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ON QUASIAFFINE TRANSFORMS
OF QUASISUBSCALAR OPERATORS

EuncgiL Ko

1. Introduction

In this paper we characterize the quasiaffine transforms of quasisub-
scalar operators.

Let H and K be separable, complex Hilbert spaces and £(H, K)
denote the space of all linear, bounded operators from Hto K. IfH = K,
we write L(H) in place of L(H, K). A linear bounded operator S on
H is called scalar of order m if there is a continuous unital morphism of
topological algebras

®: Ci'(C) — L(H)

such that ®(z) = S, where as usual z stands for the identity function on
C, and C§*(C) stands for the space of compactly supported functions
on C, continuously differentiable of order m, 0 < m < co. An operator
1s subscalar if it is similar to the restriction of a scalar operator to a
closed invariant subspace. We now define the weaker form of a subscalar
operator. An operator T in £(K) is quasisubscalar if there exists a one-
to-one V' in L(K, H) such that VT = SV where S is a scalar operator.

Let us define now a special Sobolev type space. Let U be a bounded
open subset of C and m be a fixed non-negative integer. The vector val-
ued Sobolev space W™(U, H) with respect to d and order m will be the
space of those functions f in L*(U, H) whose derivatives 3f, ... ,0™f
in the sense of distributions still belong to L?(U, H). Endowed with the
norm

171 = D _ 16113,
1==0
W™ (U, H) becomes a Hilbert space contained continuously in L(U, H).
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An X in L(H, K) is called a quasiaffinity if it has trivial kernel and
dense range. An operator S in L(H) is said to be a quasiaffine trans-
form of an operator T in L(K) if there is a quasiaflinity X in L(H, K)
such that XS = TX (notation; S < T). The paper has been divided
into three sections. Section two deals with quasiaffine transforms of hy-
ponormal operators. In section three, we study quasiafline transforms of
quasisubscalar operators.

2. Quasiaffine transforms of hyponormal operators

An operator W is called a unilateral weighted shift if there is an
orthonormal basis {e, : n > 0} and a sequence of scalars {a,} such
that We, = anenqq for all n > 0. It is not hard to note that W is
bounded if and only if {a,} is bounded. Bilateral weighted shifts are
defined analogously.

ProposiTION 2.1([Co 2, PROPOSITION 8.6]). A weighted shift is
hyponormal if and only if its weight sequence Is increasing.

The following example shows that quasiaffinity does not preserve hy-
ponormality.

EXAMPLE 2.2. Let H be a separable Hilbert space and let {e,} be
an orthonormal basis of H. Define a weighted shift W on H as follows;

Weg =€, Wey = \/éeg, We, = epyr for all n > 2.

Then there exists an operator X in L(H) such that Xeg = ¢g, Xe1 = e,
and Xe, = %en for all n > 2. It is clear that X is a quasiaffinity, and
that XW = SX where S is the unilateral shift. But from Proposition
2.1, W is not hyponormal.

PROPOSITION 2.3. Let T in L(H) be hyponormal, and let A be any
operator in £L(H) such that A < T. Then ker(A — z) = ker(A — z)? for
every z € C.

Proof. Let z € C. Since (T — z)(T — z)* < (T — z)*(T — z), there is
an operator K, € L(H) (see [Do]) such that

T—2=(T-2)K,.
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Since (T — 2)* = K}(T - z),
ker(T — z) C ker(T — 2)*.

If z € ker(T — 2)?, then (T — z)z € ker(T — z). Therefore, (T —-2)z €
ker(T — z)*.
That implies

(T = 2)e||* = (T ~ 2)(T — 2)z.2)
< T = 2)%(T = 2)z|ll|=|| = 0.

Thus z € ker(T — z). That is, ker(T — 2)® C ker(T — z). Trivially
ker(T — z) C ker(T — z)?, so ker(T — z) = ker(T — z)2. Now we want to
show that ker(A4 —z) = ker(A —z)?. Clearly, ker(A —z) C ker(4—z)2. If
z € ker(A — z)?, then (A — z)?z = 0. Let X be a quasiaffinity such that
XA =TX. Then X(A— z)’z =0. Since XA = TX, (T — 2)*Xz = 0.
Therefore, Xz € ker(T — z)? = ker(T — z). Since (T~ 2)Xz = 0, X(A -
z)z = 0. Since X is one-to-one, (A — z)z = 0. Therefore, z € ker(A — z).

DEFINITION. An operator T in £(H) is said to satisfy the single val-
ued extension property if for any open subset U in C, the function

z—=T:0(U, H) — O(U, H)

defined by the obvious point wise multiplication is one-to-one where
O(U, H) denotes the Fréchet space of H-valued analytic functions on U
with respect to norm topology. If, in addition, the above function z — T
has closed range on O(U, H), then T satisfies the Bishop’s condition (8).

In other terms, condition () means that, for any open set U , and any
sequence of analytic functions f, € O(U, H), lim f, = 0 in O(U, H)
whenever lim (z — T)f, = 0. In particular, (zn:.%o)g = 0 if and only if
g =0, whe:lr-;()go € O(U, H).

LEMMA 2.4([MP, THEOREM 5.5]). Every hyponormal operator has
property (8).
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PROPOSITION 2.5. Let T € L(H) be hyponormal, and let A be any
operator in L(H) such that A < T. Then A has the single valued

extension property.

Proof. For any open subset U of C, let f € O(U, H) such that (2 —
A)f = 0. Let X be a quasiaffinity such that XA = TX. Since X 1s
one-to-one, X(z — A)f = 0. Therefore, (z — T)Xf = 0. Since T has
the single valued extension property by Lemma 2.4 and X is one-to-one,

f=0.

3. Quasiaffine transforms of quasisubscalar operators

THEOREM 3.1. Let T € L(H) be quasisubscalar, i.e., There exists

an one-to-one V of H into H(D) defined by 1 ® h + (z — T)W™(D, H)
. B w™(D, H) .

such that VT = M,V where H(D) = A~ T)W(D, H)’ M, is the

multiplication operator on W™ (D, H), and M, is the class of M, on

H(D). Let A € L(H) be any operator such that XA = TX where X is

one-to-one. Then A is quasisubscalar.

REMARK. Since V and X are one-to-one, VX is one-to-one. There-
fore, VX implements the quasisubscalar properties. But we shall use
Putinar’s technique to prove Theorem 3.1.

LEMMA 3.2. ran(z — A) # W™(D, H).

Proof. If not, ran(z — A) = W™(D, H). Since XA = TX, X(ran(z—
A)) C ran(z — T). That implies X (ran(z — A)) C ran(z — T'). From the
hypothesis, XW™(D, H) C ran(z — T). Therefore, VXh = 0 for any
nonzero h in H. Since V and X are one-to-one, h = 0. So we have a

contradiction.

Proof of Theorem 3.1. Since ran(z — A) # W™(D, H) from Lemma

3.2, there is a non-zero

Wwm(D, H)

I': H
T Wz - AWm(D, H)

defined by Th =1 ® h + (z — A)W™(D, H). It is enough to show that
T is one-to-one. If not, there exists a non-zero h € H such that Th = 0,
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e, h € (2 — AYW™(D, H). Therefore, there exists a sequence {gn} €
W™(D, H) such that

lim (= ~ A)gn — hlwn = 0.

That implies
lim || X(z — 4)g, — Xh|jwm = 0.

Since XA =TX,
lim ||(z = T)Xgn, — Xh|lwm =0.

Since {Xgn} € W™(D, H), Xh € ran(z — T). Therefore, VXh = 0.
Since V and X are one-to-one, h = 0. So we have a contradiction. Thus
I' is one-to-one. Therefore, A is quasisubscalar.

COROLLARY 3.3. Let T € L(H) be hyponormal, and let S be any
bounded linear operator such that XS = TX where X is one-to-one.
Then S is quasisubscalar.

Proof. Since T is subscalar by [Pu], it follows from Theorem 3.1.
COROLLARY 3.4. If X is bounded below in Corollary 3.3, then S is a
non-hypo-
normal subscalar operator of order 2.

REMARK. Corollary 3.3 implies that W in example 2.2 is non-hypo-
normal quasisubscalar.

The next result generalizes Lemma 2.4 in [Pu].

THEOREM 3.5. Let T € L(H) be hyponormal, and let S be any
operator in L(H) such that XS = TX where X is one-to-one. Then the
operator

z— S : W¥D,H) — WD, H)
is one-to-one for an arbitrary bounded disk D in C.

Proof. Let f be in W?(D, H) be such that (+ — S)f = 0. Then
X(2=8)f =0. Since XS =TX, (z—T)X f = 0. Since z — T is one-to-
one by Lemma 2.4, X f = 0. Since X is one-to-one, f = 0. Thus 2 — §
1s one-to-one.
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