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ON SELF-SIMILAR STOCHASTIC
INTEGRAL PROCESSES

Joo-MOK KIiM

1. Introduction

A stochastic process X = {X(t):¢ € T}, with an index set 7T, is said
to be infinitely divisible (ID) if its finite dimensional distributions are
all ID. An ID process X is said to be a stochastic integral process if
X ={X(t):teT}L {[fdA:t €T} where f : TxS — Ris a
deterministic function and A is an ID random measure on a é-ring S of
subsets of an arbitrary non-empty set S with the property; there exists
an increasing sequence {5, } of sets in S with U,,.5,, = S. Here £ denotes
equality in all finite dimensional distributions.

Let M,(0 < a < 2) be a symmetric a-stable random measure on mea-
surable space (S,S) with a control measure m and I(f) = [, f(s)dMq
for all measurable function f : S — R satisfies the condition

/ | fe(s)]* m(ds) < oo for each ¢.
S

Then { g fi(s)dM, : t € T} is symmetric a-stable process. [4,8] gives
us a Lepage representation of symmetric a-stable process and a charac-
terization of self-similar a-stable process.

We consider integrals with respect to ID random measure which gen-
eralizes the stable random measure and are mostly interested in charac-
teristic functions, series representation and self-similarities of stochastic
integral process {X(t):t € T} £ {[ fi(s)dA : t € T}.

First, series representations involving arrival times in a Poisson pro-
cess have been given by [2], for real independent increment processes
without Gaussian components and with positive jumps. Series repre-
sentation derived as a special case of a generalized shot noise generalizes
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various Lepage type representations of stochastic integral processes. (See
(3, 5])-

Chapter 2 is to review technical back-ground such as identification of
the space of A-integrable functions as a certain Musielak-Orlicz spaces
Ly, and characteristic functions of A-integrable functions in terms of
certain parameters of an ID random measure.

Chapter 3 gives us a characterizations and necessary conditions of self-
similar stochastic integral processes { [ fidA : t € T} where f, € Lo, .

DEFINITION 1.1. A random measure A is said to be an independently
scattered ID random measure (for short, I.D random measure) if for each
A € 8§,A(A) is ID random variable, and A is independently scattered
random measure.

DEFINITION 1.2. A positive Borel measure on R\ {0} is Lévy measure
if it integrates the function min{1, z?}.

DEFINITION 1.3. A o-finite measure v on o(S) (= the smallest o
- field generated by &) is said to be a control measure of the random
measure A if A and v have the same families of zero sets.

DEFINITION 1.4. A measurable function f : (S,0(S)) — (R,B(R)) is
said to be A-integrable if there exists a sequence {f,} of simple function
such that

(1) fan—f v-as.
(2) for every A € o(S), the sequence { [, fndA} converges in proba-
bility, as n — oo.

If f is A-integrable, then we put

/fd/\zp— lim /fnd/\,
A n— A

where {f,} satisfies (1) and (2).

DEFINITION 1.5. A stochastic process {X(t);¢t € T} is said to be
self-similar with index H(H — ss) if for some H € R.

X(ct) 2 HX(t) for any ¢ > 0.
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2. A-integrable functions and Musielak-Orlicz space

We assume A(A) is an ID random variable for A € S. Then its
characteristic function can be written in the Lévy-Khintchin form

(2.1)  L(A(4))" (u)

: 1 ; .
= exp{iurg(A4) — Euzul(A) + / {e™® =1 —ualz <1y} Fal(de)},
R

where —oo < 15(A) < 00,0 < v1(A) < 00, Fy4 is a Lévy measure on R
and Ig is a indicator function of B.

We know that there is one-to-one correspondence between the class
of ID random measures A(-) on one hand and the class of parameters
vo(+),v1(+) and Fi.y on the other.

The following lemma introduces an explicit form of a control measure
for a general D random measure.

LEMMA 2.1. Let vg,v; and F. be as in (2.1) and define

v(A) = lrl(A) + 11 (A) + /Rmin{l,mz} Fa(dz) ,A€ S

Then v : o(S) — [0, 00] is a control measure of A.

Proof. Let A, € §, A, | ¢. Since A(A,) — 0 in probability, we have
that

vo(An) — 0,11(A,) — 0 and / min{l, z?}F4 (dz) — 0.
R

We get v(A4,) — 0 proving that v is countably additive. Since v(S,) <
oc, where S, € § is increasing and U, S, = S, we may uniquely extend
v to a o-finite measure on (S, 0(8)).

To prove that the o-finite measure v is a control measure of A, let A €
o(8) be a A-zero set. Then, for any 4; € § satisfying A; C A,A(4;) =0
a.s. Decompose 4; = A{UAY such that v(A4}) = vp*(A4;) and vy (AY) =
—uy~ (A;). Since A(4)) = A(A)) = 0, we get that v5(A,") = vp(A4; ) =
0. Hence |1g|(A1) = 0.

We know that v1(4;) = 0 and [pmin{l,r*}F4,(dz) = 0. Thus
v(A) = 0 by an approximation theorem. ([1, Theorem 11.4]).
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Conversely, let A € o(S) be a v-zero set. Then v(4;) = 0 for any
A] C A,A1 € S. Therefore, IVQ(A])! S IVOI(AI) = O,VI(AI) = 0 and
Jrmin{l,2%}F4 (dz) = 0,1.e., A(A;) = 0 a.s. Let A be an arbitrary but
fixed control measure of A.

LEMMA 2.2. Let F. be asin (2.1). Then there exists a unique o-finite
measure F on o(S) x B(R) such that

(2.2) F(A x B) = Fa(B), forall A€ S,B € B(R)

Moreover, there exists a function @Q : S x B(R) — [0, o0 such that

(1) Q(s,-) is a Borel measure on B(R), for every s € S.

(2) Q(-,B) is a 0(S) - measurable function, for every B € B(R).

3) Jgn h(s,7) F(ds,dz) = [5 [fp h(s,2)Q(s, do)] A(ds)
for every o(S) x B(R)-measurable function h : S x R — [0, 00].

(4) fR min{1, 22}Q(s,dz) < oo, for every s € S,

(5) Ms€S:a(s)=0%(s)=Q(s,R) =0} =0.

(6) L(A(A)Nu) = exp{[, K(u,s)\(ds)} where K(u,s) = iua(s) —
su’o? 9)—+—f {ers= —1~zuxl(, 1<1)}Q(s,dz),

o(s) = B0 (5),07(5) = ()

Proof. By [7, Lemma 2.3], there exists a unique o-finite measure F on
o(S) x B(R) satisfying (2.2), and we can find a function p : S x B(R) —
[0, 00| such that

(a) p(s,-)is a Lévy measure on B(R), for every s € S,
(b) p(-, B) is a U(S) measurable function, for every B € B(R).

(¢) foR F(ds,dz) = [ [[ (s x)p s,dz)] A(ds)
for every 0(5’ ) X B(R)-measurable function h: S x R — [0, c0].

Since A and v are equivalent o-finite measure on o(S) there exists a

strictly positive and finite version of ¥ of Radon-Nikodym derivative
dv
a Put

Q(s,dz) = ¥(s)p(s,dz).

Then (1), (2), (3) and (6) follow because

Fo(B)=F(Ax B) = A/RIB(QC)Q(.S,dm)/\(ds),
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Since p(s,-) is a Lévy measure, (4) is satisfied.
Finally, note that Ay = {s: a(s) = 0?(s) = Q(s, R) = 0} is a A-zero set,
so that A(A4g) = 0.

The following provides a necessary and sufficient condition for the

existence of [ fdA in terms of the deterministic characteristic of A.
s

THEOREM 2.3. Let f: S — R be a 0(S)-measurable function. Then
f is A-integrable if and only if the following three conditions hold;

(1) [slU(f(s),s)IM(ds) < o0,
(2) [s1f(s)Po?(s)A(ds) < oo and
(3) fsVo(f(s),8)Mds) < oo,

where
Ulu,s) = ua(s) + /R{xul(|w|51) —uzl(|z <1y} Q(s, dz),

Vo(u,s)=/Rmin{1,1uz|2}Q(s,dx)

Proof. See 7, Theorem 2.7]

We shall define a certain Musielak-Orlicz space and identify the set
of A- integrable functions as Musielak-Orlicz space.
Let ¢ be a nonnegative number such that

E|A(A)? <ocoforall A€ S.

For0 <p<yg,
Define

(2.3) ®,(u,8) = U*(u,s) + u?a?(s) + Vp(u, s)

where

U*(u,s) = sup(|U(cu, s)|)

lef<1

Vp(uas) = A{|U$|pl(|ux'>l) + |um’21(|uz|§1)}Q(sadx)
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Then the following three conditions are satisfied

(1) For every s € S,®,(:, s) is a continuous non-decreasing function
on [0, 00) with ®,(0,s) =0

(2) Ms:®,(u,s) =0 for some u# 0} =0

(3) There exists a numerical constant C' > 0 such that ®,(2u,s) <
C®,(u,s),forallu>0and s € S.

Now, we can define the so-called Musielak-Orlicz space
Lo, (5:0) = {f € Lo(5i0) s [ @,(1F(5),9))(ds) < oo}
s

The space Lg, (S : A) is a complete linear metric space with norm
defined by

1flle, = inf{c > O;LQP(C—lif(s)|,s)A((ls) <c}.
If the function @, is independent of S, i.e. ®,(u,s) = ®,(u), then the

corresponding space Lg (S A) is called an Orlicz space.

THEOREM 2.4. Let 0 < p < g and &, be as in (2.3). Then
P
{f:f is N — integrable and E]/fd/\ | <oo=Lg,(S:A)

p = 0 signifies that {f : f is A — integrable } = Lg,{S; A).
Proof. See |7, Theorem 3.3].
Let A1) be a arbitrary probability measure on (S, ¢(S)) equivalent to
A
Set
R(r,s) =inf{z > 0; Q(s,[—z,z]°) <7}, r >0
A0
dA
M

where the version of the Radon-Nikodym derivative “55= is chosen to be
strictly positive and finite everywhere.
Let f be a A-integrable function i.e., f € Lg,(S;A). Define

(2.4) Fy(4) = /S /R L (o) (2£())Q(s, dz)A(ds)

Define ay = [ U(f(s),5)Mds), o052 = [5|f(s)|*a?(s)A(ds).

RW(r,s) = R(r (s),8),7>0,s€ 8
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THEOREM 2.5. Assume f € La,(S; A). Then Fy is Lévy measure and
A
o( [ fan)
= exp{iuay — %uQUfQ + / {e® —1— waliz<1y} Fr(dz)}
R
. 1
= exp{zuv/sa(s)f(s))\(ds)— 5/5[f(s)|202(s)/\(ds)
- / {ei"R(l)(r’”)f(s) -1- iuR(l)(r,s)f(s)l(R(l)(r’s)Sl)}A(l)(ds)dr}.
R

Proof. Fy is Lévy measure, since we have

z?Fy(dz) = $)z2Q(s, dz)\(ds
'/“”51} ) /S/Hf(s)z[gl} ()2l Qs, dz)\(ds)
s/scbo(lf(s)y,s),\(ds)

< o0,

Fr(dz) = s, dx)A(ds
/{[z|>1} s(42) »/S/{If(S)IIN} “ )
< [ Bulif)l )

< 0.

Since, for every z > 0 and s € §
dA .
Leb{r > 0; RV(r,s) > z} = d,\T)(S)Q(S’ [-z,2]%)
We get,
(2.5) Fy(A) = / / Lavioy (RO(r, 8) (5))AD (ds)dr.
o Js

By [7, Theorem 2.7] we complete the proof.
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3. Self-similarity of stochastic integral processes

Stochastic integral processes { [ fidA;t € T} are always assumed to

be real-valued and defined for t € T = [0,00). All stochastic processes
will be discussed in terms of finite-dimensional distributions.
By {[ fidA;t € T} £ {fg:dA;t € T} we mean the equality of all
finite-dimensional distributions. [ f;dA 4 [ g;dA means the equality
of one-dimensional distributions for fixed ¢. Recall any stochastic pro-
cess { [ fidA;t € T} is called H-ss,si(stationary increment) if, for every
constant ¢ > 0, H € R,

{/fctd/\;tGT}-l2 {cH/ftd/\;tET}
{/ft+hd/\—/fhd/\;t eT}2 {/ftd/\~/f0d/\;t € T} for any h>0.

Let A = {A(A); A € §} be a symmetric ID random measure without
Gaussian component. Then the characteristic function of [ fdA can be
written in Lévy’s form

£(/fd/\) (u) = exp{2/000{cosum —1}F¢(dz)},u € R

where, f € Ls,(S;A) and Fy is a symmetric Lévy measure.

THEOREM 3.1. Assume that f; € Lg,(S;A) for each t € T and
{[ frdA;t € T} is H-ss,si stochastic integral process,

(1) if H <0, then || fi|lg, = 0.
(2) if fy € Ly, and H # 1, then f; € Ls, and E [ fidA = 0.

Proof. (1) By H-ss, [ fodA =0 a.s. and

/ftd/\"*i'tH‘/fld/\—ﬂ()ast—»oo.

On the other hand, by si,

/ftd/\:/ftd/\—/f[,d/\Aifft“d/\—/f,,d/\
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which tends to 0 as h — co. Hence f ftdA = 0 a.s. From the facts that
J ftdA = 0 a.s. and f; € Lg,, there exists a sequence {f;,} of simple
functions such that f, , — f, A-a.s. and f fi,ndA — 0 in probability as
n — 00. Since A is symmetric, we have a(s) = 0 and Q(s, -) is symmetric.
Thus U(-,s) =0 A - a.s. which implies

[ #allfun(o)l)29) = / Vollfon(s)], 5)M(ds)

= /min{l,xz}Fft’n(dac) -0
1.e.
[ fe,nlly, — 0, as n — co.
From the triangle inequality,we get || 4| 4 = 0.
Proof. (2) By [ fudA 4 ¢t [ fidA and uniqueness of Lévy measure
corresponding to same distribution functions, we have
[ SR M) = [ el + 1o Ty} Fr ()
= /{|$|I(|x|>1) + 12| Lo 1<1) } Fyo 1, (d2)
= [ 41 i), 51M(d9) < o0,

ie., fy € Lg,, which implies F| fftd/\ | < oo.
By H-ss,si, it follows that

Bl [ fudn) = | [ fudn [ guan)
=" = DB fdn]

so (2 — 2)E[[ fidA] = 0. Since H # 1, we have E[[ fudA] = 0.

The following theorems gives us necessary conditions of H-ss stochas-
tic integral process { [ f:dA;t € T}.

Let M) be an arbitrary probability measure on (S,0(S)) equivalent
to A.
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THEOREM 3.2. Assume that f; € Le,(S;)\) and f; = tHf; X-as.
for any t € T. Then {[ fidA;t € T} is H-ss stochastic integral process.
Proof. For any t € [0, 00], obviously f; € L, and for = cf'fy A1)
a.s. We have
A oo
E(/fctd/\) (u) = exp{Q/ {cosuz — 1} Fy,,(dz)}
0
= exp{2/ /{cos(uR(l)(r,s)fct(s))—l}/\(l)(ds)dr}
0o Js
= exp{2/ /{cos(uR(l)(r,s)cht(:;))——1})\(1)(d3)dr}
0 8

= exp{2</0 {cosux — 1} Fory, (dz)}

and Y a;jfe; = cH Z?=1 a; fi; A s for any a; € R,t; € T. Thus,
Zaj/fctjd/\f@cHZaj/ftjd/\.
7=1 =1

Let {¢;},{I;}, and {&,} be independent sequence of random variables
such that {£;} is a sequence of 1.i.d. random variables in (§,o(S)) with
L(&;) = AV {I;} is j* arrival time of a Poisson process N; with pa-
rameter 1 i.e. I; = inf{t > 0; Ny = j}. and {e,} is a sequence of i.i.d.
random variable with P{e, = —1} = P{e, = 1} = . Put

Xa(t) = ZeR“ 52 ) Fil&5).

Under the same assumption as Theorem 3.2 , we know that f; € Ly, .
By [5, Proposition 2], X,(t) converges a.s. (to X(t)) and {X(¢);t €
T} 2 {[ fidA;t € T}. Therefore, the following theorem holds.

THEOREM 3.3. Assume that f; € Le,(S;)) and f; = tHfi A-as.
for any t € T Then
(1) X,(t) converges a.s (to X(t)),

(2) X(t) 2 [ fdn,
(3) {X(¢):t €T} is H-ss stochastic process.
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From now on, we will assume that A = {A(4) : A € S} is a ID ran-

dom measure without Gaussian component and have the characteristic
function as the following form

E(/fd/\) (u) = exp{/}z{eiuz — 1 —uz}Fy(dz)},

where f € Lg,,p > 1, and Fy is defined in (2.4).
Put

Y, (t ZR(I) gj)ft 6]) - Cft(r )

where f; € Ly,,p > 1 and

Cy(a) = / /R(l) r,8)fe(s)AD(ds)dr,a > 0.

THEOREM 3.4. Assume that fi € Lg,(S;A), p>1, and f, = tHf A
-a.s. Then

(1) Ya(t) converges a.s. (toY(t)),
(2) Y(t) £ [ fudn,
(3) {Y(t);t € T} is H-ss stochastic process.

Proof. Let f € Lg,,p > 1. First note that Cf(a) is well-defined.
Indeed,

[ [ RO 5@

0o Js

< a+/ [9IR(I)(T,S)f(S)lI(]R(l)(r,s)f(s)|>1))‘(1)(d3)dr
0

—a+ [ (el Fyldo)
{lz|>1}

=a 8)x|)PQ(s,dr)A(ds
-ﬁLAMMDJU(H)m JA(ds)
—a+ [ (1))



972 Joo-mok Kim

We showed in the proof of Theorem 2.4 that Ff is a Lévy measure.
Put

H(r,s) = RW(r,s)f(s) in [6, Theorem 3.1]
Then we get (1) and

LY ROI,6) (&) - lim Cr(Tw))

— ([ fan)

= exp{/{em””(“”ﬂ“ =1 —wwRW(r,s)f(s) 1AV (ds)dr}.

Let f =3 aifi;. Then we get (2), since we have

;ai/ft,.d/\:/fd/\

ZR(I)(FJva)f(éj)— hm Cf(F)

Puﬂg ||

RW(I, @){Zaift..(f,-)} ~ lim Cy(Iy)

.
1l
-

Z RO(I;,6)fu(€;) = lim Cy, (I)}

NE H'Ms

8
~

~
sl

i)-

T

By the same argument as in Theorem 3.2,

{Y(t)jteT} 2 {/ftd/\;t €t}

is H-ss stochastic integral process.
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