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Some Properties on Automata and Their Input Semigroups
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and Cﬁun Jin Lee'

ABSTRACT

The purpose of this paper is to develope for input semigroups the notions of radical and
primitiveness similar to those which have been developed for rings and of transitiveness.
Moreover, some of thier properties anr investigated.

1. Introduction and Prdiminaries

We will start with the defirution of an

automatorn.
DEFINITION 1.1.

(1) An automaton, A=(M, S, &), s a
triple where M is a nonempty set(the set
of states), S is a nonempty semigroup
(the set of inputs), & is a function(caked
the state transition function) mapping M
% § into M. Also, we shall assume the
useful property that 8(m, st)=8(8(m, ),
t) for all st, €S and me M.

NOTE. An automaton A means a tipe(M, S, 38)
and M doss mot mean an automaton But the
attribute “auiomaton” wil be sometimes used for M.

"NOQTATION. For convenience we will denote &

(m, s) as ms.
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(2) A subautomaion of M is a non-vod
subset H of M such that HSCH.

(3) An automaton, A=(M, S, ), is called
rreducible if MSZF(M) and M has no
non-trivial subautornata where AM)={me
M:ms=m for all s=8).

(4) A right congruence of a semigroup S is
called modular if there is an element e of &
such that (ess)=a for all s=S The
dlement e is called a left identity for a

DEFINITION 12

let A=(M, S 84) and B=(N, S, &) be

automata.

(1) A mapping f:A—=B(or M—=N) is an &
homomorphism(or S-map or S-operation
preserving) i f(ms)=f(m)s for all meM
and s€8. f is called an S-isomorphism if
it is bijective and an S-homomorphism. f
is called an S-homomorphism.

(2) An automaton A is cydic if M=mS for
some meM. Also, m is called a generatar.,
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(3) An automaton A is strongly connected
if every element of M is a generator.

(4) An automaton A 5 abdian if m(st)=m(ts)
for all mEM ard s, =8

{5) Sis M-abelian  m(ab)=m(ba) for all m
€M and a, beS.

(6) An automaton A is perfect #f A is
strongly connected and S is M—abelian,

(7) To:M—M is called @ 7ight lranslation ¥ T
Am)=ma for all m&M where a=S.

(8) We define a congruence mc—SxS on §
through (e, b)& meT,=T,

(8) M is faithfll iff au=0«(the identity
relation).

(10) We define a right congruence sy on S by
(@h) €m=>T(m)=T{m) for ¢ bES
where meM.

(11) Let @ be a right congruence on §. For
any s&5 we define a relation as on S by
(a, Y=os If and only if (sz, ) Sa

LEMMA 1.3.

(1) e =Nyt if @ is a Tight CONGTUENICE on,
S. We note that if « is a modular right
congruence on S, 1, = NeaC=a

(2) [a] ames = Npes [a] for =S

(3) Let M and N be two automata. If M
=>N 15 an S-isomorphism, then za= .

Proof.

For(1), let M be an automaton and meM Then
for , bES (g b)eEp>ma=mb define a right
congruence on S.

(@ D)€ nye = "tasse g (2, b)E g, for all [
l.e5/eex{t] a=[1], be(ta, h)Ea for all t=Se>
(a, bEat for all t=85<(a, HE N st For(2)
*E[a]n vetsn (5 8) € Nye,(x, @) Epy for all
MeSexENyas [a] wr- For (3), (g, b)Ewmy <>ma

=mb for all m&Mefma)=f(mb)=f(m)a=f(m
)b for all meM

Now for any n&N, n=f(m) for some meM.
Hence na=nb implies (¢ &), Alwo it is casy
for us to check the converse.

The following proposition is a generalization for
a2 new right congruence induced by right
congruences on S and right ideals of S. This
follows from Oehmke [6].

PROPOSITION 14.

Let A be an indexes set. let 7, be a Tight
congruence on S and let I, be a right ideal of S
for each a=A. We define a relation W= Ny
Tay MNg=a I as follow:

(@ DEws(a DE Nees 7 or (@ HENwey L.
Then w 1s a right congruence on § with e

L <w
PROPOSITION 1.5.

Let A be an indexes set, Let Iz be an ideal of
S and w(lz) be a congruence induced by Iz for
each a€A. If "wes L, ={0}, then "ucx w A, )=0,
where O. means the identity relation.

Proof.

For each (g, B)E s (L) it its enough to
show that a=h. Now, (g, b)Sw(le) for all a=A.
This means that a=b or a, bl for all g=A,
The latter case inplies that o b=",., L ={0}.

Hence a=h

PROFPOSITION 1.6.

Let G be a non-trivial group and let H be a
proper subgroup of G, We define the relation «
on G by

(gh)Easah'=H,
Let L{a)={all left identities of a}. Then



(1) HCl(a);

(2) ¢ is & modular right congruence on G
with ¢#1c where 1c means the universal
relation;

(3) t(I(a))Ca where - o(L(2))=Supery (1)
and t(x)=the intersection of all modular
right congruences with respect to uj

Proof.

(1) and (2) are clear. (3) comes from Seidel

[41.
LEMMA 1.7.

Let M be an automaton and let H and K be
subsets of M. Let A be a subset of S.if KA=
H, then ACK 'H={s€S | KsCH}

DEFINITION 1.8.

(1) A right congruence r on S is said to be
modular with respect to a=S if and only
if (s as)e r for all sE5.

(2) An element ¢S is a right g-elemeni(or
a right quasi-regular dement) f t(a)=1c
or equivalent to a"s=g"t for some m, n=
0 and all s =S where 1(a)=the
intersection of all  modular right
congruences with respect to a.

(3) An element ¢=8 is an ({5)—potent if @
e((8) for some n=1 where ((S)={all
left zero elements in S).

(4) An element a=S is an eigenilich O(S)-
potent if(as)"=S) for some n=1 and
for all s=S.

(5) A set M is called an aulomaton with null
(0) f M is an automaton and F(M)={0}
where 0=S.

.NOTE :
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with each automaton M we associate the set
M,={s<S | mss,=m implies mEMNM) where me
M, 5,857} where §=SU{1}.

(6) We define radsS=MNyewx, Ko Su or radeS=
Nues, Mp where Sy is the representation
of S generated by an automaton M and
IS,={all wrreducible automata with null(0)
where 05},

NOTATION.

XS) ={all g-elements in S}.

E(S) ={all idempotent elements in S].

XS) ={all left zero elements in S}.

R(8) ={aeS | (e, s)=a for all s in 5 mplies
a=1, where « is & Tight congruence on S}

O(S)p ={all O(S)-potent elements in S}.

The following proposition gives us a relation-
ship among these.

PROPOSITION 1.9.
(1) AS)NES)TIAS) CUS)pAS).
(2) ASNES)=0S) i R(5)=4.

Proof.

For(l), this is clear from Seidel[4]. For(2),
We have O(S)=E(S) if R(S)=S and also, we
have (S)CXS) from Seidel{4].

PROPOSITION 1.10.
Let N(S)=/{all eigentlich (XS)-potent elements
in S}. Then we have

) F[ N(S)] ={N(S)} and F| 5 S ] ={M};

@ F[ me(S)] = {rods5).

Proof.

We note that KM/H)={H} if F(M)CH#¢
where H is a2 noon-void subautomaton of an
automation M and also we know that radyS=N(



342 BERESAHZIEEEE =24 ®13 H3F (94 9)

8). Since F(S)=(XS), we have F{S)=XS)Crad,
S=N(S)c M,

PROPOSITION 1.11.

Let 0€S and $=SU{1).

Let 2={all right ideals [, in S, a<A). Let I
={all right congruences on S}. We define the
relation @; (0.) on 8 by (g b)E o, (0, )<>(as,
bs)Eo, for all s=8 where 6, =1, XL U(S—L)
X (5—L). then

(1) there exists a function F:£— 1T given by

Rl)=w, (0.);

(2) Fis 1—1.

Proof.

For(1), from proposition 15 of Seidel [4] there
exists a unique maximal right congruence @, (g,
) for each nght ideal I, in S, Hence it holds.
For(2), To prove that F is 1—1, it is enough to
show that R, )=K1I,) iplies L =1I. Also, we
note that by proposition 15 if Seidelf 4] we have w,
(0s)=Supr{re 1 | L =[0]}.

Since wi (0.) = wp (04) and these are in
II, we have wy (0,.)=ro with I, =[QJr, for some
roin IT ard wp (04,)=n with I, =[Q]r, for some
71 in I Hence I, =1;.

COROLLARY 1.11.1.

[2]<|T | whae | | mears the cardinality.

PROPOSITION 1.12.

Let 0S8 and let « be a right congruence on §
. Let A[OL ) on S and let @y (0. ) be the right
congruence induced by [0], on S and let
@y (0,) be the unique maximal right congruence
induced by ¢, vith respect to[0],. Then ve have
ALOL) € ¢ C wyy (o).

Proof.

For the first part it is clear since (x, )
belongs to A([OL) if and only if x=y or %, y=
[0L..

For the second part we note that (q, b) Swye,
(02 ) (as, b )Eo, for alls; in S. So it enought to
show that for each (x, v)=a for all s, in S

(1) suppose (x, 0)Ea. Then (x, yea,. For (3
0)€a implies x, ¥ €[0]. Since « is a right
congruence on S, we have (x5, O)=a for all s
in S. This implies that (xs, ys)Ea, for all s in S
. For (35 O)&a implies xs, w&[0],. Hence (x,
e, and (xs, w)Ea, for all s in S.

Le, we have (xs; , 3;)€ o, for all s, in 8.

(1) suppose (x 0)¢a Then (x, y)&o, For

(3% 0)¢a implies % ¥=[0], and x, y=5—[0],.
Hence we have (x, v)=(5—[0). ) x S—[0))ce,.
Next, if (x3, O} forall s m S,
(xzs, »)&0, from (1). So, we have done. Now,
suppose (x5, 0)a for all s in S. Then (xs )
€0, For (55 0)¢a implies x5, 3»&[0], and xs,
»E5—[0L. Hence (x y) and (x5 ) are
contained in ¢, for all s in 5. This means that
(x5 y9)E0, for all 5 in 9.

2 Radical and Maximality

DEFINITION 2.1.

(1) An  automaton M is called ilolally
irreducible f MSZFM) and M has no
non~trivial homomorphism.

(2) An automaton M is called striclly oydicif M
=mgS for some my=EM.

LEMMA 22.
Let @ and # be modular right congruences on S
. if S/a and S/8 are isomorphic and « is



maximal, then § is maximal
Proof.

We note that S/¢ has a
homomorphism if and only if there exists a right

non—trivial

congruence @ on S such that a<lw<1. Suppose
that A is not maximal. Then there exists a
modular right congruence x# on S with A< u<1.
This means that S/§ has a non-trivial
homormorphism and also this means that S/ has
a non-trivial homomrphism. Therefore there
exists a right congruence w, on S with a<<w<1.
Also, @ i1s a modular since « is a modular. It is
impossible since « is maximal.
PROPOSITION 2.3,

let M be an autematon with | M| =2 and
no homomorphism except for isomorphism.

Suppose O(S)#*¢. Then M is a totally
irreducible if and only if M is strictly cyclic.

Proof.

(=) It is clear. (<) Suppose M is strictly
cyclic. Then M and S/u are isomorphic where «
is a modular right congruence on . Now, from
Hoehnke[5] there exists a maximal modular right
congruence B with aC A, Also, from ¢ g there is
an onto-homomorphism from S/z to S/4. But
by the assumption S/« and S/ are isomorphic.
Hence « is maximal from Lemma 2.2. This
means that M is totally rreducible.

NOTATION.I means the identical relation and
1, means the unversal relation. TA={al totally
frreductble automatal.

DEFINITION 24.

(1) We define rad S="yess .
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(2) S is called radical-frec if rad S=1In.

The following statement is a similar one of a
solvable group G. Let N be a normal subgroup
of G. We note that F is solvable if and only if N
and G/N are solvable,

PROPOSITION 2.5.

Let I be an ideal of S with ICKerSy. Then S
is radical~ free if and only if I and S/N are
radical-free.

Proof.

(=) We note that rad I=IxIN rad S from
Seidel[4]. Since rad S=Ir, we have rad I[=Ir

Also, from Seidel{4] we note that for every ideal
ICKerSy M is an S—automaton if and only if M
is an S/I automaton. Let IS] be the set of all
irreducible S/1-automata. Then we have rud S/I
="vewst u(S/D="ver 1(S)=rad S=Ir.

(<) 1t is clear from Seidel[4].

DEFINITION 2.6.

(1) We define Kad S= nM"Eq'A Hyg-
(2) 8 is O—rudical free if rad,S={0}.

FPROPOSITION 2.7.

(1) radeS*xrad,S © red S © Rad S;
(2) Let 0=S8. If S is radical-free, then S'is O
-radical free.

Proof.

For(l), since radyS is a congruence ideal with
respect t0 rad S rad,S=[aplm s for some o, Srady
S. Now, for each (x y)EradiSxradS we have
x, y=radsS. So, {x, ag)=rad S and (y, a)E rad
s ‘

Hence we have (x, ) rad S For the second
part it comes from Hoehnke [5]. For (2) we
note that we can replace the condition 0O=S by
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rad, S7¢ since rad S=Ir and rod, S#¢ implies
that there exast a null element 0 in S from Seidel
[4]. Hence it is clear.
We note that any finitely generated semigroup
S contains at least one maximal subsemigroup,
The following proposition is easy to check it
using Zorn's Lemma.

PROPOSITION 2.8,

Let A be a non-empty subset of S Suppose
there exist an ideal I of S such that /NA=¢.

Let W={J|J is ideal of § with JNA =¢}.
Then there exists a maximal subautomaton K
containing H.

PROPOSITION 2.9.

Let M be an automaton with MS=M. If H is
an subautomaton of M with H#M, there exists
a maximal subautomaton K containing H.

Proof.

Let W={L | L is a proper subautomaton of M
with HACL<M} and partially order W by set
inclusion(ie, Li=<Ll, if and only i L,CL:). We
claim that W is a non-empty induxtively ordered
set. To prove this,(1) W+¢ : 1t is clear since H
eW. (2)W is inductively ordered : Let T be any
non—empty totally ordered subset of W. To show
that T has an upper bound in W, let U=l .1 L
Then (a)U is a subautomaton of M(ie, USC ).
To show this, choose any x& US. Then x=ys for
some y=U and s€85. y=U implies y=L for some
LeT. Hence x=wslSCLCU. (b) HCUCM(U
#M)(ie, UCW). Now, HCU is clear. To show
that UM, suppose U=M. Then US=MS=M.
For each m&M, meUS. This implies meLS
for some LT, So, meLSC L. Hence MCL and
"M=L. Tt is impossible. (¢} U has an upper

bound for 7(it is clear). Hence By Zom’s lemma
W has a maximal element K in W.

COROLLARY 29.1.

Let M be a strictly cyclic automaton. If H is a
subautornaton of M with H#M, then there exists
a maximal subautomaton K containing H.

COROLLARY 29.2.

Let M be an automaton with F(M)=M, If H
is a subauwomaton of M with H#M, then there
exists a maximal subautomaton K containing H.

Proof.
F(M)=M mmplies MS=M.
COROLLARY 2.8.3.

Let M be an irreducible (or totally irreducible)
automaton. If H is a subautomaton of M with
H+#M, then there exists a maximal subautomaton

K containing H,
Proof.
The fact that M is totally irreducible implies that
M is wreducible and also this impliees MS=M
PROPOSOTION 2.10.

let 0=S and let ¢ be @ maximal right
congruence on S, Then $/[0], is an irreducible §
—automaton<>S# Ker S/,

Proof.

Let I be a maximal right ideal of S Then
from Hoehnke[5] S/I is an irreducible S$-
automaton if and only if S#SL (=):[0], is a
maximal right ideal since « is a maximal right
congruence on S. This implies that S#5[0], =
(8/a)"{[0). }=Ker S,



(=) :1t is clear since S#S& 0], and [0], is
a maximal right ideal of S

DEFINITION 2.11.

Let M be an S-automaton. M is cyclic f M=
mSU{m} for some in M.

NOTATION, M*={all non-generators in M}
where M is cyclic.

PROPOSITION 2.12.

Let be « right congruence on S. Let S/a be an
S-automaton with F(S/a)=¢. Then S/z is an
irreducible S-automaton if and only if « is a
modular right congruence.

Proof.

S/uz 15 a strictly cyclic S-automaton since S/a
is Irreducible. This means that ¢ is modular.

Conversely, we assume that « is a modular
right congruence on S Then S/ is strictly cyclic.
This means that (S/@)*=¢ since F(S/a)=¢.
Hence it holds,

3. Faithfulness, Primitveness and
transitiveness.

DEFINTTION 3.1.

" Let 08 and let M be an S-automator.
(1) M is faithful if =1 where O&S.
(2) M is O-faithful if Ker Sy,=M T10]={0).

(3) § is O-primitive if § has an O-faithful

“irreducible S-automaton.
{4) Let P be an ideal of S Pis G-primitive if
S/P is O-primitive semigroup and S+ P.

PROPOSITION 3.2.

let 08 If a is a maximal modular rght
congruence, then Ker Ss),
of S

15 an O-primitive ideal

Proof.

By the asumption [0]; is a maximal modualr
right ideal of S, This means that $7[0], is an 0
-primitive ideal by Hoehnke[3]. Hence we have
S$7L0L =(S/a)7{[0]. }=Ker S, -

DEFINITION 3.3.

Let M be an S-automaton.

(1) M 15 2-mimmal f {M| =2 and M has
the only trivial S-auotmaton.

(2)Mis2nulif [ M| =2and | MS| =1

(3) M is O-transitive if M 15 strictly cyclc
with |'M| 22 and | F(M) | =1.

LEMMA 34.

let M be an S-automator. If M is 2-minimal
reducible, then M is either 2—null or | M| = |
MS|=|FM)| =2

PROPOSITION 3.5.

Let M be an 2-minimal S-automaton with | F°
(M) | =1. Then

(1) If MS&FM), then M is O-transitive.

(2)If Mis reclx_.lcible, then M is 2—null.

Proof.

(1) MSZF(M) means that M is irreducible.
This means that M is strictly cyclic. Hence
1t holds.

(2) It is clear from lemma 34 and | (M) |
=1

COROLLARY 35.1.

Let M be an 2-minimal S-automaton with | F
(M) | =1. If MSZFM) or M is reducible, then
M, (M) and ¢ are the only invariant subsets of
M.
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Proof.
It comes from Tully[1] and proposition 3.5.
DEFINITION 3.6.

(1) S is transitive if S is strictly eyclic with O
(S)=¢.

(2) §i1s O—transitive if S is strictly cyche with
| 51 =2 and O(5)=4¢.

(3) S is h-primitive if S has a faithful
irreducible S-automaton M.

(4) S is t-primitive if I; and 1, are the only
right conguence on S.

We have the following lemma a from Tully{1].

LEMMA 3.7.

(1) If Sis O-transitive, then | O(S) | =1 ard
S S) and ¢ are the only invarant
subsets of S.

(2) ¥ S is t-primitive with | S| =3, then S
is either O-transitive or transitive.

PROPOSITION 38.

If Sis t-primitive with | S| =3 and E(S)¢0
(S), then S is an h-primitive.

Proof.

By lemma 3.7, S is either O-transitive or
transitivee. To prove that S is a faithful
irreducible S-automaton, (1) assume that S s 0-
transitive. Then #.=] from the fact that for
each a in S, s is a right congruence on § and #.
=L or 1,. We will show that S is irreducible.
(i) SSEF(S)=0S) since | XS) | =1 by lemma
3.7. (i) S has the only trivial S-automaton since
S, XS) and ¢ are the only mvariant subsets of
S by lemma 3.7. (2) assume that S is transitive.

Then g, =I. from the case (1). To show that
"S is irreducible, we know that if S is transitive,

then § 15 strictly cyclic with F(S)=0(5)=¢. This
implies that S s mreducible since S$*=¢ from
Hoehnke[5].

DEFINITION 3.9.

Let M be an S-automaton. M s strongly
connected(or transitive} if M is strictly cyclic
with F{M)=¢(1.e, every element of M is a strict
generator).

We have the proposition by
combining proposiion 21 of Tully[l] with
theorem 3 of Oehmke[2]

followmng

PROPOSITION 3.10.

Let M be a strictly cyclic S—automaton. Then
the following statements are equivalent:

1
@) M is strongly connected(or transitive);

(2) S/, is strongly comnected for every m in M,

(3) For every ab=S, (ac b)ep, for some ¢
in S and each m in M;

(4) any p.—class N any right ideal of S#¢
for every mm M

Proof.

(1)=(2):By the definition we have M=mS for
every m in M. Also, we have that mS and S/,
are isomorphic from theorem 3 of Oehmke[2].
Hence it holds. (1)<(2): 5/, ~ms5=M for some
mEM. The proofs that (2), (3) and (4) are
equivalent come from Tully[1].

PROPOSITION 3.11.

Let 0=8.

W)X § is O-primitive, then S 18 C-radical
free.

(2) If S is h—primitive, then S is radical free.

(3) f S is C-primitive or h-primutive, then S
is O-radical free,



Proof.

(1) and (2) come from the definitions. (3) is
clear from proposition 2.7.
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