue i, ni(t), is given by
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& Eln(0)) = M)+ Tfio(1-p (1))
=(1-8 (M) 1-pip (D),
(1)

where A,(t) represents the mean Poisson
external arrival rate and w(t)represents the
exponential mean service rsate at queue i,
respectively. In (1), 0;(t) is the transition
probability from queue 1 to queue j. The
differential equation for the second moment
of the number of customer at queue 1 is
given by

L E[n}(O] = M{D+) (0 - 2ETn ()]+
THOU (1D a (D)
+2§9,-.-(t)u;(t) - {E[n ()]
—Elnit) Inj()=01+pp(H)}

+H{1-8 5 (N (O (1-p (D)
=2(1-8 () (O En (D).

(2)

Note that there exists only one unknown
variable,pi.(t), in each differential equation. In
other words, the first and second moments
can be obtained once the idle probability, pi
(t), is determined. This quantity can be
approximated using the closure approximation
methods. A number of closure approximations
have been proposed in the literature[7, 8, 9,
10]. In the

assumnption, known as the closure assumption,

closure approximation, an

is made to reduce the infmite set of
equations to some tractable number. With the
closure approximation, the variables in the
system can be represented in terms of a
smaller number of variables. For example, the
idle probability, po(t), is often approximated
in terms of mean of the number of customers
in the system or mean and variance both.
The closure

approximationm, therefore,
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provides estimates for the mean and variance
in an efficient manner. In this paper, we
employ Clark’s closure approximation since it
Clark’s
performed better than other approximations

was shown that approximation
on most cases[11, 12], The Jackson network
approximations presented here are derived
from closure approximations for the M/M/1
queue, Clark’s approximation uses the Polya-
Eggenberger distribution as a surrogate
distribution for the M/M/1 state probabilities,

To represent the number of customers in
queue i, two conditional random variables, A;

and B; are defined as follows.

Ai = niD),
Bi = ni),

ni) <1
nit) > 1
Since the conditional random variables A;

and B; represent m(t), their moments can be
determined using the following parameters.

Q{t) = Pr{ a queue exists at time t}
= Pri{ni(t) > 1} (3)
Q) = Pr{ no queue exists at time t}

i

palt)+p a0 (4)
Ci(t) = Pr{ the server is busy}=1-pwp(t)
(5)

If we assume the random wvariables ni(t)
and n(t) are independent, (1) and (2) can he
written as (6) and (7), respectively.

L Eln (0] = M0+ T (00 (0C; (0
~(1-0a(eNuCi(t)  (6)

L E[n’(0] = 2 d()+1:(0) - 2BIn ()]
+§9ji(t)uj(t)0j(t)
+2 .2,},9 OO E(n(IC ()

+(1~-0 a()u (C i (0)
-2(1-6 x()u () Eln .‘(t)](7)

Using the derivatives for pio(t) and pa(t) from
the general Kolmogorov differential-difference
equations, the resulting differential equations
for

Qi(t) and Ci(t) are given by [13]

LT = w185 (O (D)
A i(Bpa (D)

- 2108 ;i (Bp a (OC; () (8
P )

< Cun = A D-C i)
+ JZ_Ifu,-(t)B #AEN1-Ci(NCi ()
1 (eH1-8 5 (tNp a (8) (9)

The conditional state probabilities p.(t) and p
2(1) can be obtained from the conditional
state probabilities for the Polya-Eggenberger
random variables A; and B, respectively[13].
From the four - differential equations, the
mean and variance of customers at queue 1,
Elni(t)] and Var[m(t)], can be obtained by
standard numerical integration methods.

3. Algorithms for Equal-cost Routes
three different equal-cost

routing algorithms.
referred to as Algorithm 1, we select one of

We consider
In the first algorithm,

the equal-cost paths randomly. The routing
table for the paths
unchanged during the entire simulation to

equal-cost remains
ensure packets for a given destination to use
the same path. In other words, there is no
actual traffic distribution over egqual—cost
paths. This algorithm may not perform well
when there are many equal-cost routes in the
same area or routing domain.

In the second algorithm, referred to as

Algorithm 2, we distribute traffic over the



next hops equally for a given O-D(Origin-
Destination) pair;thus, an equal number of
packets will be sent on each equal cost-path.
This algorithm can be implemented using a
round-robin scheme, and provides a good
routing scheme for disjoint equal-cost paths.
This algorithm, however, may not perform
well when there exists non-disjoint equal-cost
paths. The disjoint paths represent paths that
do not share common links from an origin
node to the destination. Conversely, non-
disjoint paths have at least one link in
common. For

example, in (Fig. 1), we

assume that each link has the same link cost.

(Fg. 1) Sample Network

Then, there exists two equal-cost paths
between origin node 1 and destination node
5. One equal-cost path is a path connecting
nodes 1, 4, 6, and 5. The other one is a path
connecting node 1, 2, 3, and 5. The two
equal-cost paths are said to be disjoint since
the two paths do not have any links in
common. Similarly, there exists two equal-
cost paths between origin node 1 and
destination node 13 in the same network.
One path is composed of nodes 1, 4, 6, b,
and 13, and the other one is a path
connecting nodes 1, 2, 3, 5, and 13. In this
case, however, the link between nodes 5 and

13 is a common link for the two equal-cost
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paths. Thus, these equal-cost paths are said
to be non-disjoint from each other. In an
effort to improve the performance of
Algorithm 2, we propose another algorithm
that uses the flow deviation scheme.

In the last algorithm, referred to as
Algoithm 3, we employ an optimal routing
which implements the Flow Deviation(FD)
algorithin [14, 15]. Originally, the FD method
was developed to assign optimum flow on
each channel when the channel capacities are
given, This approach is, in general, known as
the flow assignment (FA) problem. In our
case, when there are no equal-cost paths for
a given O-D pair, a single route is
determined by the SPF algorithm. The FD
method will be used only for O-D pairs with
equal-cost paths. Thus, the FD
routine needs to be invoked each time link
costs change. The basic idea of the FD

method is to route flow so as to mmnimize

multiple

the average delay. The average delay is

given by
Yi
T =31
R SO £ U S
a .Zi iy [ UG- ;i ] : 1o

where N is the number of nodes, r; is the
total packet rate on the i* channel, 4 is the
total packet rate the entering the network, and
T; is the average delay in the ™ channel. It is
shown that the average delay T is a convex
function of the flows, 71 /£[14]. Thus, finding
a local minimum results in a global minimum.
To find the shortest paths, the link length £ is
definded as

aT _ Ci
a(y/W M C-(vw)E

li = (11)
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The link length is computed iteratively
using updated link flows on each channel
This procedure continues until an acceptable
performance tolerance is reached. In order to
find the optimum link flow A™ of the i®
channel after the n® iteration, the optimum link

flow is given by
()

.fi(n) o ZJ_

o

r

where 7i™/u is the total flow on the i* channel
after the n% iteration. A detailed explanation of
the FD algorithm is summarized in [15].

The resulting optimum flow on each link
may be used to split traffic over equal-cost
paths. Based on the optimum flow on each
link of a node, we can compute routing
probabilities for the equal-cost routes. For
instance, assume that a node has two equal-
cost routes for a given destination. Then, we
run the FD algorithm and find optimal flow
on each link of the node, We can determine
the percentage of the total traffic on a link
that is due to the optimum flow. This percent
optimumn flow may be used as an routing
probability for the equal-cost paths. Once we
have the routing probabilities for each O-D

Find Equal-cost paths
for each O-D pair

h 4

bm FD algorithm

b
Compute routing probabilities
for each outgoing link

v

Distribute incoming traffic
using the routing probabilities

(Fig. 2) Flow chart of Algorithm 3

pair, we can distribute incoming traffic over
2qual-cost paths based on  the

probabilities.  The

routing
optimum  link flow
computation can be executed whenever the
network topology changes. A brief flow chart
of the proposed algorithm is summarized in
(Fig. 2).

4. Test Cases and Performance Criteria

In order to test the performance of the
equal-cost routing algorithms, we use five
different network topologies consisting of 6,
13, 26, 32, and 61 nodes. The network
topologies are shown in (Fig. 3)-(Fig. 7).
The 13 node network is the T3 backbone
network topology of the NSFNET. Each arc
represents a bidirectional communication link.
The number of links terminating at each
node ranged from two to four. All links are
assumed to have the same capacity.

The closure approximation results are
compared to the Monte Carlo simulation of
Jackson network in transient conditions. The
differentijal equations for the fifst and second
moments of the number of customers in each
queue are solved using fourth-fifth order
Runge-Kutta algorithm. In order to determine
the Jackson network parameters, A(t), am(t), -
and 6;(t), external arrival rates for a given
O-D pair, routing table, channel capacity, and
mean packet length are used. The Monte
Carlo simulation, on the other hand, is
required to handle every individual event that
occurs in the network such as external
arrivals, packet queueing, routing, packet
transmission, link down/up, and collecting
useful data. After repeating a number of

simulations, ensemble average for queue



statistics are computed. The number of
simulation runs is set to 2500 in order to
obtain 95% confidence interval widths of
about 10%
evaluate the performance of the routing

of the average values. To

(Fig. 5) The 26 Node Network
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algorithms, we use two relative error
mMeasures.

The first relative error measure represents
the difference in percentage between the

Monte Carlo simulation value and the closure

(Fig. 7) The 61 Node Network
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approximation value at each sample time.
This relative error, denoted e,, is defined as

o= | Monte Carlo value-Closure value]

0,
Monte Carlo value x100(%)
(12)
The second relative error measure

represents half the width of the confidence
interval with respect to the Monte Carlo
value. The error, denoted e,, is definded as

e 0.5 ¥ confidence interval
=
Monte Carlo value

x100(%) (13)

The average percent error, €., can be
computed using the relative errors over all

time steps for each queue. That is, e€we IS

defined as
PIPIXE)
€ e = nem (14)

where n is total number of queues in the test
network, m is total number of samples, and e
i j)represents either e, or e, at queue i at time
)

In a computer network, link utilization is
defined as the ratio of arrival rate to service
rate. If we ignore the processing time and
propagation delay at link i, the service rate
becomes «/C;, where 1/’ is the average
packet length in bits and C, is the channel
capacity in bits/secs. The link utilization g of
link i is then given by

= I

2 I-t"ci,
where 7; is arrival rate at link i(external
arrivals plus arrivals from other nodes).
Based on o, we define three different loading

conditions as follows:

- Lightly loaded if 0(1=<0.35
- Moderately loaded  if 0.35¢(0,<0.70
- Heavily loaded if £,0.70

The performance of the routing algorithms
is evaluated under the three different loading
conditions.

8. Simulation Results

5.1 Average Mean Results

For each load splitting algorithm, we first
compare the performance of the closure
approximation to that of the Monte Carlo
simulation, If the relative errors between the
closure approximation and the Monte Carlo
simulation are closure
used to
evaluate the performance of the load splitting
algorithms, which

execution time reduction. To investigate the

fairly small, the

approximation results may be

results in considerable
performance of the routing algorithms, we
use the error measures in (12) and (13).
The resulting mean
summarized in (Table 1) for stationary input.

relative errors are
(Table 1) compares the relative errors for
the three algorithms when each test network
was loaded lightly to heavily. In the table,
“Simul. error” represents the Monte Carlo
simulation error which was obtained from
(13), while “Approximation error” represents
the closure approximation from (12). The
average approximation errors are smaller
than the simulation errors, which means the
closure approximation values always remain
inside the 95%

simulation errors for mean vary with the

confidence intervals. The

algorithm since they are dependent only on



the simulation values. The individual queue
statistics from the Monte Carlo simulation
may vary depending upon the algorithms, but
the average values over all queues should
remain the same.

The approximation errors, however, are
different slightly depending on algorithms.
The approximation errors for Algorithm 2
are very close to those with the Algorithm 3.
This is because both algorithms use random
number generators to determine next hops
when there exists multiple equal-cost paths.
Algorithm 2 distributes equal-cost traffic with
equal probability over the multiple equal-cost
paths, while Algorithm 3 distributes the
traffic based on the distribution probability
computed by the optimum flow deviation
algorithm.

{Table 1) Comparison of Mean Average Errors(%)

o
twork iwal. Approximation Error(e.)
Ingur Load
Topology | {x) [Agoritha 1 Algorithm 2 [Algorithe 3
ILight 49 , 23 . 29 3.46
6 Noda Nat Moderate .93 .11 .19 3.61
Fag .79 .49 . 45 .01
ight _07 .99 .18 4.27
13 Noda Nat te .58 43 .46 . 57
.70 .72 .23 .95
t . 60 .56 .90 .87
Node Net Moderste .21 .65 X7 .58 |
vy 5 05 .13 12
ight N . 42 .32 . 26
Node Net e .37 . 50 _43
vy [ 17 L35 .21
Tght 11.68 .32 L4l .63 |
1 Node N.:En_u 826 .72 379 85
3 vy 7.38 ¥ A 43

On the other hand, Algorithm 1 chooses
one among equal-cost next paths randomly
and fix the routing table for a given O-D
pair. This fixed routing may provide better
approximation of 6; and 4 "values in the
closure approximation. As shown in (Table
1), Algorithm 1 produces slightly smaller
approximation errors than Algorithm 2 and
Algorithm 3. The relative errors in the table
show that the routing algorithms were
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implemented correctly and the closure
approximation can be used to estimate the
queue statistics instead of Monte Carlo

simulation.
5.2 Average Delay Results

The performance of the three algorithms is
evaluated based on the average delay in the
network. Average delay is one of the most
popular performance measure for evaluating
computer networks. [t is desirable to compare
the average delay for each load splitting
algorithm to the optimal delay. The optimal
delay is computed based on the optimal
routing described in Section 3. In Algorithm
3, the optimal routing is determined only for
the equal-cost paths, while the optimal delay
is computed using the optimal routing tables
in the network. The cptimal routing tables
are considerably different from the shortest
path first(SPF) routing tables in the three
algorithms. However, the optimal delay
resulting from the optimal routing will be a
useful measure in comparing the performance
of the splitting algorithms.

Before comparing the performance of the
three splitting algorithms using the average
delay, it is helpful to characterize the
network topologies. (Table 2) compares the
total number of equal-cost paths with respect
to the total number of paths.

It also compares the total number of equal-

(Table 2) Comparison of Equal-cost paths

Network Tatal Equal  [Non-disj.| B/A C/B

[Topology  [Paths{A) [Paths(R) [Paths{C) (%) (%)

6 Node Net 30 6 0 20 0
13 Node Net 156 17 ] 10,9 29.4
26 Node Net 650 58 30 8.9 51.7
32 Node Net 992 272 192 27.4 70.6
61 Node Net 3660 411 _254] 11.2 61.8




388 EHEREHEXRIEERE] 22X A1 R3S (94, 9)

cost paths to total number of non-disjoint
paths for each topology. As can be seen in
the table, the number of equal-cost paths
with respect to the total paths ranges from 9
% 10 28% . On the other hand, the number
of non-disjoin. paths with respect to all equal
-cost paths ranges from 0% to 62%. The
performance of the

algorithms can be

compared using  either the  closure
approximation or the Monte Carlo simulation.
(Fig. 8) compares the average packet delay

when the 13 node network is heavily loaded.
This figure compares the performance of the
load splitting algorithms using both the Monte
Carlo simulation and closure approximation.
The optimal delay results from both the
Monte

approximation are also plotted for comparison

purpose.

Carlo  simulation and closure

In the figure, we see that the

Average Packet Delay vs Time

)
o T T T T T L}
§  Algl — Monte Carlo
3 AlgZ — Monte Carlo
3 Alg3 — Monte Carlo
3 Optimal — Monte Carle
[ — Algl — closure approx. E
*F ... Alg2 — closure approx. B
<1 —- Alg3 — closure sppror.
—-. Optimesl - closure approx.
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]
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Time in Seconds

- {Fig. 8) The Average Delay Comparison for the 13
Node Network

closure approximation results for each case
inside 95%
intervals of the Monte Carlo simulation. We

always remain confidence
also observe that Algorithm 1 produces the
largest average delay, while Algorithm 3 has
delay. The performance
Algorithm 3 and
Algorithm 2 is fairly small compared to that
between Algorithm 3 and Algorithm 1, This
Is because both Algorithm 2 and Algorithm 3
split  traffic  for paths  with
different routing probabilities, while Algorithm

the  smallest

difference  between

equal-cost

1 chooses one randomly among equal-cost
paths. Note that the 13 node network has 30
% non-disjoint equal-cost paths out of the
total number of equal-cost paths. In addition,
we observe that the optimal routing produces
smaller delay than the shortest path first
routing,

For the overall comparison, the average
delay from the closure approximation is
summarized in {Table 3).

The average delay results from the Monte
Carlo sirnulation is very similar to the results
in the table since the closure approximation
results for total number of packets closely

(Table 3) Comparison of Average Delay
{in miliseconds)

Tepology |Input Load|dlgorithe 1]Algorithe 2 Algori the 3
Light 42 41 41

Node Net Moderate 60 58 58
Heavy 146 143 143

Light 77| 74 72

13 Node Net Moderate 99 95 1
Heavy 222 177 170

Light 117 115 116

126 Node Net [Moderate 154 150 151
Heavy 366 340 341

Light 30 124 120]

32 Node NetModerate 05| 183 162
Heavy 1322 929 892

Light 183 180 180

61 Node NetModerate 570 551 550/
[Heavy 1050 848 B45




follow the Mante Carlo simulation results.

The average delay is based on the average
total number of packets in the network. As
can be seen In the table, both Algorithm 2
and 3 perform better than Algorithm 1 for
all test cases. On the other hand, the
performance difference between Algorithm 2
and 3 is fairly small when the test network
has a relatively small number of equal-cost
paths with respect to the total number of
paths. In some cases(ie, 26 node network),
Algorithm 2 performed slightly better than
Algorithm 3, but the performance difference
is very small. For networks that have a
relatively large number of equal-cost paths
and non-disjoint paths, Algorithm 3 performs
better than Algorithm 2. The performance
improvements are substantial as the network
loading is heavier. The proposed algorithm, in
general, performs better than the other two
algorithms.

6. Condlusions

We proposed an equal-cost Dbifurcated
routing algorithm which could be useful in
practical

network design problem. The

performance of the proposed routing
algorithm was compared to that of the
existing equal-cost routing algorithms via
both the conventional Monte Carlo simulation
and the closure approximation. The closure
approximation provided fairly close results to
the Monte Carlo simulation results with
considerably smaller execution times. We can,
therefore, use the closure approximation to
compare the performance of the three load
splitting algorithms using the average delay.

In conclusion, the proposed algorithm, in
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general, performed better than the other two
equal-cost routing algorithms.
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