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ANALYTIC OPERATOR-VALUED FUNCTION
SPACE INTEGRAL REPRESENTED AS THE
BOCHNER INTEGRAL: AN (£(L;) THEORY

KuN Soo CHANG, KI SEONG CHOI AND KUN SIK Ryu

1. Notations and Lemmas

In [1], Cameron and Storvick introduced the analytic operator-valued
function space integral. Johnson and Lapidus proved that this integral
can be expressed in terms of an integral of operator-valued functions [6].
In this paper, we find some operator-valued Bochner integrable functions
and prove that the analytic operator-valued function space integral of a
certain function is represented as the Bochner integral of operator-valued
functions on some conditions.

Throughout this paper, we adopt the following notations. Let N
be a fixed natural number and let R” be the N-dimensional Euclidean
space. Let C,C4 and C7 be the set of all complex numbers, all com-
plex numbers with positive real part and all non-zero complex numbers
with non-negative real part, respectively. Let C™[a,b] be the space of
all RV -valued continuous functions on [a,b] and C{'[a,b] will denote
those z in CN[a,b] such that z(a) = 0. C[a,b] will be referred to as
“Wiener space” and integration over C{\ [a, b] will always be with respect
to Wiener measure m,,. Let £(Ly(R")) be the space of all bounded lin-
ear operators from L,(R") into itself.

DEFINITION 1.1. Let F be a function from CV[a,b] into C. Given
A >0, ¢ in Ly(RY) and ¢ in R, let

(11)  (L(F)E) = / PO Yo + (A ¥2(b) + €) dmy (o).
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If I(F)y is in Ly(RY) and if the correspondence ¥ — I\(F)y gives an
element of £L(Ly(RY)), we say that the operator-valued function space
integral Ix(F) exists. Suppose that Iy(F)exists for all A > 0 and there
exists an L(Ly(R"))-valued function which is analytic in C; and agrees
with Iy(F) for A > 0, then this £(L>(R"))-valued function is denoted by
IS"(F) and is called the analytic operator-valued function space integral
of F. For a non-zero real number g, suppose there is an operator %" T (F)

in L(L2(R"Y)) such that for every 3 in Ly(RV),

(1.2) " (F) = IZ5(F)¢llz = 0 as A — —ig

through C,, then I27 (F') is called the analytic operator-valued Feynman
integral of F.

DEFINITION 1.2. For Ain C7, ¢ in Ly(RM), € in RN and a positive
real number s, define Cy/st by

27s

(13) (a6 = (*)% [, #00 exp(- 2L ),

where m; is the Lebesgue measure on RY. When N is odd, we always
choose A'/? with non-negative real part. When Re\ = 0, the integral
in (1.3) should be interpreted in the mean just as in the theory of the
L,-Fourier transform.

REMARK. C)/, is a bounded linear operator from L,(R”") into itself
and ||Cy /]| = 1. Cy/, is analytic in C; and it is strongly continuous in
C7 as a function of A [7].

We state the following lemma without proof. For the proof, see [3].

LEMMA 1.3. Let (Y, B,v) be a finite measure space and let (Z,C, ) be
a o-finite measure space. And let H be a C-valued measurable function
onY x Z such that H(y, ) isin L,(Z,7) forv—a.e.y,1 < p < 400 and

(1.4) /Y 1E (3, )l di(y) < +oo.

Then [H(y, )] is Bochner intcgrable with respect to v and

(15) (B)- [ 1o Navty) = [ / H(y,->dv<y>],
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where [H(y,-)] is the equivalence class of H(y,-) in the Ly(Z,7)-sense
and the integral in the left hand side of (1.5) is Bochner integral.

The following examples show that if H is not measurable, then Lemma
1.3 does not hold.
EXAMPLE 1.4. Choose a subset B of [0,1] x [0, 1] with properties,
(i) for each tg in [0,1], the set {s|(s,to) € B} is countable
(i) for each sq in [0,1], the set {t|(so,t) ¢ B} is countable.
Let 1 < p < +oo be given and let f be a function from [0,1] into

L,([0,1],m;) such that f(t) = [xB(-,t)]. Then f is Bochner integrable
on {0, 1], but

(16) (B)- [ f(t)dmi(t) = 0
[0.1]

and
(1.7) (/[0,1] xB(1) dml(t)> (s)=1 forallsin[0,1].

Hence, if H is not measurable, Lemma 1.3 does not hold.

EXAMPLE 1.5. Let H be a function defined on [0, 1] x(0,1] by H(z,y)
= X[0,s](¥). Then H is Lebesgue measurable on [0,1]x [0,1] and [H(z, )]
is in Loo([0,1],m;) for all z in [0,1]. But [H(z,-)] is not strongly mea-
surable. Hence Lemma 1.3 is not true for p = +o0.

LEMMA 1.6. Let (Y,B,u) be a complex measure space and let {ry)
be a sequence of C-valued measurable functions in Ly(Y, u) such that

(1.8) Slirall = 3 [ ral)ldiul(s) < oo

Let g(s) = {rn(s)) onY. Then we have

(a) g is a I*-valued function on Y which is well-defined,
(b) g is Bochner integrable with respect to u,

(©
- [ stsrduts)=( [ rals)du) ).
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Proof. (a) Since [, 3272 [ra(s) dlul(s) = T2, fy Ira(s) dlul(s) <
400, Yo7, Ta(s) converges absolutely for |u|-a.e. s. Hence g is well-
defined.

(b) Let z = (by) be in (I')* = [°. Then (z0g)(s) = 3.°°, b, ra(s) is
measurable. Since [! is a separable metric space, g is strongly measur-
able. And since [, [lg(s)lln dlpl(s) = o2, Jy Ira(s)| dlpl(s) < +o0, ¢
is Bochner integrable with respect to p.

(c) For E in B, we define yg by yp = (fgra(s)du(s)). Then for
z = (bn) in I, 2(ye) = Yoo, bk [pri(s)du(s) = Je(z 0 g)(s) du(s).
Hence by [4], we have the result.

2. Main Result

In 1986, Johnson and Lapidus proved that the operator-valued func-
tion space integral on L2(R™) can be expressed in terms of the strong
integral [6]. In this section, we will show that this integral can be repre-
sented as the Bochner integral on some conditions.

Let p be a complex Borel measure on [a,b] with p{a} = u{b} =
0 and let (r,) be a sequence of C-valued Borel measurable functions
in Li([a, b], #) such that {|lrp|l;) is in I'. And let (6,) be a bounded
sequence in Loo(RY,my). Let 6(s,&) = S0 r,(s)0n(€) for (s,€) in
(a,b) x RY. Then 6 is well-defined for x x m; — a.e. (s,€). Let 8(s) be
the multiplication operator from Loo(R") into itself defined by [8(s)]¢ =
Mp(s,y () = 8(s, ().

THEOREM 2.1. f(s) = 6(s,-) is Bochner integrable with respect to
i

Proof. Let T,y be a Loo(RM)-valued function on I' given by
Tig,y({an)) = ¥ meianbn. Then Typ ) is a bounded linear operator
and f = Tig,)y 0 g where ¢ is given in Lemma 1.6. Since ¢ is Bochner
integrable, f is also Bochner integrable.

THEOREM 2.2. Let A bein Cy. Then f(s) = Cyj5-a00(s)0Cxjp—s)
1s Bochner integrable with respect to u.

Proof. Obviously, f is uniformly measurable. And f(a b) 1F ()| dlp](s)
< (sup [|0nlloc) Yooy lITalli < +00. Hence f is Bochner integrable.



Analytic operator-valued function space integral 603

THEOREM 2.3. Let A be in C4. Then the function f(sy,s2,...,Sn; A)
= Cx(s1-2) 0 0(51) 0 Ch/(sy—5;) 00(52) 0+ 08(s,,) 0 C»/(b~s,) is Bochner
integrable on Ap, = {(s1,...,8n)|a < 51 < s3 < -+ < 8, < b} with
respect to []i_, u. Moreover,

_/An f(sl,...,sn;/\)dgﬂ(si)

= (B)— (@b) C,\/(sl_a) o 9(51) o ((B)—/( ) CA/(32_31) o 0(32)0
a, 81,

(&) /() () /  Colinmany o6

T

Crf(b=sn) du(sn)) du(sn—1)> X -du(82)> du(s1).

Proof. It can be proved by the same method as in the proof of The-
orem 2.2.

By the dominated convergence theorem, Fubini’s theorem and Mor-
era’s theorem, we have the following theorem.

THEOREM 2.4. In Theorem 2.3, (B)— fAn fs1y. o sn; M)A ], (i)

is analytic in C4 and strongly continuous in C} as a function of \.

Let n be a complex Borel measure on (a, b) and u+v be the decomposi-
tion of n into continuous part p and discrete part v with v = Z;o 1 Wp s,
where 4. is the Dirac measure with total mass one concentrated at Tp.
Let f(z) = 3 > @, z" be an analytic function whose radius of con-
vergence is strictly greater than Y>> ||ra|li ||6n(lco. For y in C¥|a,b)],
let F(y) = f(f(a,b) 0(s,y(s)) dn(s)). Then, by [6], the operator-valued

function space integral Iy(F) exists on C} and for ¢ in Lo(RY),
21 L(Fy

Yone), 3 (L g

F=0 qot-tanamanso L Ol arl S
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o,

where for each h, o is the permutation on {1,2,...,h} such that

(LooLio--- oLh)¢dﬁu(si)] }

01 Jhg1

To(1) < To(2) < < To(h),

and the integral in the right hand side of (2.1) is the strong integral,

Aqo;jl,m‘jh“
= {(s1, - »8g) [a <81 < <55, < Tpy < sjp1 <o

L Sji4js S Ta(2) < < Sji4djp < To(h) < ¢

< ‘qj1+“'+jh+1 = Sqo < b}
and for (si1,...,5¢,) € Aqo;j1,~--,jh+1’ r€{0,1,2,...,h},

Ly = 8(15()"" 0 Cxf(sj,4tipir=mairy) © O 4tso 1)
O Cn/(sj, 4o 4irt2=sis 4 4ins1) ©
0 B(8jy4-tjrpr) © CA/(Td(r-f-])—sjl +odiegr )
From the above lemmas and theorems, we have the following theorem.
THEOREM 2.5. The perturbation series I\(F') exists in CJ and for ¢
in Ly(RN), € in RN and ) in C7,
[IA(F)$](€)

’ wit -
SeaS y (e
h=0 qo+---+gn=n,0, #0 T he

Y W[ [eneoml©d]Iuen)

jl+"'+jh+1=q0

L L [
T S S

h=0 qo+ - +gn=n,q1 #0
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> e (tao---o Lywa] [ uisn] b

j1+~'~+j;.+1=q<> [ RIS Jh41 i=1

R W -
e N S

C

|

S

b~
o

o)
Ly
o

qo
o Lud [T utsw] o
it +int1=40 =1
=S ey {&_

h=0 go+---+qr=n,q, #0

[(B) /A LooLlo-.-oLhdﬁu(s,-)zb”(E),

it +Jh+1—<Io 9031 dh 41 i

where the integral in the right hand side of the above first equality is the
Lebesgue integral.
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