MODULES OF QUOTIENTS OVER COMMUTATIVE RINGS*

HEISOOK LEE

In [3] Goldman introduced the notion of modules of quotients of a ring with respect to an idempotent kernel functor, which is a generalization of the locallization of a module with respect to a multiplicative subset of a commutative ring. For an idempotent kernel functor σ on the category of R-modules and for an R-module M, let $Q_{\sigma}(M)$ denote the module of quotients with respect to σ .

In this note we compute $Q_{\sigma}(M)$ in terms of usual localization if σ is determined by a set of prime ideals. We first recall the following definitions and basic properties. For more detailed discussion we refer [2, 3, 4]. We assume all rings in this paper are commutative with identity.

DEFINITION 1. A functor σ on R-mod, the category of R-modules, is called an idempotent kernel functor if the following properties hold:

- (1) For every R-module M, $\sigma(M)$ is a submodule of M.
- (2) If $f: M' \to M$ is a homomorphism then $f(\sigma(M')) \subset \sigma(M)$ and $\sigma(f)$ is a restriction of f to $\sigma(M')$.
- (3) If M' is a submodule of M then $\sigma(M') = \sigma(M) \cap M'$.
- (4) $\sigma(M/\sigma(M)) = 0$.

We say M is a σ -torsion (resp. σ -torsion free) R-module if $\sigma(M) = M$ (resp. $\sigma(M) = 0$). We denote by $\mathcal{L}(\sigma)$ the set of ideals I of R with the property R/I is σ -torsion. The set $\mathcal{L}(\sigma)$ is called the Gabriel topology associated to σ . A non-empty set \mathcal{L} of ideals of R is a Gabriel topology if it satisfies the following two conditions [2]:

- (1) (C1) If J is in \mathcal{L} and I is an ideal of R such that $(I:b) \in \mathcal{L}$ for all $b \in J$ then I is in \mathcal{L} .
- (2) (C2) If I is in \mathcal{L} and $I \subset J$ then $I \in \mathcal{L}$.

Received June 26, 1994. Revised July 27, 1994.

^{*}The research is supported by Korea Research Institute for Better Living, Ewha Women's University.

Given Gabriel topology \mathcal{L} , one can define an idempotent kernel functor σ by

$$\sigma(M) = \{ m \in M | Im = 0 \text{ for some I in } \mathcal{L} \}$$

for each R-module M. We write $C(\sigma)$ for the set of prime ideals of R not contained in \mathcal{L} . Then

$$\{I \triangleleft R | I_p = R_p \text{ for all } p \in C(\sigma)\} = \mathcal{L}.$$

Conversely, for each set \mathcal{P} of prime ideals, the set

$$\mathcal{L}(\mathcal{P}) = \{ I \triangleleft R | \ I_p = R_p \ \text{ for all } p \in \mathcal{P} \}$$

defines a Gabriel topology, and hence an idempotent kernel functor. A Gabriel topology defined by one prime ideal is called a principal topology. The intersection of principal topologies is again a Gabriel topology and called a primal topology [2].

In [3] definition of Gabriel topology for any ring is given. By this definition, if I and J are in Gabriel topology \mathcal{L} , $I \cap J$ is in \mathcal{L} . For any R-module M and a prime ideal p of R, let

$$M_{(p)} = \{\frac{m}{s} | s \text{ is a regular element not in } p \text{ and } m \in M\}.$$

Then $R_{(p)}$ is a localization of R and $M_{(p)}$ is an $R_{(p)}$ -module [1].

LEMMA 2. Let P be a set of prime ideals of R and let

$$\mathcal{L}((\mathcal{P})) = \{ I \triangleleft R | I_{(p)} = R_{(p)} \text{ for all } p \in \mathcal{P} \}.$$

Then $\mathcal{L}((\mathcal{P}))$ is a Gabriel topology.

Proof. For each prime p in \mathcal{P} , $I_{(p)} = R_{(p)}$ if and only if there exists a regular element in I not in p. To show $\mathcal{L}((\mathcal{P}))$ is a Gabriel topology, it suffice to show $\mathcal{L}((p))$ is a Gabriel topology for each p in \mathcal{P} . We note that $I_{(p)} = R_{(p)}$ if and only if there exists a regular element s in I which is not in p. To show $\mathcal{L}((p))$ satisfies C1, let I be in $\mathcal{L}((p))$. By definition, there exists a regular element s in I not in p. If I is an ideal of R such that I is a regular element I in I is in I. Clearly, I is an ideal of I is an ideal of I in I is in I. Clearly, I in I is an ideal of I in I i

REMARKS. (1) If R is an integral domain, then $\mathcal{L}(\mathcal{P}) = \mathcal{L}((\mathcal{P}))$.

(2) It is not clear whether the Gabriel topology $\mathcal{L}((p))$ is a principal topology, but $\mathcal{L}((p))$ and $\mathcal{L}(\mathcal{P})$ are primal topologies.

For M an arbitrary R-module, the module of quotients of M with respect to an idempotent kernel functor σ , denoted by $Q_{\sigma}(M)$ is a faithfully σ -injective module containing $M/\sigma(M)$ as a submodule unique up to isomorphism.

We note that if σ is defined by a multiplicative set S of R i.e., $\mathcal{L}(\sigma) = \{I | I \cap S \neq \emptyset\}$ then $Q_{\sigma}(M) = S^{-1}M$. We recall the construction of $Q_{\sigma}(M)$ from [3]. Since $Q_{\sigma}(M) = Q_{\sigma}(M/\sigma(M))$, for σ -torsion free R-module M, let

$$\Omega = \{(I, f) | I \in \mathcal{L}(\sigma), f : I \to M \text{ is an } R\text{-homomorphism}\}.$$

We define (I, f) and (I', f') are equivalent and denote by $(I, f) \sim (I', f')$ if there exists J in $\mathcal{L}(\sigma)$ with $J \subset I \cap I'$ such that $f|_J = f'|_J$. Then the set $Q_{\sigma}(M)$ of equivalence classes [(I, f)] is an abelian group under the operation

$$[(I, f)] + [(J, g)] = [(I \cap J, f + g)].$$

In general $Q_{\sigma}(M)$ is not easy to compute and $Q_{\sigma}(\)$ is not right exact functor in general [3, 4].

THEOREM. Let \mathcal{P} be a set of prime ideals of R, $\mathcal{L}((\mathcal{P}))$ be the Gabriel topology as in the lemma and let σ be the idempotent kernel functor determined by $\mathcal{L}((\mathcal{P}))$. Then for any torsion free R-module M,

$$Q_{\sigma}(M) \cong \bigcap_{p \in \mathcal{P}} M_{(p)},$$

 $M_{(p)}$ is viewed as a subset of $T^{-1}M$, where T is the set of all regular elements.

Proof. For any $z \in \bigcap_{p \in \mathcal{P}} M_{(p)}$, $z = \frac{x(p)}{s(p)}$ for some regular element s(p) of R, which is not in p and $x(p) \in M$. Since M is regular, x(p) is defined by z and s(p) uniquely. If both $\frac{x(p)}{s(p)}$ and $\frac{x(q)}{s(q)}$ become z in $T^{-1}M$, x(p)s(q) = s(p)x(q). For each z in $\bigcap_{p \in \mathcal{P}} M_{(p)}$, we define

$$I(z)$$
 to be the ideal generated by the set $\{s(p)|\ z=\frac{x(p)}{s(p)}\in\bigcap_{p\in\mathcal{P}}M_{(p)}\ \}.$

Then $I(z) \in \mathcal{L}((\mathcal{P}))$ by definition of $\mathcal{L}((\mathcal{P}))$. Define a map

$$\alpha \colon \bigcap_{p \in \mathcal{P}} M_{(p)} \to Q_{\sigma}(M)$$

by $\alpha(z) = [(I(z), f)]$, where f(s(p)) = x(p). Then α is well defined. It can be checked easily that α is a homomorphism of R-modules. Conversely, to define a map from $Q_{\sigma}(M)$ to $\bigcap_{p \in \mathcal{P}} M_{(p)}$, let [(I, f)] be in $Q_{\sigma}(M)$. Then for each p in \mathcal{P} , there exists a regular element s(p) in I not in p. If f(s(p)) = x(p) in M. We define a map

$$\beta \colon Q_{\sigma}(M) \to \bigcap_{p \in \mathcal{P}} M_{(p)}$$

by $\beta([(I,f)]) = \frac{x(p)}{s(p)}$, which is viewed as an element in $T^{-1}M$. Then $\frac{x(p)}{s(p)}$ is in $\bigcap_{p \in \mathcal{P}} M_{(p)}$. To prove this, let s(p) and s(q) be regular elements in I not in p, and let f(s(p)) = x(p) and f(s(q)) = x(q). Then s(p)x(q) = s(p)f(s(q)) = s(q)f(s(p)) = s(q)x(p), since f is an R-homomorphism. It follows that $\frac{x(p)}{s(p)} = \frac{x(q)}{s(q)}$ for all p and q in \mathcal{P} and hence $\frac{x(p)}{s(p)}$ is in $\bigcap_{p \in \mathcal{P}} M_{(p)}$.

It is clear from definition that β is well-defined. It can be seen easily that β is a R-homomorphism and $\alpha\beta$ = identity on $Q_{\sigma}(M)$ and $\beta\alpha$ = identity on $\bigcap_{p\in\mathcal{P}} M_{(p)}$. This proves the theorem.

NOTE. Let σ be as in the theorem. If M is a torsion free R-module then M is σ -torsion free. For if Im = 0 for some $I \in \mathcal{L}(\sigma)$, then m = 0, since I contains a regular element.

COROLLARY. Let σ be as in the above theorem. Then Q_{σ} is an exact functor on the category of torsion free R-modules, i.e., if

$$0 \to M' \to M \to M'' \to 0$$

is an exact sequence of torsion free R-modules then

$$0 \to Q_{\sigma}(M') \to Q_{\sigma}(M) \to Q_{\sigma}(M'') \to 0$$

is also an exact sequence of abelian groups.

Proof. The corollary follows easily from theorem, since

$$0 \to M'_{(p)} \to M_{(p)} \to M''_{(p)} \to 0$$

is an exact sequence if

$$0 \to M' \to M \to M'' \to 0$$

is an exact sequence.

References

- 1. D. D. Anderson, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1982.
- M. Beattie and M. Orzech, Prime ideals and Finiteness conditions for Gabriel Topologies over commutative Rings, Rocky Mountain J. Math. 22 (1992), 423– 440.
- 3. O. Goldman, Rings and Modules of Quotients, J. Algebra 13 (1969), 10-47.
- 4. J. Hahn and H. Lee, Torsion Theory and Local Cohomology, Comm. Korean Math. Soc. 4 (1989), 279-287.
- F. Van Oystaeyan and A. Verschoren, Relative Invariants of Rings, Monographs in pure and applied Mathematics, vol.79 Marcel Dekker Inc., New York, 1984.

Department of Mathematics Ewha Women's University Seoul 120-750, Korea