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ON IMPROVING GAUSS-NEWTON
METHOD FOR NONLINEAR EQUATIONS

SUNYOUNG KIM

1. Introduction

We consider the following problem.

Determine a point z* = (z7,... ,m:l)T
for given function fi(z) = fi(z1,...,20), k=1,...,n
fl(:El,..‘,:L‘n)
f(z) =
fa(z1,. .. z0)

which satisfies

(1) f(=*) =0

The classical methods to (1) are Newton’s method, Broyden method
[1] in Quasi-Newton class ({2], [7], [9], {10]), Gauss-Newton method [8]
which approximates fx,k = 1,..,n by a linear function. A linearization
technique is: If we assume that £ = ¢ is a zero for f, that zo i1s an
approximation to £, and that f is differentiable for 2 = zo, then to a
first approximation

0= f(&) = f(xo) + Df(x0)(€ — 7o),

where D f(zo) is the Jacobian at zo. If the Jacobian D f(zo) is nonsin-
gular, then the equation

(2) f(zo) 4+ Df(zo)(z1 —z0) =0
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can be solved for z;:

z1 = 2o — (Df(20))™" f(0)

and z; may be taken as a closer approximation to the zero €. The
differences between Newton’s method and Gauss-Newton method lie on
how the Jacobian is obtained and the equation (3).

The generalized Newton method for solving systems of equations is
given for

(3) Tiv1 = T; — (Df(l‘,‘))‘lf(l‘,'), 1= 0, 1,2, Cas

If welet z; =z and z,4, =7, then
@)= fz) + Df(a)(@ ~2)+h, | h]=0o(] T~z |).

If z is close to the solution of (1), then the solution ¥ of

minzer || f(z) + Df(z)(z —2) |*=|| f(z) + Df(z)(z - 2) |I%,

will be still closer than x;

I £@) P <Il f(=) 11

This is not always true in the form given. However, if the direction is
defined as

s=s(z):=T—1x
then, there is a A > 0 such that the function,
¢(r) = f(z +7s) |I?,

is strictly monotone decreasing for all 0 < 7 < X [14]. In particular,

$(X) =|l f(z + As) |P< 4(0) =| f(=) |I* .

Newton’s method described above is the most fundamental but has
computational difficulty in practical environment [4]. In Gauss-Newton
method, the next iterate z;,; is obtained by solving the normal equation,

Df(z:)"Df(zi)s = =D f(z:) f(:).
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Gauss-Newton method is known to be among the best available tech-
nique for nonlinear problems in practice. However, it shows lack of
reliability. That is, Gauss-Newton method either performs very well, or
else it performs very poorly on a particular problem compared to other
methods. Therefore, it is very hard to predict the behavior of Gauss-
Newton method when considering large and varied sets of test problems.
It is also known that Gauss-Newton method is not a good approach
for the problems with nearly rank deficient Jacobians. There are many
cases that Gauss-Newton method fail or are inefficient [8]. In this paper,
we are mainly concerned with improving Gauss-Newton method with a
new Jacobian estimate. To accomplish this, we use an update proposed
in the next section as Jacobian estimate in Gauss-Newton method and
compare its computational performance with Gauss-Newton method us-
ing Broyden’s update on the given set of test problems. In section 2,
we describe Broyden update and a weighted update and measure how
close they can estimate the Jacobian. In section 3, Gauss-Newton meth-
ods employing the updates in section 2 are given. We also present a
new Gauss-Newton algorithm which modifies the Gauss-Newton coeffi-
cient matrix by the weighted method. In section 4, numerical results for
the methods in section 2 and 3 are shown. Throughout this paper, we
use the Frobenius norm defined as || A ||%= tr{AA") and the weighted
Frobenius norm || A ||m,r=|| AMAT || .

2. Updates

In this section, we describe Broyden’s updatc and propose a weighted
update and a combination of the two updates. We also present Theorems
to measure the updates’ closeness to the Jacobian.

If B; and B;,; arc Jacobian estimates for i-th and ¢ 4 1-th iteration,
respectively, and B;y1 = Bi + AB, then AB is called an update. The
update used in Broyden’s method is called Broyden’s update. The nor-
mal equation in Gauss-Newton method involves the Jacobian, which is
usually replaced by Broyden’s update for computational efficiency.

Broyden’s update (M1)
The Broyden update, say ABy, 1s

(4) ABy =ofs",
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where 0 = (sTs)™! as in [2]. AB, minimizes | AB ||= Trace(ABABT),
viz., the sum of the squares of the elements of AB (15]. Namely, AB, is
the least change update in || - || .

A Weighted Method (M2)
On the other hand, it is shown that in [15] that the update,

sty
(5) AB; = f TV
minimizes
(6) | AB |ly-1= Trace(ABV'ABT).

V can be any choice of matrices. If we choose V = BTB and let t =
~BTf, then, using Bs = —f from (3), we have Vs = BTBs = ~BT f — ¢

and (5) can be written as
AB; = vftT,

where
v=(tTs)"1

In view of (6), AB; minimizes
Trace(ABB~'(ABB1)T).

AB; and A B, both approximate the Jacobian, but they differ in what
norm they minimize. If B is the Jacobian approximation obtained by
adding AB; to B, AB, is the least change update in the Frobenius norm
and A B, in the weighted Frobenius norm. Using Broyden’s update AB,
in Gauss-Newton method shows efficiency on some nonlinear problems,
however, in many cases, it does not provide a solution. Since AB, is
an update minimizing in the weighted Frobenius norm with the weight
BT B and the weight is positive definite symmetric matrix, AB, can be
a good candidate for the Jacobian estimate. Nevertheless, if B is ill-
conditioned or nearly rank deficient, using BT B as a welght sometimes
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shows poor performance. To circumvent this difficulty, we now consider
the combination of the two updates

(7) AB = (1 - u)AB) + pAB,,

where p is chosen so that

(8) | ABy [|= pAB: || -

If y(zx) = f(zk+1) — f(zk), AB in (7) can be written as
(yx — Br_15)sT 7

() S ]

sTs
By definition in [4], AB is an update in the Quasi-Newton class. Now,
i can be decided as follows:

| AB, ||= Trace(AB;AB]") = Trace(o?fsTsf) = 077?,
Also,
| AB, ||= Trace(AB,ABT) = Trace(2Ft7¢F ) = v2F " FtT4,

‘and it follows from (8) that
0
= oty
Comparison of Df(z) Approximations

The difference between the Jacobian and Broyden’s update, denoted
by Ex = By — D f(z*), is measured in [3] as follows:

. y— Df(z*)
| B = Df(e) <1 Be - Dfao) |+ =200,
where yr = fr+1 — fx. More precisely,
ss’ | (y — Df(z*) |2
n < _— T "
H Ek+1 ”P —” Ek(I 378) ”1 + ” s “‘3

1 | Exs I* | ||y —Df(z*) |2
S|V Ex ||F — + -

AT Is s

The difference in the update (7) is determined by the next Theorem.
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THEOREM 1. Let f : R® — R" be a differential function in D, an
open convex set. Assume that Df(m) € szy(D) Bk 1 € RV B,

is obtained using (7), and P = {(1 - + & } If z* € D and
Df(z) obeys the weaker L1psch1tz cond1t10n for e1ther the Frobenius or
Iy matrix norms,

I Df(z) = Df(z*) I< 7y || « — 2* ||, for all z € D,
then,
(10) || Bk — Df(=") |
<l (Bk-1 = Df(z*))(I - P) || +%(I| Tk =2 |l + || 2k-1 — 2™ ||2).

Proof. Let Df* = Df(z*). Subtracting D f* from both sides of B, =
B;_1 + AB (7),

— Bk_ls)s T
sTs

By~ Df* =By, - Dy + W (= I + 5]

Subtracting and adding —ZT—[(I -+ ?TT—t] to the right hand side of

the above equation,

(11)

Bi=Dff =B - DI ik st" T 4
= (Bes - DI - fi—{(l W+ )
+ DIyt

Now for either the Frobenius or I, matrix norim,

| Bk = Df* ||< || Bi—1 — DF*(I— P) ||
ly~Df*s ||z

+
II's 1l2

(R IP
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Since || P |l2=1,
¥
Iy = Df*sll2< (Il ok — 2™ 2 + | z5—1 — 2" [|2) || s [l

from [6, p. 77], we have (10).
LEMMA 1. If s € R" is nonzero, E € R™*™, then

1~u2+u(ll Es ”)2
21 E|r " Is] 7

(12) I E(I-P)|lr<I| E|lr -

Proof. P and I — P satisfy the following equation,
(13) I EF=I EP % + | E( - P) ||},

or,
\ 1
I EI=P)llr=( E|* - || EP||*)3,

and since || E ||%>| EP ||%> 0, we have

1 .
14 E(I-P <|E||p ————=— || EP|%.
(14) Il E( MIrsI Ellr -3 TETr | EP ||%
Now, ,
| EP ||} = Tr(EPPTET),
and
r T T .7
TS ar e s r e sl
PP = .STS [(1 /‘)I+ tTt] [(1 :u)I+ tTt]STS
T TyT .. T TyT T
(1 a25ST 88 tt ss ssttt' ss
=(1-n sTs 21— p) (sT's)2tT¢ + (sTs)2tTt
T
88
=7 (1= © + p),
therefore,
(15) | EP ||% = (1 — p* + p)Tr(cEssTE)
= (1= 4 ) || o BssT I3

| Es |2
=(1-p*+p -
( L

Using the above equation in (14), we get (12).
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LEMMA 2. If s € R" is nonzero, E € R™*", then,
T
(16) | B - P) |lr<|| E (I~ “) e

Proof. From (13) and (15),

1B P) =l B 1 ==t 4 (LB

12 (1- %) =i 2 - (LE20)"

Since 4 <1 and 1 - pu? + 4 > 1, we have

IE N ~(1 = u* + 1) <“||ESH”) el (“”—ET”)

which proves (16).

and

THEOREM 2. If By and By are, respectively, the Jacobian estimates
obtained using Broyden’s update and the update (7), then

I Bk ~ Df* ||¢<|| By = Df* ||r .

Proof. Let Ey = By — Df* and Ex = By — Df*, then, for Broyden’s
method, we have

s’ Yr—1 — D f*s
I Ex F<| Ek—l(I—‘S_T_S’) 7 +H( IHSL D ||2

and for the update (7),

|| (yk—1 — Df*sT) ||,
Il s 2 '

| Ex |F<Il Ex—1(I - P) ||lr +

In view of Lemma 2, we get || By || »<|| Ex |7

Therefore, we have shown that the update (7) provides better approxi-
mate Jacobian than Broyden’s. We will use this update in Gauss-Newton
method to achieve more accurate results.
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3. Gauss-Newton Method

We derive Gauss-Newton methods using Broyden and the combina-
tion of updates introduced in the previous section as Jacobian approxi-
mations. In Gauss-Newton method [15], instead of solving (3), we solve

(17) B'Bs = -BTy.

The Levenberg-Marquardt-Tichonov modification [15] to the above
equation of Gauss-Newton mcthod is

(BTB + el)s = t,

using —~B” f = ¢, where € is a small positive number, say, || f [ -1071°,
The solution s of the above equation minimizes the functional

I Bs+ fII* +ell s *.

It is recommended in [6] to implement the Levenberg-Marquardt-Tichonov
modification rather than plain Gauss-Newton method, we will use the
Levenberg-Marquardt-Tichonov modification. Let W = BT B, then (17)

becomes
(18) Ws =t

For the Levenberg-Marquardt-Tichonov method W is replaced by W +
el. The solution of (18) requires O(n*/6) operations, since W is sym-
metric, therefore, only the diagonal and the lower triangular part of W
are generated and stored.

Gauss-Newton Method (M3)

If (18) is used in an iterative method it is required to have an updating
formula, that is, computing W from W. We proceed as follows. If we

- —T—
use Broyden’s update and let t = —B" f and y = os, then

AB = fy", ABTAB=TF fyy,
BTAB = (B - AB)TAB = & - F Fyy”,
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W =B"B=(B+AB)T(B +AB)
=B"B+ BTAB+ABTB+ ABTAB
_ T —=T—
=Wty -yt —F fyy”
— —T ~ —

=W—(E+F fuy” -yt
Only the diagonal and the lower triangular part of W are stored and
updated.

Though the Gauss-Newton method is one of successful methods, it
requires stability in solving various problems.

A Proposed Gauss-Newton Method (M4)

To improve Gauss-Newton method, we apply the update (7) to Gauss-
Newton method since the update (7) gives the better Jacobian approxi-
mation. We also derive a formula to obtain W from W.

From (7), we have

AB = (1-p)fy" + wit" = (1 ~ p)yT + putT) = 727,
where z = (1 — p)y + pvt. Furthermore, using
ABTAB =7 f22T, BTAB = (B~ AB)TAB = 1T — 7 7227,
we have
W=W 2T — 8 —F FzsT
=W —(F+F Fo)oT — 287

An algorithm for M4 is given as follows:
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Algorithm

Given f: R® — R",zy € R*, B, € R™*"™.
W, = BIB,

Do fork = 0,1, - :

Solve Wy.sy = —B;{f(:vk)(z t) for sy,

Tkl = Tk + Sk,

zg = (1 — ;l)s—T; + pvt,
tepr = —(Bk + ferr 28 )T f(zhs1),

Wk+1 = Wk —_ (tk+1 + fg+1fk+lZ)ZT _ Zt{+1.

4. Computational Results

Results of computational experiments are summarized in Table 1.
The computations were done on Micorvax II. Main set of test problems
consists of the nonlinear non-symmetric problems with f : R* — R
listed in ([12], [13]), which are usually used to evaluate new algorithms
[11]. They include Extended Rosenbrook function, Extended Powell sin-
gular function, Trigonometric function, Brown’s almost linear function,
Discrete internal equation, Broyden tridiagoanl function, and Broyden’s
banded function. Test for robustness with respect to poor scaling were
also implemented by modifying our test set as f(z) = f(£z) where ¥
1s a diagonal matrix with poorly scaled entries. Initial Jacobians were
evaluated numerically by finite differences. In order to improve inconsis-
tency of Gauss-Newton method mentioned in [8] for various problems, we
mainly investigated average time of the problems for the methods. From
Table 1, M4 is significantly better than all the other methods and its
performance improves with the increase in the size of the problems. For
example, Broyden’s method (M1) took 125% more and Gauss-Newton
(M3) 112% more than M4 for n = 80. Furthermore, M4 failed only in
four cases as compared to 9 for Gauss-Newton method (M3) and 17 for
Broyden’s method (M1). On some problem, M3 performed better than
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others however, it failed to get a solution more often than M2 and M4.
which indicates lack of reliability of M3. The relative efficiency of M3
and M4 is due to the fact that W is symmetric and only O(n?/6) op-
erations were needed to solve (18) as compared to O(n®/3) required to
solve (3) in M1 and M2. We found and M4 were more robust than MI,
M2 and M3 when n was large.

Size M1 M2 M3 M4
n=20 1.55 1.31 1.03 1.00
n=40 1.75 1.52 1.07 1.00
n==80 2.25 1.69 1.12 1.00
Average for All Sizes 1.86 1.51 112 1.00
Number of cases of
Non-Convergence/Divergence 17 6 9 4

Table 1:Average relative times for all methods with method 4 as the basis.
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