2UERN WERT FAET XUE 73 22| N

AEZE o] A5 FRRF AU
93t &9 Ak
4 o = B oM WM
e ot

ATEdo] AT T AzEo| F28F A4 2aqde] FaA el vjetich AT =
2oe) TAHA L6 i 7)E wWAe] obd 4 AAAANY o153 A9, AFHEE AL =S
dutzee gegch B =R A8 AF 2 addel(C+)E ANE (4] =9 f3] BaE §
4 AT E o] afFH F9] InMaC++(Interactive Maintenance for C++)2] 7Rxdel] oj#] A%k IMaC++
E 2] 2l deloja(4AA L) Hey ZRE YWY 7 A B 7|Fe] 7Hesi 44 ZEd
A drolejagie R tholoja el 4] T2 2] Wfo] FPesich welbd olF HEE B AT 2
=98] fAngel Aol Ziedich i3] Ao A7 29y JHHeLE FHEew
InMaC-+4= 4 A Z2ade] vids £4 ZH2FL] T4 248 7|NHg do|Hve]2E £
g2 gled, o] mile FHT Ago] Heldw Fo FAL GolstA #7] 446 471A] AA SR
o} 3747 fAE A2 o|F A T2 HAAL ¥ Alid AT g Aeir) AFHct

Haeng- Kon Kim' and Sun- Myung Hwang !

ABSTRACT

Re-engineering tools can substantially increase software maintenance productivity and the
quality of maintenance work. Re-engineering usually involves changing the form{e.g.changining
objects names and definitions, restructuring process logic) of a program. In this paper, we
describe the design and implementation of InMaC++ that is a software tool oriented towards
maintenance of C++ object oriented programs. With InMaC++, programms can be displayed and
edited in two forms : as the code and as the diagram InMaC++ also contains transformations in
hoth directions, i.e. from code to diagram and from diagram to skeletons of code. Hence, it is
suitable for re-engineering and maintenance of existing code. Specially designed browsers
implement the graphical interface. InMaC++ contains a database that is based on a simple but
effective date model of C++ programs. The model contains only four object classes and three
relations, which makes the tool small, and easy to implement and use. A simple query language
allows browsing through the database.

process resulting in larger and

ut
=

299

Development of the Tool for Software Re-engineering and Maintenance

larger

1. Introduction

Software development is an evolving

+ This paper was supported by NON DIRECTED RESEARCH
FUND, Korea Research Foundation, 1994
t A Y EAd AAA AT A
oA 8 o E AAA A v
T 119949 5 74, AlAbskE 11994 79 25

programs. As programs grow in size, they

become more complex and harder to

maintain. Futhermore, larger programs

require more intensive maintenance. This fact
could be atiributed to many reasons, among

them corrections of errors, changes in

300 E=YSHCISEEE ==X HIE M35 (94 9)

requirements, enhancements demanded by the
users, efficiency improvements, changes In
hardware or software configurations, etc.
Thus it is not a surprise to see that the
maintenance of software is the most
expensive part of the software Ilifecycle.
Hence it makes good economic sense to try
to automate the activities of software
mainienance and create tools that would be a
help in this area [1].

In order to modify a program, software
maintainers have to understand the program.
Understanding programs is one of the most
time consuming activities of software
maintenance. This partially due to the fact
that qute often the only reliable and
available documentation is the source code of
the program itself, and all relevant
information must be extracted from it. But
programs are complex, abstract objects. They
include many components with many
different attributes that are interrelated in
complicated ways. This makes 1t difficult for
programmer to understand and navigate
through complex interrelationships among pro
-gram parts. Moreover, textual representation
of a oprogram does not reveal such
information right away. In the text of the
code, important partitions and relations (i.e.
program architecture, or programming-in-the-
large) are scattered in large amounts of local
and trivial information(i.e programming-in-
the-small). To modify a program successfully,
program architecture must be well understood
by the programmer and correctly used.

One ;Nay' to alleviate this problem 15 to
create a tool that allows the programmer to
directly,

deal with program architecture

"without having to extract it repeatly and and

manually from the code. Another impro-
vement IS to represent the architecture gra-
phically and in this way to make it more
understandable and easy to deal with. Such a
tool maintains the graphical representation of
the program and provides the programmer
with visual editor to build and modify the
program. InMaC-- is a tool aimed at pro-
viding such support.

2. Related works and high level system

understanding

Informations processed In computers are so
various that mformation presentation pro-
blems have been studied in domain dependent
ways. There have been a lot of studies on
the wvisulaization of specific information.
Recently many techniques have been studied
to increase the understandability through
visualization such as automated diagram,
hypertext and documentations. All of these
techniques are not related object-oriented

software systems but traditional systems.
2.1 C information abstractor

C information abstractor[2] decides the
detail implementation information with lower-
level abstract module, especially if the user
defines the C subprogram and module. It is
used a detail high-level representation of
interface by using well defined conceptual
model and library information system. An
automatic retrival system and representation
systems are subunit of C abstractor.
Unfortunately, we can only use the C
information abstractor for traditional software
component especially for C rather than object

-oriented software component for C++, and

dynamic behaviors for object.
2.2 Plain text

Plain text system[3] 1is the general

understanding system that consists of
network with text, diagram and source code.
It uses the hypertext techniques. The nodes
with information is usually viewed by users.
Connection between nodes can be drawn by
arrows and contain the_ several design
information such as node explaination, design
diagrams and expression of design step.
Given original textual code can be expressed
understood

changing the original file. An examples for

by hypertext and without
Plain text is shown in (Fig. 1). User for
cormmponent c¢an access the several simple
mformation and can have ‘the flexible user
interface.

However, plain text can not support the
information hiding and inheritance, because it
does not use the object-oriented paradigm. In
addition, it can not filter the requirement,
design and source code information as low

level abstractor.

Define
:.\u—/
Requirements \ / e

(Fig. 1) Plain text

2.3 AIPS [4]

An information presentation system is a

knowledge based information presentation

system implemented as a KLONE taxonomic
hierarchy of display structure descrptions. A
system for construction user interface display
is built on knowledge representation systems.
In order to realize a general presentation
covers

system which a wide

range of
presentation variations. It 1s Important to
build a knowledge based of presentation
information like these systems.

High level system understanding is chiefly
needed when a maintainer is coming to grips
with a system for the first time. The
maintainer needs some way to sort out the
components and perceive the overall
architecture of the system. A high level
understanding will give a maintainer a
framwork to help make sence of the more
detailed

maintenence tasks are undertaken[5].

information acquired as specific

There is little tool support for high-level
system understanding even for conventional
(i.e.,nonobject — oriented)systems. Several
researchers have suggested using clustering
methods of different kinds to identify system
structure. However, we know of no generally
available tools implementing these ideas.

The module calling hierarchy or structure
chart can be generated by several existing
tools. Calling hierarchies are a useful tool for
understanding system designed using
funtional decomposition approaches in which
the main packaging unit is the processing
module (e.g., a function or procedure). In
such system the top level “main module” will
likely be a good place to start in
understanding and, if the modules subordinate
to it are resonably cohesive, examining them
may give a quick overview' of system

functions.

302 S=FHMN2ISERE =2K ®1H M35 (94, 9)

But in OOP, the calling hierarchy would be
a hierarchy of methods, which has several
disadvantages. First, the dynamic binding
problem may make the hierarchy difficult to
compute. Second, there may be no real
“main” method in the system. This is one of
the facts about object oriented design that
beginners tend to find disconcerting. Finally,
a hierarchy of methods loses sight of the
grouping of methods in objects, which is
presumably the most important aspect of the
design. An obvious understanding aid would
be the object class hierarchy, but because it
groups objects with similar methods, it fails
to show how the objects combine to provide
the different functional capabilities of the
program. For example, in Smalltalk/V the
Pane object work together with dispatcher
objects to provide wimdows for text editing.
But these objects are in different class
hierarchies.

One possible high-level understanding tool
would be a display of the diagram of the
“Class uses class” dependency. However the
result will be. a diagram not a hierarchy.

Graph are notoriously more difficult to
display and comprehend than trees. In a
medium scale system with hundreds of object
classes the diagram may not be particularly
comprehensible.

Environments for object-oriented main-

tenance should probably provide several
alternative clustering methods that can be
chosen by the user during system expl
oration. The “Class Uses Class” dependency
could provide the links for clustering but
some experimentation will be needed to find

the most useful methodologies.

3. Dependences in C++

A dependency in a software system is,
informally , a direct relationship between two
entities in the system X—Y such that a
programmer modifying X must be concerned
about possible side effects in Y. Earlier
reports [6] analyzed the dependencies in
conventional software systems. The main
kinds of entity considered were data items
(or wvariable), processing modules, and data
types. Dependencies were classified as
follows:
@ data dependencies between two variables
@ calling
modules
@ functional
module and the variables it computes
@ defiritional

variable and its type.

dependencies between two

dependencies between a

dependencies between a
To deal with C+- languages, we need to
add the following kinds of entities

@ object classes

@ methods(which are specific code seg-
ments)

@ messages(which may be thought of as

“names” of methods).

Variables may now represent instances of
an object class instead of, or in addition to,
conventional data values. Object classes may
be thought of as special kinds of types while
methods are special kinds of processing
module. However the use of polymorphism
and hierarchy creates an explosion in the
kinds of

considered :

depecdencies that needs be

(D Class-to-Class Dependencies
- Cl is a direct super class of C2

- Cl is a direct sub class of C2
Cl imberits from C2
Cl uses C2

subclassified as “uses for interface”

(which may be
and “uses for implementation”)
@) Class to Method
- method M returns object of class C
- C implements method M
- C inherits method M
@ Class to Message.
+ C understands message
@ Class to Variable
- V is an instance of class C
V is a class variable of C
- V is imported by M(ie, is a noniocal
variable used in M)
- V is defined by M
- M refers to V
&) Method to Message
- message M+ is name of method M
» method M sends message M+
+ method M sends message M+
® Method to Method:
- method M1 invokes method M2
- Method M1 overrides M2

Environments for maintaining C+~ need to
provide ways of browsing these different

kinds of relationships. The multidimensional

nature of the interconnections will make it -

very difficults to use listing or text screen
based systems for program understanding.
Multi- window displays would seem to be a
minimum requirement to display enough

informations.

4. InMaC++ organization
4.1 System organization

The input data for InMaC-+ is the C++

AHE 0 MBS FA2 ARE 25 29 Y 303

source program and the InMaC-++ extract

corresponding design informations after
scanning code as follows.

(D Class name

@ Class attributes

(3 Class internal methods

@ Other class definition

® Client-server relation

® Class Friendness

@ Class parameter to invoke message

Variable type returning message exe-

cution

(Fig. 2) shows the overall organization of
InMaC-~~ system.

User

Interface

Modifying

Visualization

Retrieving

(Fig. 2) InMaC-++ system Organization

4.2 General concepts

InMaC++ (Interactive Maintenance C++) is
a language centered programming tool
InMaC++, a program can be represented in
two different forms, the traditional one
(code), or the graphical one. The distin-
guishing feature of InMaC++ is the data
model that contains only four different
classes of entities and three relations, yet it
is able to support programming In a
language as powerful and universal as C++

The data model consists of the following
entity classes:

(D modules, i.e. files of source code (both

compilation units and includefiles)

304 SIRERAEISRAE =24 H1H X35 (94 9)

& declarations,which are divided into the
following two subclasses,

(1) processes, le. main program, sub-

routines, and funtions

(i) commons, i.e. global data elements.

It also contains the following relations:

(D The belong to relation that specifies
whether any objects are parts of another
object. In paticular, declarations belong
to classes,

@ The message interconnections processes.
The processes and their messages
constitute a message —diagram.

B The reference relation interconnetions
prosesses and commons. The define

which processes have access to which
COMIMOnS.

Each declaration has attributes, the most
important one being the name and the code
of the delaration.

In the

represented by a diagram consisting of icons

visual form, the program is
and lines between icons. (Fig. 3) shows the
graphical representation of a small program
for a telephone

compurterized directory,

where a person’s telephone number is found

= T '_'..'Elj” inhCer AT)
DISPLAY RELATION FOOS

O Mod W Callz [Hadile
@ Decl [JCalled [Backlog
O Hix M Refer H A1

(L1845

(Fig. 3) InMaC++ Organization

by searching a database. Notice that the
diagram in (Fig. 3) is laid out two columns.
The left column consists of processes, and
the right column consists of commons. The
main program, subroutines, and funtions are
represented by retangles, octagons and
diamonds in the left column, repectively, The
commons are represented by parallel in the
right column. The arrows on the left

represent the call relations

among the
processes, i.e. the call diagram. The lines in
the middle represent the reference relations i
e. the reference diagram. We call this type of
layour a two column graph (abbreviated
2CG).

The two-column graph is an original layoutl
that was specifically developed for InMaC-+,
It is algorithm that
automatically developed for in the columns.

supported by an

In the Iterature, several other layouts and

layout algorithms were

investigated. We
chose the two-column layout because it is
sufficient for our simple data model and it
presents several advantages over the other
layouts. In particular, 1t allow many icons
and connecting lines without becomming
unreadible. An even more important feature
is the increment of two-column graphs.
Whenever a small incremental change (such
as addition or deletion of an icon) is made,
the overall layout also changes only
incrementally, even when allocated autum-
atically by the algorithm. Hence it is easy for
the user to find orientation in two-column
graphs after edting changes, because icons
are found in similar places.

The graphical interface is implemented by
the browsers. Browsers are specially designed

windows that support communication with the

user., They allow the user to query the
database, and to display the result of such
queries graphically. Each brower is equipped
with a query panel, pull-down cascading
menus, a drawing area, scrollbars and a
message area at the bottom (see the example
in Fig. 3).

As programs increase in size, their
correponding graphs become more compli-
cated. Because of the large number of nodes
and Intersecting lines. In other to overcome
this problem, we have implemented two
features that make graphs more readable,

views and diagram rearragement.
4.3 Views

The information about entities and relations
in the programs is stored in the database.
Views are subsets of the database that
contain particular structural information of
the program. The need for views is supported
by the fact that programmers are usually not
interested In the complete structure of a
large software system. At any given time,
they need to see some cross-section that
contains the entities relevent to a particular
task. Views are a general and effective way
to overcome vproblems of tracing and
navigating through a large database. Views
are defined by queries which in turn are
specified by the buttons of the query panel in
the upper part of the browser.

In order to illustrate views, consider the
view of (Fig. 3) that

.declarations of a complete program. The

represents the

program is displayed in the declaration mode,
where only declarations are shown and
modules are ignored. All declarations of the
pr-'ograrn are displayed (the button All is

~HEN a8l SX(=24 XS 2I5 £2| MY 305

selected). Finally, the view contains call and
reference relations (the buttons Call and
Refer are selected), respectively.

(Fig. 4) contains a screen with browsers
where #H4 1

simultaneously displayed,

(BROWSER-1) displays the same program in

the mixed mode(ihe button Mix 1s selected).

It displays not only declarations and their
relations Call and Refer as in (Fig. 3), but
also the modules (files) to which afl these
delclarations belong. 73 -#2(BROWSER-2) of

(Fig. 4) displays the same program in the
module mode (the button Med is selected). It
shows all modules that the program consists
of the call and reference relationships among
them.

In general, queries are executed n the
following way, first, all focus entities are
retrieved. Then all additional entities which
are transitively related to focus entities are
retrieved, up to the depth specified in the
query panel. The query consists of declaration
mode (the button Decl is selected), the call
relation (the button Calls is selected),and
DEPTH is indicated as 2. The corresponding
view contains the focus declaration main,all
processes of depth 1 for call relation(ie. all
processes called by Main, in this case search,
readinput and initdb), and all processes of
depth 2 for call relation(i.e. all processes
called by processes of depth 1, in this case
compare, printnfo and printfail). The focus
declaration main has been selected by the
mouse as a part of the query. Similarly,
views can be displayed using 'called by’
(inverse of ’calls’)and refer’ relations. In the
privious example, the focus of the query was
a single declaration. However the focus can

be selected in several different ways: all

306 T=ERXRIESBUE =2 W13 A3E (94, 9)

declarations of a module, all declarations of
the backlog, or all entities of the program
can be selected (the button module, Backlog
or All selected), respectivity. The backlog is
the collection of all the declarations that have
been introduced in the database but have not
been defined yet. This focus is particularly
useful for top-down programming.

Another feature of a query is a colour.
Colours are used in drawing both entities and
relations of a given view. They are selected
from a colour palette in the query panel.

Views can be either separated or appended
to an existing view. Separate views display
the result of a query in a newly created
window. Appended views display the result of
a query as a new part of a previously
existing window, where the new wview is
superimposed on the old view. Appended
views are powerful tools that help the user
to navigate through the
database. Fach of them can be displayed in a
different the

progressively

colour, enhancing under

standability of the display.
4.4 Graphic rearrangements

Despite the use of views, the displayed
graph may still be complicated. In order to
improve the readability, InMaC++ provides the
following graph rearragement operations. The
layout within a browser can be scaled down
to make more entities and relations visible, or
scaled up to provide a clearer view of the
information displayed.

lcons can be moved to new locations
within their column so that fewer crossings
or shorter lines are achieved.

Hiding all relations entering or leaving an
entity is a method of temporarily factoring
The

can

out redundant information. comple-

mentary operation, unhiding, restore
hidden relations.

Highhghting the relations and icon of an
eniity can make them more prominent and
easier to follow. Highlighted lines are thicker

and can be of a distinct colour.

|||' InMaCes }I"il “%ﬂ
[Hodule
B

N fofer WAl

' IEPTH
[J calls] todule
Q Jecl O Called [} Backlog

CILOR
Ohix ORefer Man [C]

@ tid

j [EDToR | [AYOGT] |v:—:w§

YELE HEa,]

‘!ﬂ-

‘m.f
TELF IV rpg

i ud ., :erl ar \at-

PROJECT EDITOR LAYOUT VEWS
IC Y VEWS]

(TELEFTRORE. o7y
L

(Fig. 4) INMaC++ Views

4.5 Editing operations

Fditing operations are activities that chang
the contents of the database. The operations
of InMaC-+ are divided mto four groups:
diagram, diagram-to-code, code and code-to-
diagram.

Graph operatins allow editing of the
database content. They allow adding and
deleting of entities and relations. On a more
global scale, they allow loading and storing
of the whole contents of a database.

Diagram- to- code operations generate
skeletons of the code for every declaration of
the diagram that does not have code. Such a
skelton consists of all keywords and names

that can be read from the diagram.

AlZb o1F HFILIES 01SE! B 8l2] B2f 8 FF 307

source code through text-editing windows.
InMaC++ uses several standard UNIX editors,
that can be selected by the user.

Code- to-diagram operations function in the
following way:the parser analyses the code
and generates a symbol table with the
semantic information for all entities, Then the
analyser compares the information in the
symbol table with that already stored in the
database, and identifies all inconsistencies. If
the symbol table

information that dQES not conflict with the

contains additional

information already in the database, then the
database is updated. For

example, all new entities in the code are

automatically

automatically entered into the database,

However if there is a conflict (multiple

Code operations allow the user to edit definitions of a declaration, etc.), the
arm Hi
I 6
[odaCes A1]‘!"- CLASS S0AT
Foous DEPTH COLOR ,
Q ted H Calls O teduls l-::l:::'i:&(ﬁm'":ﬂ
@ Docl O talled O sacklon Sinclude *Sart hep”
O nix B Refor M AL Class gert
[13 T
1
PROJECT @ ﬂl:;l" [WH
— — vo *lemp, ErC, =denl,
ERCTTEN / 4 vold Satie{):
- public:
virtual void Sertdvold sarrayPie, {nt arraylen,

inl iteaSize, Int {-Cuspatefunc)
(vuld vitamt veid «l1enZ)],
I;
void Sert :: Shify {)

1
int 1]:
e« tamPue{l):
soncpy(temg, 31¢. Size)
Thlll“ o 1}

U {compara{ 1P 1r ()], [1emPrr(je1]))
QO]:

CLASS iKITDE

DATABASE FILE : datlabasa.h

dinciude “databasw.h’

SLIST L%t of namex{20 chars)

-INFQ Lixt of phane Numbot
=TOTAL. Totat of enl7ies read into datsbasc

chat Hiz1(20)-
char infa[100);
int 1etsl,

clazz Initon
i

Arivate:
Int value) valuez,

Twolata{int v1, v2);

vold WriteFiia{FILE +t},
veld AuadfFile{FILE -I];

public:

(Fg.

5) Graphs of the program in InMaC++

308 SIHSNZ|B8SE| ==X K13 H3Z (94, 9)

database is not updated and the user is not-
ified.

5. Examples of the use of InMaC+-+

InMaC-+ supports maintenace, modifications

and enhancements of already existing
software. The relations stored in the database
help the programmer to understand the code,
and to follow the ripple effects of the
modifications. This is illustrated by the
modification of the phone directory program.
The phone directory program uses a file of
names and phone numbers. The file is read
by the program and an internal data
structure is created. When the user enters
the name of the person whose phone number
Is desired, the program searches the data
structure and provides the answer. (Fig. 5)
shows the complete diagram of the program,
the bodies of the class initdb and the code of
the include file database.h. The class initdb
reads the file and enters the names and
phone numbers into the data structure. The

class readinput reads the name of the person

whose phone number is requested into the
string input, or the code for termination of
the program.

The class sort uses a binary search method
to locate the name in the database. The
method printinfo and printfail are called by
search to print the phone number or a
message of unsuccessful search, respectively.
The method compare perform alphabetical
comparison on the input name with a name
from the database.

The maintenance action on this program is
the alteration of the algorithm of sort into a
hashing search. As a first step, we create a
called Quicksort with the
graphical editor. Next, InMaC+~ generates a

rew function

skeleton of the code for Quicksort and rest
of the code i1s entered by editing that
skeleton. The code is parsed automatically
and the reference relation from sort to
database is added to InMaC++'s database.
(Fig. 6) shows the new diagram with the
function sort is highlighted and the reference
sort to database indicated by a dotted line
The definition of sort is displayed in the right

RELATIM FOOLS

W Calls [todule

OCalled [0 Backlen
O nix M Refar W Al

BEPTH LR
[CAvout [wEws]

claszs Ogery

NI

=

111 fdet ined(_QSOAT_1PP)
Tontine _OSORT WP §

tlnctude *Soc1 hpp*

clasy Ogori: publje SertArry

arlvia:

void -tamp,
vold Orecursive{int (, Int 1] ;

public:

vifiual vold Sort(vald sarptt, Int arLen
Int [{emSita,

Int{scompareFunc) [veld ltemi, vaid itan

(Fig. 6) Graphics with the class Quicksort

window. At this point, search is still using
the old binary search algorithm, and sort is
unconnected to the rest of the call diagram.

The definition of the database has to be
modified in order to accommodate the new
search method, i.e. the variable total will now
hold the size of the hash table rather than
the total number of records. Inspecting the
diagram of (Fig. 6),notice that both initdb and
sort are referencing database, therefore these
are the processes affected by the change.

Their modifications are done via the text
editor, and the code-to-diagram converter is
invoked to update the information stored in
InMaC++s database.

6. InMaC++ evaluation

(@ object- oriented features

We evaluates the InMaC-+ as information
hiding
polymorphism as an object-oriented features.

encapsulation, mheritance and
We compares it with interface abstractor and
plain text as (table 1).

(@ user friendness

We also evaluates the InMaC++ in the view
of user friendness as {table 2).

7. Future directions

There are several directions 1n which
InMaC++ will be developed in the future. One

{Table 1) object-oriented features in InMaC-++

InMaC++ | Interface abstration | Plain text
Information hiding 0 0 X
Encapsulation 0 0 X
Inheritance 0 0 X
Polymexphism Q X X

ASTEYN MBED FAZF NS 2% 22 Y 309

{Table 2) user friendness

InMaC++ | Interface abstration i1'-’121.1[1 text
Direct manipulation 0 0 0
Mouce porting 0 0 0
Ieon 0 X X
Push botton 0 G X
Zoom infout] 0 0
Help 0 X X

of them is the link between C-- and the’
make’ facility. There is a considerable overlap
between the information stored in C-+
database and information required by ’‘make’.
The population of the database from 'make’
files and the generation of skeletons of ’
make’ files from the database are on the
drawing boards and will be incorperated mto
C-- in the future,

In reality, a whole family of tools for
several languages can be developed. In fact,
limitation of this
technology is the display, if the data model

the most 1mportant
for the language can be displayed with the
use of a tiwo-column graph, then the
language can be supported by a tool of the
InMaC++ family. On the other hand,
languages whose basic data model is more
complex can not be supported by a tool of
the InMaC~++ family. For example, exceptions
would

and exception handlers

create a
problem for two column graphs, hence the
language Ada, PL/1, etc. would be difficult
to handle. Reserch is under way to develop a2
generator for the InMaC++ family of tools,
where a specification language would describe
the data model and the rest of the tool (with
the exeption of the parser) ~would be

generated from the specification.

310 S=EEMAEEWS| =2X A1H H3E (94, 9)

References

[1]1R. Balzer, T. E. Cheatham, Jr., and C.
Green, “Software Technology in the
1990’s: Using a New Paradigm,” Com-
puter, pp. 39-45, November 1983.

[2] Judith E Grass, Yih-Farn Chen, “The C--
Information Abstractor”, USENIX on C-—-
conference 1990,

[3] Emily Bark, Joseph Devlin, “Hypertext/
Hypermedia Handbook™, McGraw-Hill,
19891.

[4] F.Zdybel, N.ZR.Greenfeld, “An Infor-
mation Presentation System”, Proc.of
IJCATI'81, pp. 978-984, August 1981.

[5] Moises Lejter, Scott Meyers, and Steven
Po Reiss “Suppdrt for Maintaining Ob-
ject Oriented programs,”IEEE Tran-
saction on SE, Vol 18, No. 12, pp.
1045-1052, Dec., 1992.

[6] MF Kleyn and P. C. Gingrich, “Graph

Understanding Object- Oriented
System Using Concurrently Animated
View,” OOPSLA, pp. 191-205, 1988,

[7] Mark A. Linton, John M. Vlissides, and
Paul R.Calder “Composing User Inter-
face with Interviews,” Computer, Vol
22, No.2, pp. 8-22. Feb., 1989.

[8] N. wilde and R. Huitt, “Maintenance
Support for Object- Oriented Programs,”,
IEEE Translations on SE, Vol 18, No.
12, pp. 1038-1044, Dec., 1992.

Trace

[9] Wyatt, BB, KaviK., and Hufnagel,S.
“Parallelism in Object-Oriented Lanu-
age!A Sur-vay,” IEEE Software, pp. 56
-66, November 1992,

[10] Haeng. K. Kim Ye. K. Son, “A Study
on the Tool for Understanding the Con-
stituent Information of Object- oriented

Proceedings of the KISS

conference, Vol. 20, No.l, pp. 525-528,

1983,

System”,

1985+ Fotoisty A=A 42
= Z9j(gah)
19879 ZFeldigtzm sty A
LA 4bghs) Fof (o] FAia))
1991 Foboistn wigdy A
ApA AberTt o (Fehebal)
1978'3~1979d =) JFoFZ
A3z

1987+ ~-1090d A7) 5434 HYd Py

198813 ~198943 AT&T 7314

1990~ B AR A =a
AEok: AA A G 2q] g4, A8A o5 =H o)A,
2z Edo AQFH, f-A L AER 5 CASE

3 4 49

1982y Fobdizta Az}A) 4kt
#F EH(FAD

1984 Fob g HxpA
At (440

1987 Fobol izt A=A
Aga (e # whah)

19881 %59 Bonn & Infor-
matik 1T post doctor

P~ A &r JAlA4dea) 24

FAEF . 2T EY FANT 9 Yol AT e
H A

