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REGULARIZED EISENSTEIN SERIES
ON METAPLECTIC GROUPS

YoUuNG Ho PARK

1. Introduction

Let V be a vector space of dimension m over Q, and let ( , ) be a
non-degenerate bilinear form on V. Let r be the Witt index of V, and let
V =V'+ V5 +V" be the Witt decomposition, where Vj is anisotropic and

V', V" are paired non-singularly. Let H = O(m — r,r) be the isometry
group of V, (', ), viewed as an algebraic group over Q. Let G = Sp(n)
be the symplectic group of rank n defined over Q.

Assume that m is even. Then G and H form a dual reductive pair,
and G(A) and H(A) act in the Schwartz space S(V(A)") by the oscillator
representation w for the fixed additive character ¢ of A. Here A denotes
the ring of adeles over Q as usual. For ¢ € S(V(A)™) we have the theta
kernel

g, hip) = Y wigh)p(z)= > wlglp(hz).

zeV(Q)® zeV(Q)"
The theta integral

I(g;¢) = / 8(g,h;¢)dh
H(Q)\H(A)

1s absolutely convergent if V' is anisotropic or m—r > n+1. It is shown in
[5] that there exists a certain differential operator D in the center of the
universal enveloping algebra of H(IR) such that for all » € S(V(A)"), the
function h — 6(g, h; w(D)yp) is rapidly decreasing and hence I(g;w(D)y)
is well-defined even when V is isotropic. As a consequence, we may
lift Eisenstein series from H(A) to G(A). In this paper we study the
metaplectic case (m is odd), in particular, the case m = 3, n = 2 and
obtain analogous results.
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2. Oscillator representation

Let V = Sym(2) be the vector space of 2 x 2 symmetric matrices over
Q. Let (, ) be the bilinear form on V given by (T,T) = — det(T) for
T € V. We fix a basis €', e, ¢ for V with (¢/,e') = (¢”,e") = 0 and
(e',e'") =1, and view V as a 3 dimensional space of column vectors over
Q. We have a Witt decomposition

(2.1) V=V 4V, +V"

where V' + V' is a hyperbolic plane of dimension 2 and V} is anisotropic
of dimension 1. Let H = O(V) be the isometry group of V,( , ). Note
that H(R) = 0(2,1) and that there is an isomorphism

M3,2 ~ V2 — V02 @W

(2:2) (ﬂfo) = (20, (¥, 7))
v

where W = Q* (row vectors).

Let G = Sp(2) be the symplectic group of rank 2 over @, and G =
S p(2) be the 2-fold metaplectic covering group of G. For any subgroup
G, of G, we let G1 be the full inverse image of the projection G —
G. The groups G and H form a dual reductive pair in Sp(6) The
oscillator representation w may be realized in a standard Schrodinger

model (w,S4), Sa = S(V(A)?), or in a mixed model (&, S, ), where
S = S(Vo(A)*) ® S(W(A))

and W is considered as a symplectic space with right G action. Recall
that H(A) acts linearly and commutes with G(A) in the Schrodinger
model. If P = M N is the Siegel parabolic subgroup &, where

M={m(a)=(".,-1)|a€ GL(2)}

and

N={nby=("2) 1b="0€5ym®},
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then the actions of P(A) in the Schrédinger model are given as follows:
For [m(a), €] € M(A)

w([m(a), e))e(e) = x([m(a), €)] |det(a)| ¥ p(za),

and for n(b) € N(A) — G(A),
w(n(B)p(z) = (5 tr(blz, ) (o),

where x = xv be the character of M(A)/M(Q) given by

e(det(a),(—1)"7" det(V)),
’y(det(a), %1,/)) '
and where ( , )a is the global Hilbert symbol. We refer [7, 8] for more

notations and details.
If we define the partial Fourier transform

x([m(a) €]) =

(2.3) Fo(zo,z,y) = @¢(zo,7,y) = /A2 PY(y'u)p (zo) du

T
for 7o € Vo(A)? and z,y,u € M1 2(A), then two models are related by

(2.4) @(g)p(z0, w) = wo(g)@(zo, wyg),

where wy is the oscillator representation for the dual reductive pair
(G, O(Vy)), so that G(A) acts linearly in the mixed model. By abuse
of notation we will again write w for & or for the derived representation
of the Lie algebra sp(6,R)) of Sp(6,R) on Sa.

Let Py be the maximal parabolic subgroup of H associated to the
decomposition (2.1), i.e., the stabilizer of isotropic line V". The Levi
decomposition of Py is given by Py = LU where

L= {m(a,ho): (aho ) la € GL(1), hy EO(VO)},
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U= {u(b): (lf‘_%fz)}.

The actions of Py on ¢ € S are computed as follows:

(25) w(m(a’ hO))‘ra(l'Oa T, y) = | det(a)|¢(h0x07 azr, ay)7
(2.6)  w(u(b)@(zo,2,y) = P(y'(bzo + 3b°2)¢(z0 + bz, 2, ).

3. A central differential operator
SL(2,R) acts on V(R) = Sym(2,R) by h-T = hT*h. This action
preserves the bilinear form ( , ) and we have an exact sequence
1— {+1} - SL(2,R) — H(R)’ — 1,
where H(R)? is the connected component of identity in H(R). Hence
H(R)® ~ PSL(2,R) and the Lie algebra of H(R) is h = s[(2,R). The
derived representation of we, for b is defined by

Woo(X ) = %woo(e:rp(tX))solmo.

Let H = (l 0>,X = (0 1) andY = ((1]?)) be the generators of s{(2, R).

01 00
It is then easy to check that

(3.1) woo(H)p (l’g) = Z (——2@% + Zyié%) @ (a:0>
— ; ; y

Y 7
T 2 X
0 0

(3:2)  weelX)e () =3 (2o ~wg )¢ ()

Y i=1 Y

x T

0 o

(3.3) woo(Y)p (Iyo) = ; ("‘miaTOi - 2330:'6—%/) P (xyo) ;

where z = (1, z2), etc. Let
(3.4) C=3;H*+H+2YX

be the Casimir element.
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LEMMA 3.1. Let D =C — 4. Then

(1) weo(D) commutes with the actions of G(R) and H(R)
(2) For all 3 € S(Vo(R)?) ® S(W(R)) = S(V(R)?), we have

e D)3(20,0) = 0
for all zo € V3(R)?.

Proof. For any ¢ € S(V(R)?), we have

dp - :
(50) (20,7,9) = ~aiyig(zo, 2,9)

Oy \~ ; 0¢
(i) (20,2,:8) = ~4(20,2,9) = vi 5 (w0, 2,1),

where a; = gy'_ (0). Therefore, we get
Woo( H)$(20,0,0) = —4¢(20,0,0), w(Y)p(z,0,0) = 0.

and hence, by (3.4), we have w(C)$(z0,0,0) = (8 — 4)3(z0,0,0). This
shows (ii). Of course, wo(D) commutes with actions of 5(R) and
of H(R)°. Note that H(R) = O(2,1) has 4 connected components
and is generated by H(R)?, hy, hy, where h; = diag(—1,1,—1) and
hy = diag(1,—1,1). Thus it is enough to show that w(C) commutes
with weo(h1) and we(hy). But the conjugation by we(h;) preserves
woo(H ), while it replaces weo(X) and weo(Y) by —weo(X) and ~wee(Y)
respectively, and hence it preserves wqy(C).

As a consequence we have [5]

PROPOSITION 3.2. As a function on H(Q)\H(A), 6(g,h,w(D)y) is
rapidly decreasing.

Let Ky be the compact subgroup of H(A) so that we have a global
Iwasawa decomposition

(3.5) H(A) = Py(A)- Ky.
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We write any element h € H(A), via (3.5), as h = u(b)m(a, ho)k, and

let |a(h)| = |a| = | det(a)|. Define an Eisenstein series
Blhs)= > la(yn)I"*t.
YEPH(Q\H(Q)

This series converges absolutely for Re(s) > 3, has a meromorphic an-
alytic continuation, and its only pole is s9 = 7, which is simple [2]. By
Proposition 3.2 above, we may define the integral

30 IeseD) = [ i, OB DIRE )

for g € é(A), @ € Sa. This integral is absolutely convergent whenever
the Eisenstein series is holomorphic and hence defines a meromorphic
function of s. Our goal is to identify this function with an Eisenstein
series on G(A), closely following [5] or [6].

4. Regularized theta lift of E(h,s)
Unfolding the integral (3.6), we have

I(g, s;0(D)p) = / 6(g, b, w(D)g)|a(h)|* ¥ db.
Pr(Q\H(A)

This is

/ / / 6(g,um(a, ho)k,w(D)¢)x,
Kg JLIQ\L(A) JUQ\U(A)

|als+% la] ™! du dm dk

- / / 6(g, um(a, ho),w(D)pricy ()
L(Q)\L(A) JUQN\U(A)

|a]s_% du dm
where prg,. (@) = fh’a w(k)p dk is the projection of ¢ to the Ky invari-

ants in S4. As usual, let

Ou(g,h,p) = / 8(g,uh, ) du
UQ\U(4)

be the U-constant term of 6(g, -, ¢).
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PROPOSITION 4.1. For ¢ € Sa,

HU(gah’w(D)Sa) = Z w(vg)w(h)w(D)‘la(O’xO?vtwO)v
vTEP(Q\G(Q)
teQX
z02€Vo(Q)
where P C G is the maximal parabolic subgroup which stabilizes the
line generated by wo = (0,0,1,0).
Proof. By Poisson summation formula and (2.4), and by Lemma 3.1,
89, h,w(D)p) = Y, wlg, hw(D)$(v)
veV(Q)?

= 2 > wlg(h)e(D)p(zo, wg).
0#£wEW(Q) z0€Va(Q)?
Since G(Q) acts transitively on W(Q) — {0}, we have

6(g, h,w(D)p)
= ¥ > wol(g)w(h)w(D)@(zo, twovg)

TEPQNG(Q) X
zo€EVo(Q)?
= Y Y w(rge(he(D)(ro, tworg)
YEPL(QN\G(Q) 4@
T0EVe(Q)?

Z Z w("yg, h)w(D)SZ’(‘TU’twO)'
VEP(Q\G(@) g
To€Vo(Q)?

Here we have used the invariance of the sum on zy under G(Q). From
(2.6), by letting @' = w(yg)w(h)w(D)p, we have

6u(g, hyw(D)p) = /Q L Hauh (D)) b

li

= b(L‘glt db 5! .Z(),two
> ( @\Aw( ) )99( )

Y tzo

ZZ Z $'(0, zog, twy)

7|t IozGVo(Q)
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By Proposition 4.1 and (2.5), with ¢" = w('yg‘])w(D)erH(cﬁ), we ob-
tain

I(g,s,w(D)p

/@X\AX /1:1 Z Z |a‘s+2‘p (0, zq2, atwg) dhy da

(Q)\HO(A) te@x ~¥,To2

=;/Ma+—

Define a map T : S(V(A)?) — S(Vo(A)) by

/ @II(O’ xO’Z’ awo) dho da.
Ho(Q\Ho(4) T92€Vo(Q)

Tcp(a:og):/ |a|3+%¢(0,z02,aw0)da.
AX

and for pg € S(Vo(A)), define a theta series

10(990):/H Z w(ho)ﬂpo(itoz)dho-

o (W\Ho(A) z02€Vo(Q)

If we let
F(g,s,9) = L(Tw(g)p) = /A lal** 2 o (w(g)$(0, -, awo)) da™,

then we have

I(g, S,W(D)(P) = Z F(7g’ S,UJ(D)[)T‘KH (‘P))
YEP(Q\G(Q)

We have the Levi decomposition P; = M; Ny, where

M, = {ml(t,g()) - ( ”) tecLn), g=(14)¢ sp(1>}

>~ GL(1) x Sp(1) -
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1s the Levi factor, and

nfrno=(11)

1s the unipotent radical of P;. Since the covering G—G splits over Ny,
we have Pl M1 Ny.
Recall that P = MN is the Siegel parabolic subgroup of G and the

multiplication in M is given by
[m(a1), e1][m(az), &2] = [m(a1az), e1€e2(det ay, det az)a).
If we let GL(1) := GL(1) x {1}, where the multiplication is given by
[t ][t €] = [tt', e€'(2,¢')],

then the map GL(l) - G, [t,e] — [ml(t 1), €] is thus an injective ho-
momorphism. Also the map Sp(l) - G, (90, € — [m1(1,90), €] gives an
1n_1ect1ve homomorphlsm [ ]. Usmg these 1dent1ﬁcat10ns we may write

GL(l)Sp(l), with GL(l) n S'p(l) = {[1,+£1]}. Note that GL(I)
commutes with Sp(l)

A representatlon 7 of a subgroup of G is called genuine if 7([1,€]) = e.
Suppose G1,G2 C G such that they commute and G; N Gy = {[1, £1]}.
If my, m, are genuine representations of Gy, G, on V™ V™ respectively,
then we can define a new representation m; ® my of Gl G, on the space
V™ @ V7™ by the formula 71 ® 72(g192) := 71(g1) ® m2(g2).

Returning to our business, we study more on the functions F(-, s, ).
We denote by 6, the automorphic representation of :S:E)(l, A) on the space
generated by theta functions g — Io(-, o), for o running over S(Vy(A)).
From the formulas given in §2 for the oscillator representations, it is not
difficult to check

LEMMA 4.2. Let 6ﬁ1 be the modular character of ﬁl, and

Xs([t€]) = x([ma(t, 1), €] |,
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which is a genuine character of GL(1, Q)\EE(I, A). Then
(1) F(nyg,s,9) = F(g,s,p) for ny € N1(A).

(2) F([ml(t71),6]g757§9) = Xs([t,e])éﬁl(ml(t,1))%F(Q,S,(’9) for t €
GL(1,A).

Thus we can conclude that for all ¢ € Sa,

G(A
F(.,5,0) € I(s,6y) := Indﬁl((l;)(xs ®6bh).

Here I(s,6,) is realized on the space of smooth and right K-finite func-
tions _

¥ Ni(A)M(Q\G(A) - C
such that

(i) for all g € G(A), the function gy — ¥(gog,s) (g0 € Sp(1,A)) lies
n 60.

(i) for £ € GL(1,A) — Pi(A),
U(lg,s) = xs(Ho5 (D7 U(g, ),

where K is a fixed maximal compact subgroup of G(A) such that G(A) =
P(A)K and hence G(A) = P(A)K.

5. Action of w(D)
To compute the action of w(D), we need the following [1]:

LEMMA 5.1. Let C' (resp. C) be the Casimir operator of Sp(n,R)
(resp. O(p,q)), and m = p+q. Then

%Am — 2)w(C) = 4(n + Dw(C') — %(’—;— —n-1).

Specializing to our case n = 2, m = 3, we have w(C) = 6w(C") + %.
Hence if we let

' NN et T
D—(Gw(C)+4) 4 =6C 7
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then w(D) = w(D'). Now we note that the map ¢ F(-,s,¢) de-
fines an intertwining map from Sy to I(s, o) for Re(s) sufficiently large.
Therefore we have

F(g,s,w(D)p) = F(g,s,w(D")p) = F(g,s,p) * D".

Hence, it suffices to compute the scalar by which D' acts in the induced
representation I(s, ). We have the factorizations [3]

Xs = ®’UX3,‘U, 90 = ®7190,v

and hence

I(S,e()) = ® (Indgl"qu,u & 90,11) )

where the local induced representations are defined similarly to the global
induced representation.

Temporarily we fix the place v = co and suppress the index v for no-
tational convenience. We also change the notation and let G = Sp(n, R).
As usual, let B be the Borel subgroup of G with the unipotent radical
N. Let

At ={(*,~1)]a= diag(ai,...,as),a; >0},
K:{(izwa+M€Um”,

and let M be the centralizer of A in K. Note that

M = { [(mm—l),f] | m = diag(+1,...,%1), e::i:l}.

The covering map G - G splits over A1 and N, and the Iwasawa
decomposition of G is G = NATK. Also, since én is a connected semi-
simple Lie group with finite center, Harish-Chandra’s general theory
is applicable. In particular, every irreducible unitary representation is
admissible, and is a subquotient of some (possibly non-unitary) principal
series representation of the following type. .

Write the Langlands decomposition B =MA*N. Let g, a be the Lie
algebras of G, A%, resp., and let p be the half the sum of positive roots
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of (g,a), 7 irreducible unitary representation of M .on the space V7,

and v € ap. Then the induced representation U(E, T, V) = Indf/[A+NT ®
exp v®1 is realized on the closure of the subspace of continuous functions

F: G, — V7 satisfying
F(mang) = ¢"*P1°8 2 (m)F(g)

for all man € MAYN, and Sz |F(k )|? dk < oo. It is well known that
U(B,r,v) has infinitesimal character v, that is U(z) = £(z)(v) for all
z € Z(gc), where ¢ is the Harish-Chandra homomorphism. In particular,
we have

U(C) =< v,v>—<p,p>,
where < , > is the Cartan-Killing form of g.

Coming back to our notation and still suppressing the index v = oo,
let G = Sp(2,R), Gy = Sp(1,R). We will put the subscript 0 for the
objects belonging to Gg in the d1scuss1on above, so that Gy = NUA I\.O,
etc. We have wy = wi Guwg , where wi (resp. wy ) denotes the restriction
of wg to the space of even (resp. odd) functions. Gelbart {4] showed that

they are subquotients of U (Eg, 79,) for vp = § and for some genuine
representation 75 of Mo
We may regard M, as a subgroup of M by the natural injective

homomorphism
[ila E] = [m](lv :t]-)a G].

If we let M = {[mi(£1,1),€} C M, then we have M = Mlﬁo with
M N M, = {[1,£1]}.

THEOREM 5.2. I(s,0) is a subquotient of the double induced repre-
sentation

Imgﬁwmmgm®w):mﬁnw
fort = Xsiz' ® To and v = (s, %

Proof. We first note that

1z y =2
NZ%@W%MZ(IiMﬂ}ZMXM.
-z 1
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For t,a € R, let 6(t,a) = diag(¢,a,t™!,a™"). It is enough to compute
the transformation rule of ¥ in the double induced representation above
under [6(e;,¢€,),€)6(t,a)n(z,y,2,0) € B = MAT N, where €;,¢e, = +1,
e = +1, and ¢,a > 0. Indeed, we have
‘I}([(S(el s 62)3 6]6(t, a)n(:c, Y, 2, b)g)

=U([mi(et, 1), €][m1(1, (eza (e2a)-1 )5 €' Tma(1, (0 1))711(:1: Y,2)g9)

=xs([ext, €)ro([e2, €))a? ¥(g) = x,([er, €)ro([e2, €"])t*a? T (g)

=Xs iz @ To([6(e1, €2), €))t°a2 ¥(g),

where ¢, €' = £1 satisfying € = €'¢" (€1, €2).

Since p = (2,1) and <, >=

y ) Where (, ) is the usual inner
product on R? we obtain U(C”) = —13( 2

22}, and hence

U(D') = 6U(C') - = = —;—(452 — 33) = P(s).

SIS

Returning to the global situation, we finally obtain the

THEOREM 5.3. Let C be the Casimir element of the universal en-
veloping algebra of H(R), and let D = C—4. Then for all p € S(V(A)?),

I(g, 5;w(D)g) = / 6(g. b w(D)o)E(h, s) dh
H(Q)\H(A)

= > F(yg,5,9(D)priy(v))
Y€ PL(Q\G(Q)

defines an Eisenstein series on é(A) attached to the maximal parabolic
subgroup P ~ GL(l) X Sp(l) of G and to the induced representation
IG (xs ® 6y) of G(A\ Furthermore,

I(g,5;w(D)p) = P(s) > F(vg,8,pri, (%))
+€PL@\G(Q)
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