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LIMITING PROPERTIES FOR A MARKOV
PROCESS GENERATED BY NONDECREASING
CONCAVE FUNCTIONS ON R}

OEsooOK LEE

1. Introduction

Suppose {X,} is a Markov process taking values in some arbitrary
space (S, ) with n-step transition probability

P™)(z,B) = Prob(X, € B|Xo =z), z€S, Be g,

We shall call 2 Markov process with transition probabilities P(")(z, B)
¢-irreducible for some non-trivial o-finite measure ¢ on @ if whenever

¢(B) >0,
Z 27"P™(z,B) >0, forevery z € S.

n=1

A non-trivial o-finite measure 7 on ¢ is called invariant for {X,}if

/P(z,B)W(d:L') =7(B), BEe€ .

If the unique invariant measure ~ is finite, then we shall call {X,} pos-
itive recurrent.

We call {X,} geometric ergodic if it is positive recurrent and there
exists positive p < 1 such that |[P(™(z, ) — x(:)|| = O(p") (n — o0) for
7-a.s. T € S, where || - || denotes the total variation norm and O stands
for the usual “big O”.

When using a Markov process as a model, it is often of great impor-
tance to know whether the model is positive recurrent, or whether the
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model is geometrically ergodic, and characterize functions which holds
functional central limit theorem. There are extensive literature on these
subjects (see Bhattacharya and Lee (1988a, 1988b), Lee (1989, 1993,
1994), Tong (1990), Tweedie (1975, 1983) etc.).

Let {X,} be a ¢-irreducible Markov process on (S, ) with transition
probabilities P(™)(z,-). Call a set B € ¢ small if ¢(B) > 0 and for every
A € ¢ with ¢ (A) > 0, there exists 7 such that

J
inf ¥ P™(z,4)>0.
inf, 2 P4

For an irreducible, aperiodic Markov process {X,} with state space
(S, ), ¢ is countably generated, following theorem has proved by Num-
melin and Touminen (1982).

THEOREM 1.1. Assume that there exist a nonncgative measurable
function h on S, a small set B € ¢, and real numbers r > 1, ¢ > 0 such
that

/P(x,dy)h(y) < %h(z) —€, z € B°,

sup/ P(z,dy)h(y) < oco.
z€EB e

Then {X,} is geometrically ergodic.

A function f: R} — R} is called concave if for a € (0,1),

flaz + (1 = a)y) = af(z) + (1 —a)f(y).

Function f is called nondecreasing if for z < y, f(z) < f(y). Here we
define ¢ < y for z,y € R} by (¥ < y® for all 1 < i < n, where
29 is the i-th coordinate of z, and z < y if ¢ < y but ¢ # y. Let
R} = {z € R, |z > 0}.

Throughout this paper we assume the followings:
A is an arbitrary index set. For a in A,

Fa=(fD 5B Y RY - R
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i1s a nondecreasing concave function such that f,E’) has continuous first
partial derivatives for each ¢ 1<i<n,1<5<n.

{an} denotes a sequence of independent, identically distributed ran-
dom elements on some probability space (2,7, P), taking values on A.
The sets {w : fa,.,(y) < z} arein 7 for all z,y € RY.

Take X, as an arbitrary random variable taking values on R}, but
independent of the sequence .

Let
(1.1) Xn = fa,(Xno1), n=1,23,...,

Denote X,(y) is X, with Xo =y, i.e., Xpo(y) = fan (fau_, - (far (¥)))-

In this paper, we consider the Markov process {X,, : n > 0} which is
generated by (1.1) and give some sufficient conditions for irreducibility,
geometric ergodicity and characterize functions which holds functional
central limit theorem.

2. Irreducibility

Let g(y) = E[fa,(y)]:

Then it is easy to show that ¢(y) is nondecreasing and concave func-
tion from R} to R}.

We make the following assumptions on g:
(A1) There exists yg > 0 such that

(1) 9(yo) = yo (2) for y > yo, g(y) <y (3) for y < yo, 9(y) > -
Following lemma is the multidimensional extensions of Yahav’s results.

LEMMA 2.1. Under the assumption (A;), we have

(1) P(X,(0) < z) is nonincreasing in n. and hence converges.

(2) For every y > yo, Xn(y) converges with probability 1 asn — oo
and

(2.1) lim_ E(Xa(y)) < 0.

Proof. Let Xo(y) = faun (far (- fan(¥)))-
(1) Since X, (0) is nondecreasing in n and X,(0) and X,(0) have the

same distribution, the conclusion follows.
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(2) Let B, be the o-field generated by a;,as,...,a,. Then condi-
tional Jensen’s inequality shows that
(22) E[X,0 W)18n] < £E) (far -+ (Bfansa (1)
= [ (far (- (9(v)))  as.

Since fé}l) fay *** fa, is nondecreasing, (A;) ensures that for y > yq,
E[Xv(zzll(y)lﬂn] < XW(y) as.

By supermartingale convergence theorem, X,(,i)(y) converges a.s., and
hence X, (y) converges a.s., since X,(y) and X,(y) have the same dis-

tribution.
On the other hand, from (2.2), we have

E(Xnt1(9) < g(g(--- (9(4))) = ¢V (y) = o as n — oo,
which follows from the fact that g(-) is nondecreasing concave function
and (Aq).

LEMMA 2.2. Assume (A;). Then fory > yo, P(X,(y) <yo+6) >0
for some n.

Proof. Suppose P(X,(y) < yo +86) =0 for all n. Then

E(Xna(y) = / Xn(y)dP > yo + 6, for every n.
[Xn(y)>y0+6]

This contradicts to (2.1).
For the next lemma, we need the following additional assumption:

(A2) P(fa,(y0) > vo) > 0.
LEMMA 2.3. Let the assumptions (A;), (A;) hold. Then every § > 0
sufficiently small,

(2.3) P(Xn(0) >yo+ 6 for somen) = 1.

Proof. The proof is essentially the same as that of lemma 3 in Lee
(1989).



Limiting properties for a Markov process 705

THEOREM 2.4. Let the assumptions (A;), (A2) hold. Then Fy(z) =
Fy(z) for all y, 0 <y < yo + 6, where 6 is chosen to satisfy (2.3), and
Fy(z) = limp_.oo P(Xn(y) < 2).

Proof. Define = inf{n : X,(0) > yo + é}. Then by (2.3), P(r <

00) = 1. Now

(2.4) P(Xa(0) <=z, 7<n)

= Z P(Xn(0) < z|r =)P(1 =)

n

=3[ PCa) S 2@l = D}P(r =)

=1

< Y P(Xai(yo +8) < 2)P(r =),
i=1
where Q1(y|r = 1) = P(X-(0) <y, 7 =1). The existence of limits of
the first and the last term of (2.4) ensures by lemma 2.1, and letting
n — 0o, we have,

Fo(z) < Fyos(z)-

Therefore the conclusion follows from the relation
P(Xn(0) < 2) > P(Xn(y) < z) 2 P(Xa(yo +6) < z),

for any y, 0 <y < yo + 6.
Now let 1 be the corresponding measure with respect to the distri-
bution function Fy on R}, i.e., ¥([0,z]) = Fo(z). Then 3 becomes a

n o
nontrivial finite measure.

THEOREM 2.5. Under (A;), (A2), {Xn} is ¢-irreducible.

Proof. Let ¢(A) > 0 for some A € B(R}). Let § > 0 be chosen to
satisfy (2.3). For y < yo+96, Fy(z) = Fy(z) and hence P(X,(y) € A) > 0
for sufficiently large n. Now for y > yo + 9,

P(X.(y) € A)
> P(Xpn—n,(Xn,(y)) € AlXn, (y) < yo +6) - P(Xn, (y) < yo +6)
>0,
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for sufficiently large n. Here n) is chosen to satisfy P(X,, (y) < yo+6) >
0, which is possible by lemma 2.2.

Now assume y is neither y < yy 4+ 6 nor y > yy + 6. Then choose
y' such that y' > y and ¥ > yo + é and then choose ny such that
P(Xn,(y') <yo+6)>0.

P(Xa(y) € A)
2 P(Xn—n;(Xn,(y)) € Al Xn,(y) S yo+8) - P(Xn,(y) < yo + 6)
2 P(Xn—n,(yo +8) € A) - P(Xn,(y') < yo +6) >0,

for sufficiently large n.

3. Geometric ergodicity and central limit theorem

In this section we make the add1t10nal assumptlon on g:

(A3) There exists g > 0 such that Z 550 )(3:0) <1, V.

THEOREM 3.1. If we assume (Ay), (Az), (As), then {X,} which is
generated by (1.1) is geometrically ergodic.

Proof. Let us first define a nonnegative measurable function ~ on R}

as h(y) = Zy(i). Then
i=1

[ Pe.dint) = Y [ P, dyy?
=) _¢")

Since ¢{(:) is a nondecreasing concave function from R} to R*, for
x>0,

99(z) < VgD (z0)(z — 20) + g (20)

=3 ) 20 4
71=1
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8q , )
where g;;(zo) = %(10) and b = Vg (o) - 2o + ¢(z0). Now,

| P dwn) <30S outeo) -2+ ]

=1 j=

= GZ ) 4 nb,
i=1

where 0 < 6§ = Zg,‘]‘(xo) < 1.
=1

For given € > 0, we may choose §', 1 > 6’ > @ which holds

n n
(3.1) OZIU) +nb<0'Zx(j) - €,
j:] ]=1

for z whose Z zU) is sufficiently large.

i=1

It is known that every relatively compact set with positive invariant

measure is a small set. Moreover we may choose k in B such that

¥(B) > 0 and (3.1) holds for z € B¢, where B = {z € R} : 3" z() < k}.
Now,

sup [ Ple,dy)h(y) < sup 3" 60(x) < o,
IEB Be z€B i=1

since g(i)(x) is continuous and B is a compact set in R}. Hence by
theorem 1.1, { X, } is geometrically ergodic.

In order to state the functional central limit theorem, fix v € L*(R},
7). For each positive integer n, write

[nt]

(3.2) Yo(t) = n~1/2 Z(u(X]) - /udw), 0<t< oo,

where [nt] is the integer part of nt.
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Let T be the transition operator on L*(R}, 7) such that

(Tu)(z) = /u(y)P(x,dy), u € L*(R}, x).

We let B(R}) be the linear space of all real-valued bounded measurable
functions on R}.

THEOREM 3.2. Let the assumptions (A1), (Az2), (A3) hold, and let ©
be the invariant probability measure. Whatever the initial distribution,
Y. (t) in (3.2) converges in distribution to a Brownian motion for u €

B(R}).
Proof. Suppose u € B(R}) with for some M > 0, u(z) < M, Vz €

R;}. Write
U= /udﬂ.

First assume that the distribution of Xy, initial distribution, is 7. Then
{Xn} with Xy ~ 7 becomes a stationary ergodic Markov process. More-
over,

(3.3) IT"(u - @2 = / ( / u(y)p" (2, dy)
- [ utw)n(d) ()
< / (Mp"(z,) — 7 ()||)r(dz)

<2M? [ n(de)lp"(a, ) = 7
< 2M?kp"
for some 0 < k£ < oo and for some 0 < p < 1. The last inequality in (3.3)

follows from the fact that if {X,} is geometrically ergodic, then there
exists 0 < p < 1 such that

/ w(dz)| P™(z, ) — 7(-)]| = O(p")
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as n — oo (Nummelin and Touminen (1982)).
From (3.3), we have Z |T"(u —@)||2 < oo, which implies that v —u

belongs to the range orfl' 70' — I, I is an identity operator, and hence
functional central limit theorem holds for u € B(R}) (Gordin and Lifsic
(1978), Bhattacharya and Lee (1988a)).

Now we consider the process {X,(z)}. Let {X,} denote the process
with initial distribution . Write

!

Smm’(x) = n-—l/Z Z(U(X]('I")) - E)v
Samt = n 12 Z(u(xj) — 7).

Then for all r € R,
P(Spon(z)>71) = /P(so,,,_no(y) > r)P{(™)(z, dy), and

/ P(Spnono(4) > )P (z, dy)~ / P(So.n—no () > )(dy)| — 0

sup
n>nyp

as n — oo geometric ergodicity.
Also, So,n(z) = So,ne—1(z) + Sny,n(z) and for every nyg,

Sone—1(z) = 0 as. n— oo
Therefore, given € > 0, one may choose n(e) such that
|P(So,n(z) > 1) — P(So,n >1)| <€, Vn2>n(e).

Hence the distribution of Sy »(z) converges in the weak-star topology
to the appropriate Gaussian law, and hence the convergence of the finite
dimensional distribution of Y, (¢) to those of a Brownian motion when
the initial distribution is z follows.

Now modifying the process used in Bhattacharya and Lee (1988a), one
may show that the distribution of Y,,(¢), n = 1,2, ... form a precompact.
Hence by Prohorov’s theorem (Billingsley (1968)), Y,, with X, =z, z is
arbitrary, converges in distribution to a Brownian motion.
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