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MODULES OF QUOTIENTS
OVER COMMUTATIVE RINGS*

HEISOOK LEE

In [3] Goldman introduced the notion of modules of quotients of a ring

with respect to an idempotent kernel functor, which is a generalization
of the locallization of a module with respect to a multiplicative subset of
a commutative ring. For an idempotent kernel functor ¢ on the category
of R-modules and for an R-module M, let Q,(M) denote the module of
quotients with respect to o.
In this note we compute Q,(M) in terms of usual localization if o is
determined by a set of prime ideals. We first recall the following defini-
tions and basic properties. For more detailed discussion we refer [2, 3,
4]. We assume all rings in this paper are commutative with identity.

DEFINITION 1. A functor o on R-mod, the category of R-modules, is
called an idempotent kernel functor if the following properties hold:

(1) For every R-module M, o(M) is a submodule of M.

(2) If f: M' — M is a homomorphism then f(oc(M')) C o(M) and
o(f) is a restriction of f to o(M').

(3) If M'is a submodule of M then o(M') = o(M)N M'.

(4) o(M/o(M)) =0.

We say M is a o-torsion (resp. o-torsion free ) R-moduleif o(M) = M
(resp. o(M) = 0). We denote by £(c) the set of ideals I of R with the
property R/I is o-torsion. The set £(¢o) is called the Gabriel topology
associated to . A non-empty set £ of ideals of R is a Gabriel topology
if it satisfies the following two conditions [2]:

(1) (C1) If Jisin £ and I is an ideal of R such that (I : ) € £ for
all b€ J then I'isin L.
(2) (C2)IfI'isin Land I C J then I € L.

Received June 26, 1994. Revised July 27, 1994.
*The research is supported by Korea Research Institute for Better Living, Ewha
Women’s University.



798 Heisook Lee

Given Gabriel topology L, one can define an idempotent kernel functor
o by
o(M)={m € M|Im =0 for someIin L}

for each R-module M. We write C(o) for the set of prime ideals of R
not contained in £. Then

{I1aR| I, =R, forall pe C(o)} = L.
Conversely, for each set P of prime ideals, the set
L(P)={I<R| I, =R, forall pe P}

defines a Gabriel topology, and hence an idempotent kernel functor. A
Gabriel topology defined by one prime ideal is called a principal topol-
ogy. The intersection of principal topologies is again a Gabriel topology
and called a primal topology [2].

In [3] definition of Gabriel topology for any ring is given. By this defini-
tion, if I and J are in Gabriel topology £, IN J isin L.

For any R-module M and a prime ideal p of R, let

My = {—?[s is a regular element not in p and m € M}.

Then Ry is a localization of R and M(;) is an R(,)-module [1].
LEMMA 2. Let P be a set of prime ideals of R and let

L((P)) ={I<«R| I = Ry, for all p € P}.

Then L((P)) is a Gabriel topology.

Proof. For each prime p in P, I,y = Ry if and only if there exists
a regular element in I not in p. To show L((P)) is a Gabriel topology,
it suffice to show L£((p)) is a Gabriel topology for each p in P. We note
that [(,) = Ry, if and only if there exists a regular element s in I which
1s not in p. To show L((p)) satisfies C1, let J be in £((p)). By definition,
there exists a regular element s in J not in p. If I is an ideal of R such
that (I : b) € L((p)) for all b in J, then there exists a regular element
tin (I : b) not in p. Since ts is a regular element in I not in p, I is in

L((p)). Clearly, L((p)) satisfies condition C2.
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REMARKS. (1) If R is an integral domain, then £(P) = L((P)).
(2) It is not clear whether the Gabriel topology £((p)) is a principal
topology, but £((p)) and L£(P)) are primal topologies.

For M an arbitrary R-module, the module of quotients of M with

respect to an idempotent kernel functor o, denoted by Q,(M) is a faith-
fully o-injective module containing M/o(M) as a submodule unique up
to 1somorphism.
We note that if o is defined by a multiplicative set S of R i.e., L(0) =
{I] INS # @} then Q,(M) = S~'M. We recall the construction of
Qo-(M) from [3]. Since Q,(M) = Q,(M/a(M)), for o-torsion free R-
module M, let

Q={(,f)| I€L(o),f: I » M is an R-homomorphism]}.

We define (I, f) and (I', f') are equivalent and denote by (I, f) ~ (I', f')
if there exists J in £(o) with J C I NI’ such that f|; = f'|;. Then the
set Q (M) of equivalence classes |(I, f)] is an abelian group under the
operation

In general Q,(M) is not easy to compute and Q,( ) is not right exact
functor in general (3, 4].

THEOREM. Let P be a set of prime ideals of R, L((P)) be the Gabriel
topology as in the lemma and let o be the idempotent kernel functor
determined by L((P)). Then for any torsion free R-module M,

Qo(M) = () M),

pEP

M,y is viewed as a subset of T~'M, where T is the set of all regular
elements.

— z(p)
Proof. For any z € (,ep M(y), 2z = 311:)

s(p) of R, which is not in p and z(p) € M. Since M is regular, z(p)

() g 20

is defined by z and s(p) uniquely. If both () R% become z in

T~'M, z(p)s(q) = s(p)z(q). For each z in ﬂpE'P My, we define

for some regular element

I(z) to be the ideal generated by the set {s(p)| z = g(%% € m My }
€P
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Then I(z) € L((P)) by definition of L((P)). Define a map

a: (] My — Qa(M)

PEP

by a(z) = [(I(2), f)], where f(s(p)) = z(p). Then « is well defined. It
can be checked easily that «a is a homomorphism of R-modules. Con-
versely, to define a map from Qq(M) to (,cp M(y), let [(Z, )] be in
Qo(M). Then for each p in P, there exists a regular element s(p) in I
not in p. If f(s(p)) = z(p) in M. We define a map

B Qo(M ﬂ M,

pEP

by B([(1, f)]) = 3( ), which is viewed as an element in T~'M. Then s(p)
is in (,ep M(p). To prove this, let s(p) and s(q) be regular elements in

I not in p, and let f(s(p)) = z(p) and f(s(q)) = z(g). Then s(p)z(q) =
s(p)f(s(q)) = s(q)f(s(p)) = s(q)z(p), since f is an R-homomorphism.

It follows that i((]f)) = T(Z% for all p and ¢ in P and hence ig; 1s 1n

(Nper Mip):
It is clear from definition that 8 is well-defined. It can be seen easily

that 8 is a R-homomorphism and af = identity on @Q,(M) and fa =
identity on an’P M(,). This proves the theorem.

NOTE. Let o be as in the theorem. If M is a torsion free R-module
then M is o-torsion free. For if Im = 0 for some I € £L(0), then m = 0,
since I contains a regular element.

COROLLARY. Let o be as in the above theorem. Then @), is an exact
functor on the category of torsion free R-modules, i.e., if

0-M ->M->M'-0
is an exact sequence of torsion free R-modules then

0— QU(M’) — Qo (M) — Q,,(M") -0
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is also an exact sequence of abelian groups.

Proof. The corollary follows easily from theorem, since
0 — Mgy — My — M) —0
1s an exact sequence if
0—-M M- M'->50
is an exact sequence.
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