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A GLOBAL EIGHTH ORDER SPLINE PROCEDURE

FOR A CLASS OF BOUNDARY VALUE PROBLEMS

YUNBEOM PARK*, SUNG CHAN JUN AND U JIN CHOI

1. Introduction

Boundary value problems are common in nature. Here we restrict our
attention to the second order differential equations of the form

% = P(z)y(z) +Q(z), 0<z<1,
(1) y(0) =a,
y(1) =5,

where P(z) and Q(z) are continuous functions with P(z) > 0,z € [0, 1].

In literature, Usmani and Warsi(1980) have derived a fourth order
method based on quintic spline. Bhatta and Sastri[l] discussed a global
seventh order method based on heptic and octic splines. We present
a global eighth order procedure where an octic spline scheme coupled
with a heptic spline function is used for solving the above problem. In
section 2 we derive the numerical scheme with convergence of eighth
order and in section 3 we present the analysis of our scheme And in
section 4 we briefly remark the scheme using splines of degrees 2s and
2s — 1. Finally in section 5 we present the numerical experiments that
verify our discussion.

2. Development of the numerical scheme

We consider a uniform partition of the interval [0, 1] into N subinter-
vals: step-length A = 1/N and Iy = [z4_1,2%],k =1,...,N — 1. In the
interval I;, the j-th element may be written as

9

(2.1) Sj(z):Zajkgﬁk, i<z <zj41, §=0,...,N-1,

k=1

Received July 5, 1994.
*This work was partially supported by KOSEF under grant NO. 91-08-00-01.



986 Y. Park, S. C. Jun and U. J. Cho1

where ¢ = (z — j)k_l. Using continuity conditions of spline function,
we obtain a relation between 7 and s values as

(22) Ti~3 + 547','_.2 + 135T,'_.1 - 3807’,’ + 135T,'+1 + 54T,‘+2 -+ Ti43
h2
= -5—6—(3,'_3 + 2465, 9 + 4047s;1 + 11572s; + 4047s;41

+246$i+2+5,‘+3) Z:3, ,N—3,
where 7; = S;(z;) and s; = S ().

The above relation gives N — 5 equations in N — 1 unknowns 7;,¢ =
1,...,N —1 because boundary conditions determine 79 = &, 7y = 8. So
we need four more extra equations for complete determination of all the
unknowns.

First of all, we consider the following equation.

(23) a0T0+a1T1 +a2T2+a37'3+a47'4 = h2(b080+b151+b232+b383+b434).

By assuming temporarily 7; and s; as solution y(z;) and y"(z;), Tay-
lor’s expanding y(z) at z; and setting as = 1, then by equating like
powers of h we get the linear problem:

111 1 00 0 0 o\ /ao
10 1 2 00 0 0 0\ (al\
120 0 1/20 2%/ 11 1 1 1] e
~1/30 0 1/30 2%/3 -1 0 1 2 3 || as
/4 0 1740 24740 120 0 1720 22720 32/ | | b
_1/50 0 1/5! 25/50 —1/31 0 1731 28/31 3%/3t || b
1/6! 0 1/6! 28/6! 174! 0 1/4! 2'/40 3%/4! by
~-1/70 0 1/7 27/ -1/t 0 1/5! 25/5! 35/5! bs
1780 0 1/8! 28/8 16! 0 1/61 2°/6! 35/6!) \b
1
[ 3\
32 /2|
33/3]
o
35 /5|
36 /6!
37/7'

\ 38/81/
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By solving the above simultaneous equations we obtain

128 318 128
(@4) ottt

2
465 (2330 + 68831 + 235832 + 68883 + 2384)

Similarly, we obtain by setting as = 1,a4 = 54 and a3 = 135 and using
Taylor’s expansion at z,

(2.5)
9141 36084 87215 h?
221 To 221 T1 — 221 T2+1357’3+54T4+T5 53040 (11039330
+ 32015515, + 108836865, + 383458653 + 23400154 + 743s5 ),
128 318 128 h2
2. — = -
(2.6) TN + ST TN-1 = 57 TN- 2+ 5T TN- 34 TN-4 = 465(233N
+ 688sny_1 + 235859 # 688sy_3 +23sy—s4 at zy_1,
and
(2.7)
9141 36084 87215
-1 = _ 1 r_ 4rn_ _
o1 ™ + 557 TN~ 551 "N 2 +1357N_3 + 547N _4 + TN 5
h2
= 110393 201551spn_ 10883686 v -
53040( 0393sy + 3 SN-1 + SN-2

+ 38345868[\1_3 + 2340013]\]_4 + 7435N_5 at TN-2.

Now the above equations form a system of V — 1 equations in N — 1
unknowns since this system is linear, we can obtain the solution as the
nodal approximation of true solution y(z). Once this values 7; are known,
s; values of second derivative can be easily computed using equations
(2.2), (2.4), (2.5), (2.6) and (2.7). On the other hand we can obtain the
off node approximation of solution up to O(h®) by using a heptic spline
according to [1].



988 Y. Park, S. C. Jun and U. J. Choi

3. Convergence analysis

For the ease of presentation, let us introduce vector and matrix no-

: _ T —
tations. La:Y-;(yh.“,yN) , 7= (1, ., N)T, s = (81,...,88)7,
_ — — 23 9141
Q"'(qla"'an) 7P“(pla"'apN)andR—(*TO'*'mthOa—WTO_*_
110393 72 112 1312 9141 110393 7 2
?3-0;5‘-’1 30,—7'0+5—6‘h 50,07---,07—7'N+ggh SNy~ %51 TN + 53040 h%sn,
—7n + Z%hz’sN)T, where P is a diagonal matrix, y; = y(z:), pi = P(z;)
and g; = Q(2).
Let
128 318 128 1
/ 36084 87215 31 \
521 T 551 135 54 1
54 135 —-380 135 54 1
1 o4 135 —-380 135 54 1
1 54 135 -380 135 54 1
1 54 135 —380 135 54
87215 36084
1 54 135 -5 221
\ 1 128 _ 318 128 /
31 1 31
_a_ b _a_ <
/ 465 465 65 465
d e ! g b
53040 53040 53040 53040 53040
246 4047 11572 246 1
56 56 56 56 56
T 246 4047 11572 4047 246 1
56 56 56 56 56 56 56
B: . ) T . T . .'. ?
1 246 4047 11572 4047 246 1
56 56 56 56 56 56 56
1 246 4047 11572 4047 246
56 56 56 56 56 56
h g f ¢ d
53040 53040 33040 53040 53040
@ a

765 465 15 63
where a = 688, b = 2358, ¢ = 23, d = 3201551, e = 10883686, f =
3834586, g = 234001 and h = 743.
The system of equations (2.2), (2.4), (2.5), (2.6) and (2.7) can be
compactly written as

Ar =h?’Bs+R
(3.1) { 7 ST

S = Pr+ Q.
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By (3.1) we get

(3.2) (A—-h’BP)r = h*BQ + R.

For exact solution Y, we have

(3.3) (A—h*BP)Y = R+ h*BQ +T,

where T is the truncation error.
By Taylor’s expansion, T(h) = (t,(h),...,tn—1(k))T is written as

C1ROy@ () + O(A), o< & <1z4q, 1=1

Czhgy(g)(éz) + O(Rh1%), zo<ér<z5, i =2

= —gsh Oy (E) + O ), zi3 < & < Tiys, 1=3,..., N -1
Coh®y® (En—2) + O(RY), an-5<En-1 <zn, i=DN -2
CiR%yO(En-1) + O(R'®), zn-_s4<En-1<zn, i=N-1,

where C; and C, are constants.
Subtracting (3.2) from (3.3), the error can be written as AE = T(h),
where A = A — h?BP and E =Y —7. Then E = A™'T(R) if 4 is

invertible.
LEMMA 3.1. Let A be a banded symmetric n by n matrix of the form

E.cT o

<6‘1 B Cz), where E1, E;, B,C1, and Cy are block matrices, s by s, s
0 C E2

by s, (n ~2s) by (n— 2s), (n — 2s) by s and s by (n — 2s), respectively.
If E,, E; and B = B-C,E 101 — CLE; IC,I are invertible, A is

invertible.

Proof. By elementary calculation, it is easily proved.
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LEMMA 3.2. For sufficiently small h, A is invertible. ie.,

(3.5) A <C (C>0)

Proof. It’s sufficient to show that A is invertible. We find T in order
to make A to be symmetric. i.e, A = A, T, A, is symmetric.

E,CT 0 D, 0 0
As == C] B Cz , Ts = 0 In—6 O ,
0 CYE, 0 0 D,
where
128 36084
31 2 54
E. — | 36084 5054060021 17004627
1= 221 781456 7072 ’
54 17004627 18794635711
7072 2489536
18794635711 17004627 54
2489536 70
E, = 17004627 5054060021 36084
2= 7072 781456 221 ’
54 36084 128
221 31

/1 54 135\
0 1 54

Ci=1lo o0 o |-

c,=| 0 o of
1 0 0
5 1 0
\135 54 1
—380
135  —380
54 135 —380

B = 1 54 135 —380 |-

\ 1 o4 135 380
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1 594441 394584973
14144 4979072

_ 2103441
D1 = 0 1 TTTOR and
0 0 1
1 0 0
= 2103441
Dy = 77798 1 0
394584973 594441
4979072 14144

By Lemma 3.1, we only have to show B = B — C.E;'cT - C,E;'CT
is invertible. By algebraic calculation, we get

/*b“ \

—c
d e f
1 54 135 -—-380
B=|" - . - :
1 54 135 —-380
1 54 135 f
1 54 e —c
\ 1 d b —-a)
where g — 13411083287829760571 ; _ 5000501866421 . _ 598409390110321
= T32071655599244160 * © — 3120992024780 * © — 1560496012390 °
J — 2202361839 ' 2705573556 , 4 f= 7622233698
= T40116610 * © = 20058305 = T 20058305 °

B is the same type as A; mentioned in [1] and [2]. Hence B is invert-
ible by the same argument as that mentioned in [1] and [2].

THEOREM 3.3. For y € C'°(0,1], the discretization error E of the
scheme for BVP provides a convergence of order 9, that is, ||E| <

Ch®, C > 0.

REMARK 3.4. Considering the off-node approximation that Bhatta
and Sastri used as before, a global eighth order approximation of the
solution is obtained, since an interpolatary heptic spline is used as the
global approximation of solution y(z).
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REMARK 3.5. We can get the better approximation up to O(h!!) at
z, when we use

(30) —m U, M6 w6 0T
. — Ty — — — Ty — — T3+ —
0T gyTI T gy 2T BT gy Te T

- Zé—s‘(—'2350 - 66581 - 167082 + 167083 + 66584 + 2385)

instead of (2.5), but the global order of convergence 1s still 8.

REMARK 3.6. We can get the better approximation up to O(h!?) at
r3 by getting the new coeflicients a; and b; instead of (2.2) in ¢ = 3.

Similarly, Remark 3.5 and 3.6 are true at zn_; and znN_j3, respec-
tively.

4. The numerical scheme using splines of degrees 2s and 2s—1

In this section, we may consider more general scheme using a spline
of degree 2s coupled with a spline of degree 2s — 1(s > 4). We assume
the continuity conditions of the form

(4.1) @1Tjg41 + @2Tj_gqo + - + Q24 Tjs—1
= hz(blsj—s+1 + o+ bog18j40-1), 3 = 8,..., N =

We need 2s — 2 extra equations for the complete determination of
N — 1 unknowns. Just as section 2, we try to get the values a; and b; to
make truncation error tj(h) up to O(hY ) by using Taylor’s expansion.
The values -y; will be of the form

2s4+25—-1 ,3=1,...,s—1,

4.2 =
#2) { 2% +2AN+1—j)=1 ,j=N-s+2,...,N

REMARK 4.1. According to the (4.2), the discretization error is
O(h?s+1).
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REMARK 4.2. Since an interpolatary spline of degree 2s —1 is used as
the global approximation of the solution y(z), the norm of the off-node
approximation error is O(h?*). So, a global 2s-th order of convergence
is expected.

5. Numerical Experiments

The theoretically estimated ninth order convergence in discretization
error of the scheme is numerically verified with examples.
Example 1.

d2
Ei;% =y —4zexp(z), 0<z <1,
y(0) = y(1) = 0, exact solution y(z) = z(1 — z) exp(z).
Example 2.
d*y
1’2%—2':2y—.’1,‘, 2S-’£S3’

, 1
y(2) = 0,y(3) = 0, exact solution y(z) = (7z — 23z% + —2‘6")/14-

The approximation values of the solutions are computed at the nodes
using the scheme in section 2. In Table 5.1, notation || E|| is the maximum
absolute error at the nodes. All computations were computed on SUN 4
SPARC station 1+ with double precision.

Example 1 Example 2
R ||E| order h || E| order
1/8 1.923( -9) 1/8 1.157( -9)

1/16 5.067(-12) 857 || 1/16 4.685(-12)  7.95
1/24 1.427(-13) 880 || 1/24 1.575(-13)  8.37
1/32 1.367(-14) 8.15 | 1/32 1.385(-14) 845

Table 5.1
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