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A CHARACTERIZATION OF GIBBS MEASURES
ON (R x W 4)% VIA STOCHASTIC CALCULUS

HYE YOUNG LiM!, YONG MOON PARK'AND HYUN JAE Y002

1. Introduction
We consider Gibbs measures on (R x Wo,o)zu, Woo ={w e C[0,1] :

w(0) = w(1)}, which are associated to an interaction between particles
in lattice boson systems (quantum unbounded spin systems). In [4], the
Gibbs measures were introduced in the study of equilibrium states of
interacting lattice boson systems and were characterized by means of
the equilibrium conditions. In this paper we utilize the techniques of the
stochastic calculus of variations and the infinite dimensional Ité integral
to derive stochastic equations which we call the equilibrium equations.
We show that under appropriate conditions the equilibrium conditions
and the equilibrium equations are equivalent. The lattice boson systems
with superstable and regular interactions, which we studied in [4], are
typical examples.

There have been many studies on the infinite product spaces of paths
related to the diffusion processes with infinite number of degrees of free-
dom and to the statistical mechanical systems (see [1], [6] and references
therein). Recently Roelly and Zessin investigated Gibbs measures on
C[0,1]%", in fact on WZ" where W, = {w € C[0,1] : w(0) = 0}, as-
sociated with a bounded interaction [6]. They derived the equilibrium
equations by using the method of stochastic calculus of variations. In
the case of bounded interactions they established the equivalence of the
equilibrium conditions and the equilibrium equations. However there are
two drawbacks in the work of Roelly and Zessin: First, the configuration
space [4] associated to quantum boson systems is @ = SZ°, § = {s €
C[0,1] : 5(0) = s(1)}, instead of WZ" considered in [6]. Second, most of
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the interesting interactions in quantum boson systems belong to a class
of unbounded interactions (3, 4, 7, §].

The aim of this paper is to overcome the above drawbacks. Note
that each path s € S is closed and so it is natural to impose periodic
boundary conditions to any operation related to the paths s. We modify
the (stochastic) derivative operator used in [6] to accommodate peri-
odic boundary conditions. In order to deal with unbounded interactions
which are superstable and regular, we use the probability estimates es-
tablished in [4].

It would be interesting to study Dirichlet forms, Dirichlet operators
and diffusion processes associated to the Gibbs measures considered in
this paper. The questions of closability for Dirichlet forms and the prob-
lems of constructing the associated diffusion processes are under inves-
tigation.

The organization of this paper is as follows. In section 2, we give
notations, definitions and necessary preliminaries, and then state our
main results. In section 3, we produce all the proofs of the main results.
We shall employ the methods used in [6] with suitable modifications.

2. Preliminaries and Main Results

We start with introducing the necessary notations. Let S be the
Polish space R x Wy o with canonical filtration, where Wy o = {w €
C[0,1] : w(0) = w(1) = 0}. That is, S has a o-algebra generated
by the products of Borel sets in R and cylinder sets in Wy o [9]. Let
Q = 8% = (R x Wy)?". For each subset A C Z* we shall use the
notation z, and s, for the elements of R* and S*, respectively. For
each 2 € Z%, let p; : & — S be the canonical projection, p;(s) = s,
the value of the path s on the i-th site. For each A C ZY, we have a
local o-algebra F,, which is the minimal o-algebra for which p;, : € A,
are measurable. We simply write F for Fz, . By P(Q, F) we mean the
set of all probability measures on §2. Let A be the reference measure on

R x Wy ¢ defined by
(2.1) Ads) = dz x Pyo(dw), s =(z,w) =1 +w,

where dz is the Lebesgue measure on R and P o(dw) is the conditional
Wiener measure on Wy o [9]. For any bounded A C Z¥, put A (dsy) =

HieA A(ds;).
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We would like to also consider S as a topological space. We give an
L?*norm to S : For s = (z,w) € §, let

(22) Il = ( / 1 !s(t)l"’dt) "

where s(t) = z+w(t). We say that a function F' : § — Cis L2-continuous
if F' 1s continuous in this topology.

REMARK 2.1. Notice that A(B) > 0 for any nonempty open set in the
L%-topology. Since ||s|| < |Is]lco, any ball centered at the zero path in the
L?-norm contains the corresponding ball in L%-norm which has nonzero
A-measure by Lemma A.3 of [4]. Furthermore since every translations
05X of A defined by 6,(A)(-) = A(- —s),s € S, are absolutely continuous
with respect to A, we conclude that any nonempty open set has strictly
positive A-measure.

Let us introduce interactions and specifications.

DEFINITION 2.2. An interaction ® = (®A)aczv is a net of measur-
able functions ®a on (2, F) and satisfies the following conditions:
(a) ®a is Fa-measurable for all A C ZY;
(b) @4 is invariant under translations of Z¥;
(c) There is a (measurable) subset & (depending on @) of Q such that
for all 5 € G and finite A C Z7,

(2.3) ZR(3) = /;A M (dsp) exp[—HE (saShe)] < oo,

where s5355c € €2 is a configuration which coincides with s, on A and
Sae on A°, and for all s € Q,

(2.4) HY(s) = V(sp) + W(sa,sae),
V(sa) = ) ®(sa);
ACA
W(_SAaSAC) = Z (I)A(SA)-
ANAF#®

ANA#D
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REMARK 2.3. (a) For physical systems [4] ®4 is given by
1 ~
Ba(sa) = / dr ®a(sa(r)),
0

where for any A C Z¥, ®, is a Borel measurable function on R2. Since
we are concerning only on the Gibbs measures (not on the Gibbs states
on a quasi-local algebra) it is sufficient, using Feynman-Kac formula,
that ® is defined as above.

(b) The introduction of the subset & is necessary for general interactions
which may not be bounded. Every Gibbs measures (if exist) for the
interaction should be supported on & [5].

(c) The formalism introduced so far is insensitive to the dimensionality
of the range space of the paths s € S. One can replace S by R? x {w €
C([0,1],R%) : w(0) = w(1)}. Then all the results in this paper remain to
hold.

Given an interaction ®, the corresponding Gibbs specification y® =
(73) Acz» with respect to & is defined by [2,4,5]
A: fini

nite

Z2 (3! //\A(dsA)exp[——V(sA) — W(sa,Sac)]
AT =
(25) YA (A|‘5) - X 1A(5A§AC) ifse 6,
0 ifs¢ 6,

where 4 € F and 1,4 is the indicator function on A. It is easy to check
that the Gibbs specification satisfies the consistent condition [2, 5]: For
ACA 5€6,

222 (Al5) = /G 23 (ds*[5)72 (Als")

=74 (A[5).

For given interaction ® the Gibbs measures on (2, F) are defined as
follow:
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DEFINITION 2.4. A Gibbs measure p for the potential ® is a Borel
probability measure on ({2, F) satisfying the equilibrium conditions: For
any bounded A C Z*

u(A) = / WdsnP(Als), AeF.

We denote by G(®) the family of all Gibbs measures for the interaction
o

Let us now define the derivative operators for the functions on S and
2. From now on we interpret the closed interval [0, 1] as the torus T of
circumference 1 by matching the end points 0 and 1. Let L''2(S,d)\) =
LY(S,dX\)( L?(S,d)). By Whl2(S d)), we mean the set of functions in
LY%(S,d)) such that F € WHL2( S, d)\) is L12-differentiable in the sense
that for all g € L*(T") the following limit exists in L}2(S,d)):

(2.6) D,F(s) = ll_{)% e N (F(s+e€g)— F(s)), s€S,

where g € S is defined by

2.7) §(t):/0 du/t— drg(r), tel0,1]=T"

The above derivative operators are the modified versions of those defined
in {1, 6]. See the remark stated below. In the integration in (2.7), we
understand that ftt drg(r) = f1+t drg(7) + f(; drg(r)if t —u < 0.
As mentioned in [6], D F is nothing but the Fréchet derivative of F.

REMARK 2.5. If one interchanges the order of integrations of u and
7 in the definition of g(¢), one has that

g(t) = /: drg(r) —t /01 drg(t) + /01 dr rg(7).

The above definition is slightly different from that in [6], where g was

given by g(t) = f(: dr g(7). The reason for the definition of g as in (2.7)
is to impose the periodic boundary conditions. Since we are dealing with
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a torus (not a line segment [0, 1]) we have no preferable origin. Actually
g in (2.7) is the mean for taking arbitrary point in 7" as the origin.

Now let us consider functions on €. If there is no confusion involved,
we shall use the same letters, e.g., s, etc, for elements of S or Q. We
say that a function F on Q is A-local if F(s) = F(sp) for all s € Q.
Let {1(Z¥; L?*(T")) be the space of L*(T"')-valued functions which are
defined on Z” and absolutely summable. By W}f)lc’z(ﬂ), we mean the set

of local functions in  which are L!2-differentiable in the sense that for
any g = (gi)iezr € 1(Z2¥; L%(T")), the following limit exists:

(2.8) D,F(s) = lim ™ (F(s + £5) — F(s))
= Y D;F(s),
t€EZY

where ¢ = (¢;)iczv and g;, 1 € Z*, are defined as in (2.7). Each D;F(s),
interpreted as a function on S by s; — D;F (s), is an element of
L'2(S,d)), where s; is the projection of s to the i-th site. Since F
1s a local function, only finite terms survive in the summation.

Before passing to the stochastic integration we define a space of func-
tions on R: By W!1.2(R, dz) we mean the set {Fy € L'(R,dz)(L*(R,
dr): Fp is differentiable and F, € L'(R,dz)( L% R,dz)}.

Now if the integration

(2.9) G = [ o, ses,

is meaningful (in the It6 sense) for ¢ € L?(T!), we say that (, is the
stochastic integration with respect to the canonical process. And for
9 = (gi)iezv € I1(Z¥; L*(T")), we put for s € Q

(2.10) Co(s) = Z Coi(s4)

1EZY

= Z‘/O gi(t)dS,‘(t).

1E€EZY

We now state the main results of the paper.
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PROPOSITION 2.6. For any F' € WY%(S,d)) and g € L¥(T"), the
duality property

(2.11) Ex\((gF) = Ex(D,F)

holds. Especially one has that for F; € W''2(R,dz) and g € L*(T?)
(2.12) Ex(Fpe''Ss) = I(Fo)e‘%‘z"?(g),

where Fy(s) = Fo(s(0)), I(Fy) = ng )dz and 0?(g) = fo g*(t)dt

— (fol g(t)dt)®. Conversely if p is a measure on S which is absolutely
continuous with respect to A with a L?-continuous and L?-continuously
differentiable (in the sense of (2.6)) Radon-Nikodym derivative and sat-
isfies

E(CF) = Ey(DyF)
for all F € W'i12(S,d)) and g € L*(T"), then p = c) for some constant
c>0.

Using the above duality property between the derivative operator and
the stochastic integration we can give a characterization for the Gibbs
measures on 2. In the following H;( - ) means H®, }( )- See the notation
in (2.4).

PROPOSITION 2.7. Let @ be an interaction described as in Definition
2.2. Suppose that H;(-5(;}c) is a differentiable function (in the sense
of (2.6)) for all s € G. Let u € G(®) be such that uy, the restriction
of u to finite A C Z?, is absolutely continuous with respect to A\* and
such that Eu{;)(|<g;|2) < c||g,-||%2(T1) for some constant ¢ for all 1 € Z*
and g; € L*(T"). Then the Gibbs measure u satisfies the equilibrium
equations:

(2.13) E,(F(y) = Eu(D,F) — E,(F Z D;Hi)a
iczv
for any F € WL*(Q) and g € I'(Z¥; L*(T")).

We will show that for superstable and regular interactions the above

conditions are satisfied (see Corollary 2.11).
On the other hand the relation (2.13) also characterizes the Gibbs
measures for some interactions:



718 Hye Young Lim, Yong Moon Park and Hyun Jae Yoo

THEOREM 2.8. Let ® be an interaction given as in Definition 2.2.
Suppose that H;(-3(;)e) is L?-continuous and L?-continuously differen-
tiable (in the sense of (2.6)) for all i € Z”. Let u € P(Q) be such
that u(&) = 1 and for all 5 € &, the measures E,(-|Fx:)(3) on Q4 are
absolutely continuous with respect to A with L?-continuous and L?*-
continuously differentiable Radon-Nikodym derivatives for all finite A C
Z?. Furthermore suppose that for F; € WHL2(S d)), Fy(-)e™ 0 Se)
€ WHL2(S d)\) for any ¢ € Z¥ and § € &, and that for any F €
Wib3(Q) and g € 1Y(Z¥; L*(T")) each term in (2.14) below are well

loc

defined and the equality
(2.14) E.(F(y) = E,(D,F)— E,(FD}H,), i€2",

holds. Then u € G(®).

All the proofs are given in the next section. In the remainder of
this section we check that the Gibbs measures constructed for a class
of superstable and regular interactions [4] satisfy the assumptions in
Proposition 2.7 (and Theorem 2.8), and so the relation (2.13) holds for
any u € G*(Q).

Let us introduce the superstable and regular interactions. Remember
the definition of the norm in S given in (2.1). Briefly we write s? for
||sl|*. Note that the reference measure A has the property [4]: For all
a>0

(2.15) /)\(ds)c_"”’2 < oo.

Let us now recall the definition of superstable and regular interactions
(3,4, 7, 8]

DEFINITION 2.9. Let ® = (®4)acz+ be an interaction described as
in Definition 2.2.
(a) The interaction is said to be superstable if there are A > 0 and c € R
such that for every sy € S8,

V(sa) = Y @alsa) 2 ) (As! - o).

ACA tEA
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(b) The interaction is said to be regular if there exists a decreasing pos-
itive function ¥ on the natural integers such that

¥(r) < Kr™"7° for some K and ¢ > 0 with Z U(lz]) < A,
i€z

where for ¢ = (41,...,%,) € Z%, |i]| = max |2;], and furthermore if
s

1<
A1 (A2 =0, then

Wsansa) < 303 Wi~ g (s? + ),

€A1 JEA:

where
W(SAUSAz) = V(SAlUAz) - V(SAI) - V(‘SAz)'

For systems with superstable and regular interactions we put

(2.16) 6= | 6,
NeN
Gn={seQ:Vl > st <N 20+1)"}.

i<t

We note that if @ is superstable and regular, then by (2.15) the condition
(c) of Definition 2.1 is satisfied. The following is a result obtained in [4]:

THEOREM 2.10 ([4], THEOREM 2.7). Let ® be a superstable and
regular interaction. Then G(®) is non-empty, convex, compact in the
local convergence topology (2], and a Choquet simplex. Furthermore
each u € G(®) is regular in the sense that there exist A* >0 and § > 0
such that if F € F,, then the bound

(217)  EJ(F)< //\A(dsA)lp(sA)exp[—A* 352+ 6)
1€EA
holds.

Using the above theorem we have the following result:
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COROLLARY 2.11. Let ® be a superstable and regular interaction.
Assume that H;(-3y;y.) is differentiable for all i € Z¥ and 5 € &. Then
the assumptions in Proposition 2.7 are satisfied. Thus the relation (2.13)
holds for any u € Qq’(Q).

Before proving the above result it may be worth to give some cxam-
ples of interactions satisfying the conditions stated in Corollary 2.11.
Consider two body interactions of the following type:

B3y (s5) = / dr P(si(7)),

1

By (50,5,) = / dr f(Ji — j)si(7)s,(7),
0

Da(sa)=0 if |A] > 2,

where P(z) is a polynomial of degree 2n and f is a function on natural
integers such that |f(|¢])| < ¥(J¢|). Then a direct calculation shows that

D H(si505)) = / drg(IP' (st + 3 Fli— i) / dr Gi(r)s; (),
0 jezy. 0
i

where P'(z) = £ P(z). Thus the above interactions satisfy all of the
assumptions in Corollary 2.11.

Proof of Corollary 2.11. Let p € G(®). We check that all the condi-
tions of Proposition 2.7 are satisfied. First, we show that the restriction
pa of p to any finite A C ZY is absolutely continuous with respect to
A, By the regularity property (2.17) of u one has that for any F € Fy,

pa(F) = p(F)
< /A‘“(dsA)lp(sA)exp[—A* Z s34 6.

t€A
Since 0 < exp[—~A*3",cys?+6], and by (2.15) [ A*(dsp ) exp[—A* ;¢ 52
+6] < (Co)!M < oo for some constant Cy > 0, py is absolutely continu-
ous with respect to A\A.
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Now we show that forall: € Z¥ and ¢; € L*(T"), we have E, ., (1¢e:1?)
< c||g,-||r‘l’lz(T1). From the estimates in eqs. (A.13) - (A.15) of [4], one
sees that there exist constants ¢! > 0 and §' > 0 such that

(2.18) /on,ro(ds)exp[—A*s2 + 6] < exp[—c'zZ + 6],
where Py, ;,(ds) is the conditional Wiener measure on Weozo = {s €

C[0,1] : 5(0) = s(1) = zo}. Now using the regularity of z and Schwarz
inequality one obtains that for i € Z* and ¢; € L¥(TY),

(219) B, (6]
< [ da / Pro2o(d5)]Cys(5)[? exp[—A*s? + 4]

< [z, ( / PIO,I[,(ds>|<g;(s)|4)l/2

1/2
(/ on,zo(dS)exp[—zA*SZ + 26]) .

From (2.12) we know that

[ Praseolds) explit, (5) = expl~ 2205,

Hence

(2.20) / Pro 2o (d5)]Cyi ()]
= g ([ Psattenti o) |
= 3(0%(g:))"

< 3lg:ll 2y

We use (2.18) in the second integral of (2.19) and integrate out with
respect to dzo. From this and (2.20) we have E, ,, (|¢,,]?) < ¢ lgill22 (-
Now the relation (2.13) follows from Proposition 2.7.
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3. Proofs of Main Results

In this section we provide all the proofs of the main results in the
last section. Although the quantities we are dealing with are somewhat
different from those in [6] the general strategy of the proofs is in parallel
with those in [6]. In particular, for the proofs of Proposition 2.7 and
Theorem 2.8 we shall adopt the methods similar to those used in [6]

Proof of Proposition 2.6. It is enough to show that the relation (2.11)
holds for F € W11:2(S, d\) which depends only on finitely many points
on the paths and for any step function ¢ € L*T'). So let F(s) =

F(s(t1),s(t2),...,s(tn)), where tg =0 < t; < --- < t, = 1(= 0) and
g(t) =31, aily,_1)(t), a; € R Weput 7y =t,—t,_,, 1 =1,2,...n,
so y o, 7i = 1. Then by (2.6)
(3.1) D,F(s) =Y G(t)F{(s(t1), s(ta),- .., s(tn)),

=1
where

i+n t+n 1 n

(3.2) g(t:) = ( Z Tk Z aT — 3 Z akT,f‘),

k=141 =k k=1
in which if the summation index, e.g., [ goes over n, we mean a; = a;»,
where I* € {1,2,...,n} and [ = * mod n, and F] means the usual

derivative of F' with respect to the i:-th argument. Let us put

1 1 \

’ P.,—(flf,y) =

Using (3.1) and (3.2) and the definition of the reference measure A\ we
have

n

(3.3 E\(D,F) = ;’g“(t,-)/dml oo odzn P (x9,21) - Pr (Tn—1,Tn)

x Fl(zy,...,25),
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where z¢o = z,. From the integration by parts, the right hand side of
(3.3) becomes

(3.4) Zgj(ti)/dxl ---dmn[(xi — Zi-1) _ (Zit1 — xz)]

Ty Ti41

X Pr(xo,21)  Pr (Tn-1,25) F(z1,...,2,).
We note that

(3.5)
S it (B rm) e — )
i=1 Ti t+1

n i+n i+n

= Z Z Tkzam - “ZakT [(xi _:H) - (x,~+1‘ — mi)]

T
i=1 k=i+1 I=k +1
n i+n i+n

=Y Az o))

-
i=1 k=i+1 I=k i+1

because the second summation in the second line sums to 0. In the
summation (3.5) we interchange the order of the summation. Then (3.5)
becomes

n (k)
(581' —zi—1)  (Tig1 — T5)
(3.6) ; Tk Z; 12; am| - — ],
where ) A
- ? if k<,
Z()_{z’-i-n if & > 1.

Once again we interchange the order of summation in (3.6) and thereby

(3.6) becomes

n k4+n-—-1 k+n-—1 - ) (.’E —CL")
I
k=1 Tit1
n k4+n-—-1

—ZTk Z a17' $l*‘$l 1) (‘Jk"$k—1)]
T Tk
k=1

= Z ai(z; — z1-1).
=1
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Substituting (3.7) into (3.4) we have

Ex(D,F)
= [dar a0, 20) P (5csa) (3 et — ecy)]
=1
X F(zy,...,zp)
= E,\(CgF),

which is the relation (2.11).

Let us now show the relation (2.12). For F, € WHLH(R, dz), we
understand Fy as being a function on S defined by Fo(s) = Fy(s(0)), s €
S. And let g(t) = Y 7", a;ilp,_, 4,)(t) be as above. We put

(3.8) p(Fo;t) = E\(Fy exp[itg’g]).
Using (2.10), one obtains that
(3.9)
& Foit)
= 1 Ex({¢Fo explit(y))
=t Ex(Dy(F,y exp[ith]))

n—1
=3 Z fi(t,-)/da:gdazl cdrn 1 Pr(zo,21) - Pr (Tn-1,2,)
=0

X 3:61:,- (Fo(xg)exp[itzaj(xj — g;j_l)])

J=1

= i?j(O)/dwodzl cdzg 1 Pr(zg,31) - Pr (Tn-1,2n)

x Fy(zo) explit Y a;(z; — zj_1)]

=1

n—1
—t 3§t @i - aisr) / deodz, - -
1=0
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dzn_lp,—l(ﬂfo,m) e 'Pr"(xn—laxn)

x Fy(zo) explit Z a;j(z; —zj_y)].

i=1

Note that the first integral in (3.9) is 0. In fact, after changing the
variables z; —xzg — z;, t = 1,2,...,n — 1, it becomes

/d.’EoFé(.’Eo)/d.’El dl‘n lPﬁ(O .’131) T,.(xn 1, O)

X explit Zaj(mj —z;41)], (xo=12,=0)
j=1
— 0,

because Fy € W'3(R,dz). In the second term of (3.9) one has

(3-10) Z 9(t:i)(ai — aiy1)

= Zg(ti)(ai —aiy1)

=1

n i+n i+n
1 2
=Y (ai—a)( ) %Y am - 5 ax i)
=1 k=i+1 =k k=1
i+n i+n
= Z(az—am IROILL
=i+1 =k

As before we interchange the order of the summation in (3.10). Then
(3.10) becomes

n k+n-—1 k4+n-—1
(3.11) Tk Z am — Qit1)
k=1 1=k =1
n k+n—1
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n n

=Y atn— (Y am)?

=1 =1

= /01 g?(t)dt — (/0l g(t)dt)”

= a%(g).
Combining the above results, we obtain

(3.12) 4 5(Fit) = ~t%(g) A Fui )

The above ordinary differential equation has a unique solution:
~ 1
(3.13) P(Fo;t) = I(Fo)expl—5t*a*(g)],

where I(Fy) = # [ dzo F(zp).

Finally suppose that a measure p on S, which is absolutely contin-
uous with respect to A with an L2-continuous and L?-continuously dif-
ferentiable Radon-Nikodym derivative, say G, and satisfies E,((,F) =
E,(DyF) for any F € W512(S,d)\) and g € L*(T"). Then we have
(3-14) EP(CQF) = EA(CyFG) ‘

= E\(Dy(FG))

= E)‘(GDQF) + E,\(FDgG)
On the other hand
(3.15) E (¢ F) = Ex(GDyF).

From (3.14) and (3.15) Ex(FD,G) = 0 for all F € WHl2(S d)\) and
g € L*(T"). Therefore for any g € L*(T!), D,G =0, A —a.s. But since
DyG is L?-continuous, as noticed in Remark 2.1, we see that D,G(s) =
0, Vs € S. Now the function ¢t — G(tg) is an absolutely continuous
function on R, and hence

G(g) = G(0) —i—/ﬂ %G(tg) dt

= G(0) + / 1 D,G(t7) dt
= G(0).



A characterization of Gibbs measures on (R x Wo,0)%" 727

We notice that the set {§: g € L?(T")} is (L2-) dense in S. Since G is
also assumed to be continuous, G(s) = G(0), Vs € S. This completes
the proof of the proposition.

Proof of Proposition 2.7. Let ® and y € G(®) be as in the statement
of Proposition 2.7. Let F ¢ Wm‘Q(Q) be A-local and g = (g;)iez €

loc

'(Z¥; L*(T")) be given. We note from the hypothesis that

E(I1FC|) < EVA(IFIPYEY2 (16, 1%)

My
< CEMz(lFlZ)ng‘“U(Tl)-

Since g € I'(Z¥; L¥(T")),
(3.16) E(FC)l = ) Bu(IF¢,,) < oo.
tEZY
Let us simply write v;(-|-) and Z,(-) instead of 'yﬁ.}( -|-) and Z?;.}( -)

respectively. From the equilibrium conditions of Gibbs measures it fol-
lows that for all : € Z*

Eu(FCg;) = Eu(Eu(FCg;,f{i}ﬂ))
= Eu(7i(Fy 1))

For 5 € 6, we use the above and the duality relation (2.11) to obtain

(3.17)
71'(FC9.'I§)

:Zi(g)-l/)\(ds)F(sg{i}c)Cgl.(s)e_H"(sg{i}c)

S .

= Zi(3)7 Ex (Dg,.(F(-§{,~}c)e‘H-‘('5{-'}c)))

= Z"(E)*lE)‘ ((Dg.‘F( 'g{i}c) - F('E{i}"‘)Dg-'Hi( ‘E{i}C))
e-—}[,’(-g(,')c))

=v(D}F — FD} H;).
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Using the equilibrium conditions once again we have
(2.14) E,(F(,)= E,(DyF)— E,(FD}H;), VieZ".

Since F 1s a A-local function, D;F = 0 for : € A°. Therefore by (3.16),
(3.18) D |Eu(FDGH)| < Y (|Eu(DyF)| + |Ex(FC.)]) < co.
1€EZY 1€ZY

This guarantees the relation (2.13).

Proof of Theorem 2.8. Consider an F' € Wi’)lcz(ﬂ) of the form: F(s)
= F(s{iye)Fi(si), where F € Wib2(Q) and F; € WH12(S,d)). Apply-

loc
ing the relation (2.14) to this function we have

E,(FFy,,) = E,(FD!F,) -~ E,(FF,D} H,).

This also says that
(319) E, (FE(Fi¢,,|F o))
- E, (ﬁE,‘(D;F,-m,-}C)) ~E, (fE#(F.-D;Hilf{,-)c)) :

Since the relation (3.19) holds for any F € W11?(Q) (F{ije-measurable),

loc
we have

Eu(FiCyilf{i}c) = E#(D;Fi|f{i)C) - Eu(FiD;Hilf{iV)a H —a.s.
(3.20) = E (M Di(Fie™ )| Fiiye), n—as.
for any F; € Wil2(S d)) and g € I*(Z¥; L}(T")).

Now let fif be the measure u(-|F{;}c)(5),s € &, on S. Then for
f-a.a. 8,

p(d(singiye )| Friye)(3) = i (dsi) x 85,y (dn)

and so the relation (3.20) can be written as

Egr(FiCg,) = Egz (™30 Dy (FremH30)y),
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or
(3.21) Eﬂz,-(Fie—H‘( .E(i}c)ggi) — Eﬁf_(Dgi(Fz_e—H.‘( -E(i}c))),

where we have put z3(ds) = e/'i3(1)53(ds). By the hypothesis given
In the statement of Theorem 2.8, the measure ¥ is absolutely con-
tinuous with respect to A with an L%-continuous and L%-continuously
differentiable Radon-Nikodym derivative, and hence the measure ae s
also absolutely continuous with respect to A with an L?%-continuous
and L?-continuously differentiable Radon-Nikodym derivative because
for all 5 € &, e Hi(:5111e) g 5 strictly positive, L?-continuous and L2-
continuously differentiable function on S. Therefore from (3.21), apply-
ing Proposition 2.6, we have i} = c) for some constant ¢ > 0. That is,
the probability measure ¥ should be as follows:

Ei(ds) = Z,(3)7 e M5 \(ds), Vie Z¥, 5 € 6.

This says that the conditional expectation of i with respect to Fliye, is
'yﬁ.}. Since y is supported on &, we may put E,(-|F(i3e)(5) = 0 for all
5 ¢ 6. Applying Theorem 1.33 of [2] we have y € G(®).
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