ON SELF-SIMILAR STOCHASTIC INTEGRAL PROCESSES

Јоо-мок Кім

1. Introduction

A stochastic process $X = \{X(t) : t \in T\}$, with an index set T, is said to be infinitely divisible (ID) if its finite dimensional distributions are all ID. An ID process X is said to be a stochastic integral process if $X = \{X(t) : t \in T\}$ \mathcal{P} $\{\int f_t d\wedge : t \in T\}$ where $f : T \times S \to R$ is a deterministic function and \wedge is an ID random measure on a δ -ring S of subsets of an arbitrary non-empty set S with the property; there exists an increasing sequence $\{S_n\}$ of sets in S with $\bigcup_n S_n = S$. Here \mathcal{P} denotes equality in all finite dimensional distributions.

Let $M_{\alpha}(0 < \alpha \leq 2)$ be a symmetric α -stable random measure on measurable space (S, \mathcal{S}) with a control measure m and $I(f) = \int_{S} f(s) dM_{\alpha}$ for all measurable function $f: S \to R$ satisfies the condition

$$\int_{S} |f_{t}(s)|^{\alpha} m(ds) < \infty \text{ for each } t.$$

Then $\{\int_S f_t(s)dM_\alpha : t \in T\}$ is symmetric α -stable process. [4,8] gives us a Lepage representation of symmetric α -stable process and a characterization of self-similar α -stable process.

We consider integrals with respect to ID random measure which generalizes the stable random measure and are mostly interested in characteristic functions, series representation and self-similarities of stochastic integral process $\{X(t): t \in T\}$ \mathcal{L} $\{\int f_t(s)d\wedge : t \in T\}$.

First, series representations involving arrival times in a Poisson process have been given by [2], for real independent increment processes without Gaussian components and with positive jumps. Series representation derived as a special case of a generalized shot noise generalizes

Received May 30, 1994. Revised September 12, 1994.

various Lepage type representations of stochastic integral processes. (See [3, 5]).

Chapter 2 is to review technical back-ground such as identification of the space of \wedge -integrable functions as a certain Musielak-Orlicz spaces L_{Φ_p} and characteristic functions of \wedge -integrable functions in terms of certain parameters of an ID random measure.

Chapter 3 gives us a characterizations and necessary conditions of self-similar stochastic integral processes $\{\int f_t d\wedge : t \in T\}$ where $f_t \in L_{\Phi_p}$.

DEFINITION 1.1. A random measure \wedge is said to be an independently scattered ID random measure (for short, ID random measure) if for each $A \in \mathcal{S}, \wedge(A)$ is ID random variable, and \wedge is independently scattered random measure.

DEFINITION 1.2. A positive Borel measure on $R\setminus\{0\}$ is Lévy measure if it integrates the function $\min\{1, x^2\}$.

DEFINITION 1.3. A σ -finite measure ν on $\sigma(\mathcal{S})$ (= the smallest σ - field generated by \mathcal{S}) is said to be a control measure of the random measure \wedge if \wedge and ν have the same families of zero sets.

DEFINITION 1.4. A measurable function $f:(S,\sigma(S))\to (R,\mathcal{B}(R))$ is said to be \wedge -integrable if there exists a sequence $\{f_n\}$ of simple function such that

- (1) $f_n \to f \quad \nu$ -a.s.
- (2) for every $A \in \sigma(\mathcal{S})$, the sequence $\{\int_A f_n d\Lambda\}$ converges in probability, as $n \to \infty$.

If f is \land -integrable, then we put

$$\int_{A} f d\Lambda = p - \lim_{n \to \infty} \int_{A} f_n d\Lambda,$$

where $\{f_n\}$ satisfies (1) and (2).

DEFINITION 1.5. A stochastic process $\{X(t); t \in T\}$ is said to be self-similar with index H(H-ss) if for some $H \in R$.

$$X(ct) \stackrel{\mathcal{D}}{=} c^H X(t)$$
 for any $c > 0$.

2. A-integrable functions and Musielak-Orlicz space

We assume $\Lambda(A)$ is an ID random variable for $A \in \mathcal{S}$. Then its characteristic function can be written in the Lévy-Khintchin form

$$(2.1) \quad \mathcal{L}(\wedge(A))^{\wedge}(u) = \exp\{iu\nu_0(A) - \frac{1}{2}u^2\nu_1(A) + \int_{\mathcal{B}} \{e^{iux} - 1 - iuxI_{(|x| \le 1)}\}F_A(dx)\},$$

where $-\infty < \nu_0(A) < \infty, 0 \le \nu_1(A) < \infty, F_A$ is a Lévy measure on R and I_B is a indicator function of B.

We know that there is one-to-one correspondence between the class of ID random measures $\Lambda(\cdot)$ on one hand and the class of parameters $\nu_o(\cdot), \nu_1(\cdot)$ and $F_{(\cdot)}$ on the other.

The following lemma introduces an explicit form of a control measure for a general ID random measure.

LEMMA 2.1. Let ν_0, ν_1 and F. be as in (2.1) and define

$$u(A) = |\nu_0|(A) + \nu_1(A) + \int_R \min\{1, x^2\} F_A(dx) , A \in \mathcal{S}$$

Then $\nu : \sigma(\mathcal{S}) \to [0, \infty]$ is a control measure of \wedge .

Proof. Let $A_n \in \mathcal{S}, A_n \downarrow \phi$. Since $\wedge (A_n) \to 0$ in probability, we have that

$$\nu_0(A_n) \to 0, \nu_1(A_n) \to 0 \text{ and } \int_R \min\{1, x^2\} F_{A_n}(dx) \to 0.$$

We get $\nu(A_n) \to 0$ proving that ν is countably additive. Since $\nu(S_n) < \infty$, where $S_n \in \mathcal{S}$ is increasing and $\cup_n S_n = S$, we may uniquely extend ν to a σ -finite measure on $(S, \sigma(\mathcal{S}))$.

To prove that the σ -finite measure ν is a control measure of \wedge , let $A \in \sigma(\mathcal{S})$ be a \wedge -zero set. Then, for any $A_1 \in \mathcal{S}$ satisfying $A_1 \subset A$, $\wedge(A_1) = 0$ a.s. Decompose $A_1 = A_1' \cup A_1''$ such that $\nu_0(A_1') = \nu_0^+(A_1)$ and $\nu_0(A_1'') = -\nu_0^-(A_1)$. Since $\wedge(A_1') = \wedge(A_1'') = 0$, we get that $\nu_0(A_1') = \nu_0(A_1'') = 0$. Hence $|\nu_0|(A_1) = 0$.

We know that $\nu_1(A_1) = 0$ and $\int_R \min\{1, x^2\} F_{A_1}(dx) = 0$. Thus $\nu(A) = 0$ by an approximation theorem. ([1, Theorem 11.4]).

Conversely, let $A \in \sigma(S)$ be a ν -zero set. Then $\nu(A_1) = 0$ for any $A_1 \subset A, A_1 \in S$. Therefore, $|\nu_0(A_1)| \leq |\nu_0|(A_1) = 0, \nu_1(A_1) = 0$ and $\int_R \min\{1, x^2\} F_{A_1}(dx) = 0$, i.e., $\wedge(A_1) = 0$ a.s. Let λ be an arbitrary but fixed control measure of \wedge .

LEMMA 2.2. Let F, be as in (2.1). Then there exists a unique σ -finite measure F on $\sigma(S) \times \mathcal{B}(R)$ such that

(2.2)
$$F(A \times B) = F_A(B)$$
, for all $A \in \mathcal{S}, B \in \mathcal{B}(R)$

Moreover, there exists a function $Q: S \times \mathcal{B}(R) \to [0, \infty]$ such that

- (1) $Q(s,\cdot)$ is a Borel measure on $\mathcal{B}(R)$, for every $s \in S$.
- (2) $Q(\cdot, B)$ is a $\sigma(S)$ measurable function, for every $B \in \mathcal{B}(R)$.
- (3) $\int_{S\times R} h(s,x) F(ds,dx) = \int_{S} \left[\int_{R} h(s,x) Q(s,dx) \right] \lambda(ds)$ for every $\sigma(S) \times \mathcal{B}(R)$ -measurable function $h: S \times R \to [0,\infty]$.
- (4) $\int_{R} \min\{1, x^2\} Q(s, dx) < \infty$, for every $s \in S$,
- (5) $\lambda \{s \in S : a(s) = \sigma^2(s) = Q(s, R) = 0\} = 0.$
- (6) $\mathcal{L}(\wedge(A))^{\wedge}(u) = \exp\{\int_{A} K(u,s)\lambda(ds)\}\$ where $K(u,s) = iua(s) \frac{1}{2}u^{2}\sigma^{2}(s) + \int_{R}\{e^{iux} 1 iuxI_{(|x| \le 1)}\}Q(s,dx),$ $a(s) = \frac{d\nu_{0}}{d\lambda}(s), \sigma^{2}(s) = \frac{d\nu_{1}}{d\lambda}(s)$

Proof. By [7, Lemma 2.3], there exists a unique σ -finite measure F on $\sigma(S) \times \mathcal{B}(R)$ satisfying (2.2), and we can find a function $\rho: S \times \mathcal{B}(R) \to [0, \infty]$ such that

- (a) $\rho(s,\cdot)$ is a Lévy measure on $\mathcal{B}(R)$, for every $s \in S$,
- (b) $\rho(\cdot, B)$ is a $\sigma(S)$ measurable function, for every $B \in \mathcal{B}(R)$.
- (c) $\int_{S \times R} h(s, x) F(ds, dx) = \int_{S} \left[\int_{R} h(s, x) \rho(s, dx) \right] \lambda(ds)$ for every $\sigma(S) \times \mathcal{B}(R)$ -measurable function $h: S \times R \to [0, \infty]$.

Since λ and ν are equivalent σ -finite measure on $\sigma(S)$ there exists a strictly positive and finite version of ψ of Radon-Nikodym derivative $\frac{d\nu}{d\lambda}$. Put

$$Q(s, dx) = \psi(s)\rho(s, dx).$$

Then (1), (2), (3) and (6) follow because

$$F_A(B) = F(A \times B) = \int_A \int_R I_B(x) Q(s, dx) \lambda(ds).$$

Since $\rho(s,\cdot)$ is a Lévy measure, (4) is satisfied.

Finally, note that $A_0 = \{s : a(s) = \sigma^2(s) = Q(s, R) = 0\}$ is a \land -zero set, so that $\lambda(A_0) = 0$.

The following provides a necessary and sufficient condition for the existence of $\int_{S} f d\Lambda$ in terms of the deterministic characteristic of Λ .

THEOREM 2.3. Let $f: S \to R$ be a $\sigma(S)$ -measurable function. Then f is \wedge -integrable if and only if the following three conditions hold;

- (1) $\int_{S} |U(f(s),s)| \lambda(ds) < \infty$,
- (2) $\int_{S} |f(s)|^2 \sigma^2(s) \lambda(ds) < \infty$ and
- (3) $\int_{S} V_0(f(s), s) \lambda(ds) < \infty$,

where

$$\begin{split} U(u,s) &= ua(s) + \int_{R} \{xuI_{(|xu| \leq 1)} - uxI_{(|x| \leq 1)}\}Q(s,dx), \\ V_{0}(u,s) &= \int_{R} \min\{1,|ux|^{2}\}Q(s,dx) \end{split}$$

Proof. See [7, Theorem 2.7]

We shall define a certain Musielak-Orlicz space and identify the set of \wedge - integrable functions as Musielak-Orlicz space. Let q be a nonnegative number such that

$$E|\wedge (A)|^q < \infty \text{ for all } A \in \mathcal{S}.$$

For $0 \le p \le q$, Define

(2.3)
$$\Phi_{p}(u,s) = U^{*}(u,s) + u^{2}\sigma^{2}(s) + V_{p}(u,s)$$

where

$$U^*(u, s) = \sup_{|c| \le 1} (|U(cu, s)|)$$
$$V_p(u, s) = \int_R \{|ux|^p I_{(|ux| > 1)} + |ux|^2 I_{(|ux| \le 1)}\} Q(s, dx)$$

Then the following three conditions are satisfied

- (1) For every $s \in S$, $\Phi_p(\cdot, s)$ is a continuous non-decreasing function on $[0, \infty)$ with $\Phi_p(o, s) = 0$
- (2) $\lambda \{s : \Phi_p(u, s) = 0 \text{ for some } u \neq 0\} = 0$
- (3) There exists a numerical constant C > 0 such that $\Phi_p(2u, s) \le C\Phi_p(u, s)$, for all $u \ge 0$ and $s \in S$.

Now, we can define the so-called Musielak-Orlicz space

$$L_{\Phi_p}(S;\lambda) = \{ f \in L_0(S;\lambda) : \int_S \Phi_p(|f(s)|, s) \lambda(ds) < \infty \}.$$

The space $L_{\Phi_p}(S:\lambda)$ is a complete linear metric space with norm defined by

$$||f||_{\Phi_p} = \inf\{c > 0; \int_S \Phi_p(c^{-1}|f(s)|, s)\lambda(ds) \le c\}.$$

If the function Φ_p is independent of S, i.e. $\Phi_p(u,s) = \Phi_p(u)$, then the corresponding space $L_{\Phi_p}(S;\lambda)$ is called an Orlicz space.

THEOREM 2.4. Let $0 \le p \le q$ and Φ_p be as in (2.3). Then

$$\{f: f \text{ is } \wedge - \text{ integrable and } E | \int f d \wedge |^p < \infty = L_{\Phi_p}(S:\lambda)$$

p = 0 signifies that $\{f : f \text{ is } \wedge - \text{integrable }\} = L_{\Phi o}(S; \lambda).$

Proof. See [7, Theorem 3.3].

Let $\lambda^{(1)}$ be a arbitrary probability measure on $(S, \sigma(S))$ equivalent to λ . Set

$$R(r,s) = \inf\{x > 0; Q(s, [-x, x]^c) \le r\}, r > 0$$
$$R^{(1)}(r,s) = R(r\frac{d\lambda^{(1)}}{d\lambda}(s), s), r > 0, s \in S$$

where the version of the Radon-Nikodym derivative $\frac{d\lambda^{(1)}}{d\lambda}$ is chosen to be strictly positive and finite everywhere.

Let f be a \wedge -integrable function i.e., $f \in L_{\Phi_0}(S; \lambda)$. Define

(2.4)
$$F_f(A) = \int_S \int_R I_{A \setminus \{0\}}(xf(s))Q(s,dx)\lambda(ds)$$

Define
$$a_f = \int_S U(f(s), s) \lambda(ds), \quad \sigma_f^2 = \int_S |f(s)|^2 \sigma^2(s) \lambda(ds).$$

THEOREM 2.5. Assume $f \in L_{\Phi_0}(S; \lambda)$. Then F_f is Lévy measure and

$$\begin{split} &\mathcal{L}(\int f d \wedge) \wedge (u) \\ &= \exp\{i u a_f - \frac{1}{2} u^2 \sigma f^2 + \int_R \{e^{i u x} - 1 - i u x I_{(|x| \le 1)}\} F_f(dx)\} \\ &= \exp\{i u \int_S a(s) f(s) \lambda(ds) - \frac{1}{2} \int_S |f(s)|^2 \sigma^2(s) \lambda(ds) \\ &+ \int_R \{e^{i u R^{(1)}(r,s) f(s)} - 1 - i u R^{(1)}(r,s) f(s) I_{(R^{(1)}(r,s) \le 1)}\} \lambda^{(1)}(ds) dr\}. \end{split}$$

Proof. F_f is Lévy measure, since we have

$$\int_{\{|x| \le 1\}} x^2 F_f(dx) = \int_S \int_{\{|f(s)x| \le 1\}} |f(s)x|^2 Q(s, dx) \lambda(ds)$$

$$\leq \int_S \Phi_0(|f(s)|, s) \lambda(ds)$$

$$< \infty,$$

$$\int_{\{|x|>1\}} F_f(dx) = \int_S \int_{\{|f(s)x|>1\}} Q(s, dx) \lambda(ds)$$

$$\leq \int_S \Phi_0(|f(s)|, s) \lambda(ds)$$

$$< \infty.$$

Since, for every $x \geq 0$ and $s \in S$

$$Leb\{r > 0; R^{(1)}(r,s) > x\} = \frac{d\lambda}{d\lambda^{(1)}}(s)Q(s, [-x, x]^c)$$

We get,

(2.5)
$$F_f(A) = \int_0^\infty \int_S I_{A\setminus\{0\}}(R^{(1)}(r,s)f(s))\lambda^{(1)}(ds)dr.$$

By [7, Theorem 2.7] we complete the proof.

3. Self-similarity of stochastic integral processes

Stochastic integral processes $\{\int f_t d\wedge; t \in T\}$ are always assumed to be real-valued and defined for $t \in T = [0, \infty)$. All stochastic processes will be discussed in terms of finite-dimensional distributions.

By $\{\int f_t d\wedge; t \in T\}$ \mathcal{Z} $\{\int g_t d\wedge; t \in T\}$ we mean the equality of all finite-dimensional distributions. $\int f_t d\wedge \mathcal{A} \int g_t d\wedge$ means the equality of one-dimensional distributions for fixed t. Recall any stochastic process $\{\int f_t d\wedge; t \in T\}$ is called H-ss,si(stationary increment) if, for every constant $c > 0, H \in R$,

$$\begin{split} \{ \int f_{ct} d \wedge; t \in T \} & \stackrel{\mathcal{D}}{=} \{ c^H \int f_t d \wedge; t \in T \} \\ \{ \int f_{t+h} d \wedge - \int f_h d \wedge; t \in T \} & \stackrel{\mathcal{D}}{=} \{ \int f_t d \wedge - \int f_0 d \wedge; t \in T \} \text{ for any } h > 0. \end{split}$$

Let $\wedge = { \wedge (A); A \in \mathcal{S} }$ be a symmetric ID random measure without Gaussian component. Then the characteristic function of $\int f d \wedge$ can be written in Lévy's form

$$\mathcal{L}(\int f d\wedge)^{\wedge}(u) = \exp\{2\int_{0}^{\infty} \{\cos ux - 1\}F_{f}(dx)\}, u \in R$$

where, $f \in L_{\Phi_0}(S; \lambda)$ and F_f is a symmetric Lévy measure.

THEOREM 3.1. Assume that $f_t \in L_{\Phi_0}(S; \lambda)$ for each $t \in T$ and $\{ \int f_t d \wedge ; t \in T \}$ is H-ss,si stochastic integral process,

- (1) if H < 0, then $||f_t||_{\Phi_0} = 0$.
- (2) if $f_1 \in L_{\Phi_1}$ and $H \neq 1$, then $f_t \in L_{\Phi_1}$ and $E \int f_t d\Lambda = 0$.

Proof. (1) By H-ss, $\int f_0 d\Lambda = 0$ a.s. and

$$\int f_t d\wedge \stackrel{d}{\sim} t^H \int f_1 d\wedge \to 0 \text{ as } t \to \infty.$$

On the other hand, by si,

$$\int f_t d\wedge = \int f_t d\wedge - \int f_0 d\wedge \stackrel{d}{\sim} \int f_{t+h} d\wedge - \int f_h d\wedge$$

which tends to 0 as $h \to \infty$. Hence $\int f_t d\Lambda = 0$ a.s. From the facts that $\int f_t d\Lambda = 0$ a.s. and $f_t \in L_{\Phi_0}$, there exists a sequence $\{f_{t,n}\}$ of simple functions such that $f_{t,n} \to f_t$ λ -a.s. and $\int f_{t,n} d\Lambda \to 0$ in probability as $n \to \infty$. Since Λ is symmetric, we have a(s) = 0 and $Q(s, \cdot)$ is symmetric. Thus $U(\cdot, s) \equiv 0$ λ -a.s. which implies

$$\int \Phi_0(|f_{t,n}(s)|, s) \lambda(ds) = \int V_0(|f_{t,n}(s)|, s) \lambda(ds)$$

$$= \int \min\{1, x^2\} F_{f_{t,n}}(dx) \to 0$$

i.e.,

$$||f_{t,n}||_{\phi_0} \to 0$$
, as $n \to \infty$.

From the triangle inequality, we get $\|f_t\|_{\phi_0} = 0$.

Proof. (2) By $\int f_t d\wedge \stackrel{d}{\sim} t^H \int f_1 d\wedge$ and uniqueness of Lévy measure corresponding to same distribution functions, we have

$$\int \Phi_1(|f_t(s)|, s)\lambda(ds) = \int \{|x|I_{(|x|>1)} + |x|^2 I_{(|x|\leq 1)}\} F_{f_t}(dx)$$

$$= \int \{|x|I_{(|x|>1)} + |x|^2 I_{(|x|\leq 1)}\} F_{t^H f_1}(dx)$$

$$= \int \Phi_1(|t^H f_1(s), s)\lambda(ds) < \infty,$$

i.e., $f_t \in L_{\phi_1}$, which implies $E|\int f_t d \wedge | < \infty$. By H-ss,si, it follows that

$$E[\int f_t d\Lambda] = E[\int f_{2t} d\Lambda - \int f_t d\Lambda]$$
$$= (2^H - 1)E[\int f_t d\Lambda]$$

so $(2^H - 2)E[\int f_t d\Lambda] = 0$. Since $H \neq 1$, we have $E[\int f_t d\Lambda] = 0$.

The following theorems gives us necessary conditions of H-ss stochastic integral process $\{\int f_t d\wedge; t \in T\}$.

Let $\lambda^{(1)}$ be an arbitrary probability measure on $(S, \sigma(S))$ equivalent to λ .

THEOREM 3.2. Assume that $f_1 \in L_{\Phi_0}(S; \lambda)$ and $f_t = t^H f_1 - \lambda$ -a.s. for any $t \in T$. Then $\{ \int f_t d \wedge ; t \in T \}$ is H-ss stochastic integral process.

Proof. For any $t \in [0, \infty]$, obviously $f_t \in L_{\Phi_0}$ and $f_{ct} = c^H f_t - \lambda^{(1)}$ -a.s. We have

$$\begin{split} \mathcal{L}(\int f_{ct} d\wedge)^{\wedge}(u) &= \exp\{2 \int_{0}^{\infty} \{\cos ux - 1\} F_{f_{ct}}(dx)\} \\ &= \exp\{2 \int_{0}^{\infty} \int_{S} \{\cos(uR^{(1)}(r,s) f_{ct}(s)) - 1\} \lambda^{(1)}(ds) dr\} \\ &= \exp\{2 \int_{0}^{\infty} \int_{S} \{\cos(uR^{(1)}(r,s) c^{H} f_{t}(s)) - 1\} \lambda^{(1)}(ds) dr\} \\ &= \exp\{2 \int_{0}^{\infty} \{\cos ux - 1\} F_{cH f_{t}}(dx)\} \end{split}$$

and $\sum a_j f_{ct_j} = c^H \sum_{j=1}^n a_j f_{t_j} \lambda^{(1)}$ -a.s for any $a_j \in R, t_j \in T$. Thus,

$$\sum_{j=1}^{n} a_j \int f_{ct_j} d\wedge \stackrel{d}{\sim} c^H \sum_{j=1}^{n} a_j \int f_{t_j} d\wedge.$$

Let $\{\xi_j\}$, $\{\Gamma_j\}$, and $\{\varepsilon_j\}$ be independent sequence of random variables such that $\{\xi_j\}$ is a sequence of i.i.d. random variables in $(S, \sigma(S))$ with $\mathcal{L}(\xi_j) = \lambda^{(1)}, \{\Gamma_j\}$ is j^{th} arrival time of a Poisson process N_t with parameter 1 i.e. $\Gamma_j = \inf\{t > 0; N_t = j\}$. and $\{\varepsilon_n\}$ is a sequence of i.i.d. random variable with $P\{\varepsilon_n = -1\} = P\{\varepsilon_n = 1\} = \frac{1}{2}$. Put

$$X_n(t) = \sum_{j=1}^n \varepsilon_j R^{(1)}(\Gamma_j, \xi_j) f_t(\xi_j).$$

Under the same assumption as Theorem 3.2, we know that $f_t \in L_{\phi_0}$. By [5, Proposition 2], $X_n(t)$ converges a.s. (to X(t)) and $\{X(t); t \in T\}$ \mathcal{L} $\{f_t d \land f_t \in T\}$. Therefore, the following theorem holds.

THEOREM 3.3. Assume that $f_1 \in L_{\Phi_0}(S;\lambda)$ and $f_t = t^H f_1 - \lambda$ -a.s. for any $t \in T$ Then

- (1) $X_n(t)$ converges a.s (to X(t)),
- (2) $X(t) \stackrel{\mathcal{D}}{=} \int f_t d\wedge$,
- (3) $\{X(t): t \in T\}$ is H-ss stochastic process.

From now on, we will assume that $\wedge = \{ \wedge (A) : A \in \mathcal{S} \}$ is a *ID* random measure without Gaussian component and have the characteristic function as the following form

$$\mathcal{L}(\int f d\wedge)^{\hat{}}(u) = \exp\{\int_{R} \{e^{iux} - 1 - iux\} F_{f}(dx)\},\label{eq:local_local_fit}$$

where $f \in L_{\Phi_p}$, $p \ge 1$, and F_f is defined in (2.4).

Put

$$Y_n(t) = \sum_{j=1}^{n} R^{(1)}(\Gamma_j, \xi_j) f_t(\xi_j) - C_{f_t}(\Gamma_n)$$

where $f_t \in L_{\phi_p}, p \geq 1$ and

$$C_{f_t}(a) = \int_0^a \int_S R^{(1)}(r,s) f_t(s) \lambda^{(1)}(ds) dr, a > 0.$$

THEOREM 3.4. Assume that $f_1 \in L_{\Phi_p}(S; \lambda)$, $p \geq 1$, and $f_t = t^H f_1 \lambda$ -a.s. Then

- (1) $Y_n(t)$ converges a.s. (to Y(t)),
- (2) $Y(t) \stackrel{\mathcal{D}}{=} \int f_t d\Lambda$,
- (3) $\{Y(t); t \in T\}$ is H-ss stochastic process.

Proof. Let $f \in L_{\phi_p}, p \geq 1$. First note that $C_f(a)$ is well-defined. Indeed,

$$\int_{0}^{a} \int_{S} R^{(1)}(r,s)f(s)\lambda^{(1)}(ds)dr$$

$$\leq a + \int_{0}^{a} \int_{S} |R^{(1)}(r,s)f(s)|I_{(|R^{(1)}(r,s)f(s)|>1)}\lambda^{(1)}(ds)dr$$

$$= a + \int_{\{|x|>1\}} (|x|)^{p} F_{f}(dx)$$

$$= a + \int_{S} \int_{\{|f(s)x|>1\}} (|f(s)x|)^{p} Q(s,dx)\lambda(ds)$$

$$= a + \int_{S} \Phi_{p}(|f(s)|,s)\lambda(ds)$$

$$< \infty.$$

We showed in the proof of Theorem 2.4 that F_f is a Lévy measure. Put

$$H(r,s) = R^{(1)}(r,s)f(s)$$
 in [6, Theorem 3.1]

Then we get (1) and

$$\mathcal{L}(\sum_{j=1}^{\infty} R^{(1)}(\Gamma_j, \xi_j) f(\xi_j) - \lim_{n \to \infty} C_f(\Gamma_n))$$

$$= \mathcal{L}(\int f d\Lambda)$$

$$= \exp\{\int \{e^{iuR^{(1)}(r,s)f(s)} - 1 - iuR^{(1)}(r,s)f(s)\}\lambda^{(1)}(ds)dr\}.$$

Let $f = \sum_{i=1}^{m} a_i f_{t_i}$. Then we get (2), since we have

$$\sum_{i=1}^{m} a_i \int f_{t_i} d\Lambda = \int f d\Lambda$$

$$= \sum_{j=1}^{\infty} R^{(1)}(\Gamma_j, \xi_j) f(\xi_j) - \lim_{n \to \infty} C_f(\Gamma_n)$$

$$= \sum_{j=1}^{\infty} R^{(1)}(\Gamma_j, \xi_j) \{ \sum_{i=1}^{m} a_i f_{t_i}(\xi_j) \} - \lim_{n \to \infty} C_f(\Gamma_n)$$

$$= \sum_{i=1}^{m} a_i \{ \sum_{j=1}^{\infty} R^{(1)}(\Gamma_j, \xi_j) f_{t_i}(\xi_j) - \lim_{n \to \infty} C_{f_{t_i}}(\Gamma_n) \}$$

$$= \sum_{i=1}^{m} a_i Y(t_i).$$

By the same argument as in Theorem 3.2,

$${Y(t); t \in T} \stackrel{\mathcal{D}}{=} {\int f_t d \land ; t \in t}$$

is H-ss stochastic integral process.

References

- 1. P. Billingsley, Probability and Measure, Wiley, New York, 1985.
- 2. T. S. Ferguson and M. J. Klass, A representation of independent increment processes without Gaussian components, Ann. Math. Statist. 43 (1972), 1634-1643.
- 3. J. Kim, Series representation of stochastic integral processes and the Hölder continuity of stable processes, Ph.D Thesis, University of Utah, 1993.
- 4. N. Kôno and M. Maejima, Self-similar stable processes with stationary increments., Progr. Probab. 25 (1990), 275-295.
- 5. J. Rosinki, On the path properties of certain infinitely divisible processes, Stochastic Process. Appl. 33 (1989), 73-87.
- 6. _____, On series representation of infinitely divisible random vectors, Ann. Probab. 18,1 (1990), 405-430.
- 7. B. S. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82 (1989), 451-487.
- 8. G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian processes: Stochastic Models with infinite Variance, Chapman and Hall, 1994.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea