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ON MINIMAL STABLE RATIONAL INTERPOLANTS

JEONGOOK KIM

1. Introduction

Let z1,...,2, be an n-tuple of distinct points in the open unit disk D
in the complex plane. The classical Nevannlina-Pick interpolation prob-
lem is to find a function f(z) satisfying given interpolation conditions

(1.1) flzi)=wi, 1=1,...,n
and the stability constraint

(1.2) |f(2)] <1, forzeD.

An interpolation problem considered in [AA2] and [B] is a problem of
finding a rational function f(z) which satisfies (1.1) and (1.2) together
with interpolation conditions at so called mirror image array of points,
le.

(1.3) fEHY=w, i=1,...,n-1

(we assume 2; # 0, w; # 0 for all 1 < ¢ < n). On the other hand
papers such as [AA1], [ABKW], [K] study rational interpolants (without
considering stability condition (1.2)) which has the minimal possible
complezity. Here, the complexity of a rational function is measured

by McMillan degree. The McMillan degree of a rational function f(z)
represented as
n(z)

f(z)= iz n(z),d(z) coprime
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is defined by

(1.4) 8(f) := max{degn(z), deg d(z)}.

By a stable minimal solution, let us mean a rational solution satisfying
(1.1)-(1.3) and has the minimal possible McMillan degree.

In this paper the problem of finding a stable minimal solution 1s stud-
ied and a relationship between a minimal solution of (1.1), (1.3) and a
stable minimal solution is found. The central result is the following. If
a minimal solution fni, of (1.1), (1.3) is unique, then it is automatically
stable (i.e., (1.2) is fulfilled) and é(fmin) = n — 1. Otherwise, a mini-
mal solution of (1.1) and (1.3) is not necessarily stable and é( fmin) = n.
But, one can find a minimal stable solution of McMillan degree n 1n
the latter case. These results are followed by applying [ABKW] to the
parameterization of all Nevannlina-Pick interpolants given by [N] and
corrects [AA2].

2. The recursive algorithm of Nevannlina

The contribution of Pick is that solutions of (1.1). (1.2) exist if and
only if the so called Pick matrix

1 —wiw;
@21) A= [_&]
1—zizj 1<i,5<n

is nonnegative definite (see [P](1916)). In the rest of this paper we
assume that the Pick matrix A is positive definite and 8 denotes the set
of analytic functions bounded by 1 on D. Nevannlina (see [N](1919)),
on the other hand, derived a recursive algorithm which leads to a linear
fractional parameterization for the set of all solutions (when there exist
more than one solution). The recursive algorithm for finding all solutions
given by Nevannlina based on an inductive method can be formulated
as follows (see [N] for the details). Let

(2.2) O(z) = ©1(2)02(2) - -- Ox(2)
where for 1 <1 < n,
(2.3) o) = [ i W)

Wil (z—2)  1-z&
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with w? = w; and with

t—1 i—1
. W — W L .
(24) w; — J _1_-/ Z5 23

1 ~w;"1w;_l 1—z;z

for 1 <i<nand(:+1) <y <n. Then f is a stable rational solution
if and only if there exists a rational function g € 3 so that

ng(z)
dg(z)’

ng(z) } 0 [9(2) }
= 0O(z :
[dg(z) (=) 1
REMARK. Nevannlina's solution algorithm given in [N] is for the an-
alytic functions in 8 rather than for rational functions in 4. But the
difference between the algorithms is only the choice of f, at the end of
n inductive steps. If we choose f, as an analytic function in 3, then we

get a function in 8 and interpolating all the n-points, but the function
is not necessarily a rational function.

(2.5) fz) =

where

3. Minimal stable interpolation
First, some terminologies are introduced. By an m x m regular matriz
polynomial, we mean an m X m matrix whose each entry is a polynomial
and det P(z) is not identically zero. For a pair of controllable matrices
(A, B) ((see [Ka] for the definition of controllability) of sizes n xn, nxm
given by
z 0 T =y
A = ‘. . s B =
0 Zn Ly —Yn
(2; # zj if 1 # 7), it is said that (A4, B)is a left null pair of P(2) if
[z: —yi|P(2,)=0, for1=1,....n

and det P(z) # O for all z ¢ {z1,...,zn}. ( For a definition of a left
null pair for a matrix polynomial for more general case, the cases where
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if z; = z; or det P(z) has a zero of high multiplicities, see [BGR].) By
the degree of a n x 1 polynomial vector, we mean the highest degree of
its components. Let k; be the degree of the i-th column of P(z). Then,
P(z) is said to be column reduced if

> ki = deg det P(z).

Now we suppose any of z;, w; in (1.1) is not zero. Let

A’ 0 BT B
_ ¢ = ¢ q
N R
where
’zl 0 ]
" Zn
AC_ z—l—l y
-0 znv—~1—lj
3.2
(3:2) L
[B+I B—I] — 1 _wn
¢ ¢ @1 -1
-a’n-—l _1 .

Now, we present the next theorem which describes the properties of ©.

THEOREM 3.1. The matrix polynomial © in (2.5) has the following

properties.
(3.3) (A¢, Be) is a left null pair for ©
(3.4) O is column reduced

Proof. Upon substituting (2.4) for w;-, we get

(3.5) 1 ~wfowz) = aig[l —wh)

H



On minimal stable rational interpolants 813

and

(36) [~F T 10k(z-) = Bul-<F 1

for some complex numbers a;x, Bix. By applying (3.5) and (3.6) repeat-
edly to
1 —w](0102---0;)(2;) and to [~w; 1)(0,0, - - - @l)(zl_,) we can obtain

1 - w6(z) = [00],  [-a:116() = [00)

for all 1 <7 < n. Since deg det ©(z) is at most 2n, ©(z) has no more
zeros. Thus (A¢, B¢) is a left null pair of ©(Z) and deg det®(z) = 2n.

Next we prove (3.4). We note that the column degree of ' is at most
n by the construction of © in (2.2), where ' is the :** column of ©. But
the fact that

2n = degdetO(z) < the sum of column degrees of O(z)

nsures
(3.7) deg 8' =deg 8* =n

that is, the sum of column degrees of O is the same as deg detO(z).
Thus, © is column reduced by the definition.

Let us represent © by

(3.8) 0= [@“ 912] :

621 922

Suppose
a:{z,-,ij_1|l§i§n, 1<j<n-1}

and fnin denotes a minimal solution of (1.1), (1.3). The next theorem

is derived from Theorem 3.5 of [ABKW] or [AA1].
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THEOREM 3.2. A rational function f is a solution of (1.1), (1.3) if
and only if there exist polynomials p(z), q(z) for which

(3.9) f=(O11p + ©129)(O21p + O229) ™"

where ©31p + ©O32q has no zeros in . Moreover if ©,; has no zeros in
o, then

(3.10) frin = 01205,

is a unique minimal solution with é( fmin) = n—1. Otherwise §( fmin) = n
and for constants p, ¢ such that (©2;p + O22q) has no zeros in o

fmin = (©11p + ©12¢)(O21p + O229) "

is a minimal solution.

Proof. Since O(z) has (4, B;) given by (3.2) as its o-left null pair, all
solutions of (1.1), (1.3) can be parametrized as (3.9) by Theorem 16.4.1
of [BGR]. If we set

A _ofl 0 _[61n 6y
9_6[0 (1—2571)_1}_[@21 @22}

then © is column reduced having (A , B}) as its left null pair because
deg det® = 2n — 1 = deg 6' + degh?

where 67 is the i** column of (:)(z) If ©35 has no zeros in o, then @22,
by its construction, has no zeros in o and fpn(2z) = (:)12(:)2_21 s a unique
minimal solution with é6( fyin) = n — 1 by Theorem 3.5 of [ABKW].
Noting that (:)12@2_21 = @1262_2,1, we conclude that fiun = @129521 is a
unique minimal solution with é(fmin) = n — 1. If Oy, has a zero in o,
then ©,, has a zero in o. In this case, by Theorem 3.5 of [ABKW] a
minimal solution of (1.1), (1.3) fmin is not unique with

(3.11) Omin = N,
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where 6pmin represents the McMillan degree of a minimal solution. If

f(z) = (©11p + ©12¢)(O21p + O229) !

for constants p, g such that (©2;p+ O229) has no zeros in o, by Theorem
16.4.1 of [BGR], f is a solution of (1.1), (1.3). To find the McMillan
degree of f we note that 6(f) is at most n because deg 8' = deg 6% = n.
But (3.11) says 6(f) is at least n. Thus f = fnin is a minimal solution
with 5(fmin) =n.

The following theorem is our main result which gives the McMillan
degree of a minimal stable solution.

THEOREM 3.3. A rational function f is a stable solution if and only
if there exists g € B for which

(3.12) 0219 + O22
has no zeros in ¢ and
(3.13) f(2) = (O119 + 012)(O219 + Oz0) 7.

If ©,; has no zeros in ¢ then fui, given by (3.10) is automatically stable.
Otherwise, fmin 15 not necessarily stable but there exists a € C such that
la} < 1 and

fmin = (©110 + 013)(O21 + O3;) 7!

is a minimal stable solution with 6(fmin) =n.

Proof. Recall that by (2.5) all solutions satisfying (1.1), (1.2) are
parametrized as (3.13) (without the extra constraint (3.12)). But for
f in form of (3.13) to be a solution of {1.1) and (1.3), the condition
(3.12) should be fulfilled by Theorem 3.2. Thus all solutions of (1.1)-
(1.3) can be parametrized as (3.13) together with the constraint (3.12).
Let fmin denote a stable solution of (1.1), (1.3). Suppose O, has no
zeros in o. Upon considering

o] =e[1].
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fmin = @1262_21 also satisfies (1.2) by (2.7), that is, fqin is automatically
stable.
Now we consider the case where ©4, has a zero in . Let

A ={(a,b) € C?*|(O21a + O2b)(1) = 0 for some yx € o}
B ={(a,b) € C?| |a] < |b]}.

Since A€ is dense in C? and B is an open set, there exists (p, q) € A°NB.
If we set & = p/q, then |a| < 1 and hence f(z) = (01,0 + 012)(O2a +
O2,) 7! is a solution of (1.1), (1.2) by (2.7). But the fact that (p,q) € A®

and Theorem 3.2 insure f(z) is a solution of (1.3). Now we compute §( f).
We easily see that §(f) < n. But Theorem 3.2 says that n is the minimal

possible McMillan degree for the stable solutions. Hence 6(f) = n. This
completes the proof.

COROLLARY 3.4. If ©y, has no zeros in o, then a stable minimal
solution fpin is unique with 6( fmin) = n — 1. Otherwise, fumn is not
unique and 6( fmin) = n.
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