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SCALING FUNCTIONS SUPPORTED
IN INTERVALS OF LENGTH < 3

JUNGSEOB LEE

Daubechies [1] discovered compactly supported scaling functions and
corresponding wavelets with high regularities. It seems that there are
no known compactly supported scaling functions other than Daubechies’.
In this article, we will construct new scaling functions supported in in-
tervals of length < 3 without using deep analysis. While one of them is
Daubechies’ scaling function, others are less regular than Daubechies’.
Also, we will show that Daubechies’ scaling function is the unique one
with highest regularity.

Suppose that a function ¢ in L*(R) is a scaling function for a mul-
tiresolution analysis. Then it follows from the definition (see [2]) that it
satisfies the following conditions.

(a) There is a sequence {cj} such that

$(z) = cxd(2z - k)

keZ

for every z, and

(b) {¢(x — k)}rez is an orthonormal set.

The equation in the condition (e) is called the dilation equation and
{ck} are called the dilation coefficients. We impose on the scaling func-
tion the normalization constraint.

(¢) fR ¢(z)dz = 1.

From now on we will assume that the dilation coeflicients are real. It
easily follows from (@), (b) and (c¢) that if {cx} are dilation coefficients
for a scaling function then the followings hold.

(1) ch =2,

kCZ
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(2) chZ = 27

kEZ
and
(3) Z ckCr41 =0
keZ

for every nonzero even integer [.
First, we will show that there is a unique scaling function supported
in intervals of length not greater than 1 — the box function.

THEOREM 1. The dilation coefficients for a scaling function with sup-
port in the interval [0,1] are

C(]:—C]:]..

Proof. Since the scaling function ¢ has the support in [0, 1], the dila-
tion equation looks like

&z) = cpd(2z) + c1 (22 — 1).

The sums in the conditions (1) and (2) become finite ones, and that in
(3) is an empty one.

Co + ci = 2,

cg + c:f = 2.
Solving these, we get ¢g = ¢; = 1.

It is well known that the characteristic function on the unit interval

[0,1] is really a scaling function and its dilation coefficients are as in the

theorem. Hence this is the unique scaling function supported in [0,1]. A
similar simple argument yields the following result.

THEOREM 2. The dilation coefficients for a scaling function with sup-
port in the interval [0,2] are either

(4) Cp = C) — 1,
or
(5) CiL =Cp = 1.

We note that the characteristic functions on the intervals [0, 1] and
[1,2] are scaling functions with dilation coefficients in (4) and (5) respec-
tively. If we make the support length longer, some interesting scaling
functions turn up.
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THEOREM 3. The dilation coefficients for a scaling function with sup-
port in the interval (0, 3] are either

(6)

14+ +/1+4p— 4p? 1—+/1+4p—4p?
Co=Pp, (1= 9 362:1_]), C3 = 2
or
(7)

1—+/144p— 4p? 14 +/1+4p —4p?
Co=p, C1 = 762:1——137 C3 =

2 2

where p is any real number in [(1 — v/2)/2,(1 +/2)/2].

Proof. Let ¢ be a scaling function with support in [0,3]. Then the
dilation equation is written as

(8) é(z) =cod(2z)+ c19(22 — 1) + c2¢(2z — 2) + c36(2z — 3)

and the conditions (1), (2) and (3) yield

(9) coteteztez=2,
(10) A+Etcitcl=2,
and

(11) cocy + c1e3 = 0.

Successively substituting z = 0,1,2, and 3 into (8), we obtain

¢(0) = co$(0),
¢(1) = c24(0) + c19(1) + cod(2),
#(2) = c3p(1) + c29(2) + c16(3),
$(3) = c34(3).

Suppose that ¢(0) # 0. Then ¢y = 0, and so the scaling function is as de-
scribed in Theorem 2. Hence we may assume that ¢(0) = ¢(3) = 0. Also
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we assume that ¢(1)¢(2) # 0 since otherwise the scaling function van-
ishes at every dyadic points. Then from the second and third equations
in the above we have

(12) coCz — 1o + 1 + Coyp = 1.
Solving (9), (10), (11) and (12) simultaneously, we complete the proof.

For each set {cq,c1,c2,c3} of coefficients given by (6) with parameter
1/2 < p < (14 +/2)/2, define a new set {c},c},ch,c,} of coefficients by
replacing the parameter in (7) by p' = (1 — /1 +4p —4p?)/2. Then
(1—+/2)/2 < p' < 1/2. We see that

' ' ' o
C():CS, C1:CQ, CQICI, C3 = €y,

and that the corresponding scaling functions, if they exist, are symmetric
to each other with respect to the vertical line z = 3/2.
On substituting p = (1 + v/3)/4 in (6), we obtain the coeficients

1+v3  _3+v3  3-v3  1-V3

g YT Ty T T 8T T
To these coefficients there corresponds a celebrated scaling function due
to Daubechies. Putting p = (1 —+/3)/4 in (7), we obtain the coefficients
(14) cg:l—_\/3 cl-—-3—\/§ c2:3+\/5 C3 1+\/§.

4 7 4 4 4

The corresponding scaling function is symmetric to Daubechies’. Pollen
[3] derived various properties, including the regularity, of Daubechies’
scaling function from the dilation equation with coefficient in (13). In
the following we prove that these two scaling functions are the unique
ones with high regularity.

(13) Cyp =

THEOREM 4. Let ¢ be a scaling function with support in the interval
[0,3]. Suppose that ¢ is left or right differentiable. Then the dilation
coefficients are either as in (13) or (14).

Proof. We proceed as in the proof of Theorem 3. The dilation co-
efficients should satisfy (9), (10), (11) and (12). Assume that ¢ is left
differentiable and denote its left derivative by ¢'. From (8), we have

¢'(z) = 2¢p8'(22) + 2¢1¢'(22 — 1) + 2¢2¢'(22 — 2) + 2¢36'(22 — 3).
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By successively substituting z = 0,1,2 and 3, we obtain

¢'(0) = 2c0¢'(0),
¢'(1) = 2¢24'(0) + 2c19'(1) + 2¢0¢'(2),
¢'(2) = 2¢3¢'(1) + 2¢29'(2) + 2¢14'(3),
¢’(3) = 203@5’(3)-

Again, we may assume that ¢'(0) = ¢'(3) = 0. From the second and
third equations it easily follows that

1
(15) 2cpc3 —2c1c2t 1+ e = 5
Simultaneously solving (9), (10), (11), (12) and (15), we get the desired
result.

Finally, we show that each set of coefficients given by Theorem 3
except for a single one really produces a scaling function for a multires-
olution analysis.

THEOREM 5. To each set of coefficients given by (6) or (7) there
corresponds a scaling function for a multiresolution analysis, where p # 1

in (7).

Proof. We will consider only the case when {cx} are given by (7)
since the other case can be treated similarly. Consider the trigonometric
polynomial

P(&) = cp + 1€ 4 2 4 ¢5e3.

By a theorem due to Mallat (see Theorem 2 in [2]), it is enough to show
that this trigonometric polynomial is nonzero for || < 7 /2. Straightfor-
ward calculations using (10) and (11) lead to

IP(@\Q = 0003(63if + 6-3“5) + (coc1 +c1c0 + (?203)(6“5 + eﬁie) +2
= (4p + 4p\/1 + 4p — 4p?) cos® ¢
+ (2 —4p — 4p/1+ 4p — 4p*)cos€ + 2.
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We see that 0 < cos¢ <1 for €| < /2. Consider the cubic polynomial

f(t) = (4p +4pV/1 +4p — 4p*)t° + (2 — 4p — 4p\/1 + 4p — 4p?)t + 2

for0<t<1. If0<p<(1- V23 + \/5)/4 then the minimum of f is
2, and otherwise it is

o [4p+ 4py/T + 4p — 4p? — 2
SRPAINVIT W W 2y ap /T4 dp—4p?) 4 2,
3V 3(4p + 4py/1 + 4p — 4p?)

which 1s positive unless p = 1.
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