ON THE EXTENDED JIANG SUBGROUP

Moo Ha Woo

1.Introduction

F. Rhodes [2] introduced the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G) as a generalization of the fundamental group $\pi_1(X, x_0)$ of a topological space X and showed a sufficient condition for $\sigma(X, x_0, G)$ to be isomorphic to $\pi_1(X, x_0) \times G$, that is, if (G, G) admits a family of preferred paths at $e, \sigma(X, x_0, G)$ is isomorphic to $\pi_1(X, x_0) \times G$. B.J.Jiang [1] introduced the Jiang subgroup $J(f, x_0)$ of the fundamental group of X which depends on f and showed a condition to be $J(f, x_0) = Z(f_{\pi}(\pi_1(X, x_0)), \pi_1(X, f(x_0)))$. The author and Han [4] introduced the extended Jiang subgroup $J(f, x_0, G)$ of the fundamental group of a transformation group as an extension of the Jiang subgroup $J(f, x_0)$. In this paper, we want to show a condition to be $J(f, x_0, G) = Z(f_{\sigma}(\sigma(X, x_0, G)), \sigma(X, f(x_0), G))$.

2. Definitions and Notations

Let (X, G, π) be a transformation group and X be a path connected compact ANR with x_0 as base point. Given an element g of G, a path α of order g with base point x_0 is a continuous map $\alpha: I \longrightarrow X$ such that $\alpha(0) = x_0$ and $\alpha(1) = gx_0$. A path α_1 of order g_1 and a path α_2 of order g_2 give rise to a path $\alpha_1 + g_1\alpha_2$ of order g_1g_2 defined by the equations

$$(\alpha_1 + g_1 \alpha_2)(s) = \begin{cases} \alpha_1(2s), & 0 \le s \le 1/2\\ g_1 \alpha_2(2s-1), & 1/2 \le s \le 1. \end{cases}$$

Received July 20, 1993.

This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1992 and TGRC-KOSEF 1993.

Two paths α and α' of the same order g are said to be homotopic if there is a continuous map $F: I^2 \longrightarrow X$ such that

$$F(s,0) = \alpha(s)$$
 $0 \le s \le 1$,
 $F(s,1) = \alpha'(s)$ $0 \le s \le 1$,
 $F(0,t) = x_0$ $0 \le t \le 1$,
 $F(1,t) = gx_0$ $0 \le t \le 1$.

The homotopy class of a path α of order g is denoted by $[\alpha; g]$. Two homotopy classes of paths of different orders g_1 and g_2 are distinct, even if $g_1x_0 = g_2x_0$. F. Rhodes[2] showed that the set of homotopy classes of paths of prescribed order with the rule of composition \circ is a group, where \circ is defined by $[\alpha_1; g_1] \circ [\alpha_2; g_2] = [\alpha_1 + g_1\alpha_2; g_1g_2]$. This group was denoted by $\sigma(X, x_0, G)$, and was called the fundamental group of (X, G) with base point x_0 .

Let f be a self map of X. A homotopy $H: X \times I \longrightarrow X$ is said to be an f-cyclic homotopy if $H(\cdot,0) = f = H(\cdot,1)$. In this case, the path $H(x_0,\cdot)$ is called the traces of the f-cyclic homotopy H at x_0 . In [1], Jiang has defined $J(f,x_0) = \{[\alpha] \in \pi_1(X,f(x_0)) | \alpha \text{ is homotopic to}$ the traces of an f-cyclic homotopy at $x_0\}$. An equivalent definition of $J(f,x_0)$ is the following: Define $p:X^X \longrightarrow X$ by $p(g) = g(x_0)$; then p induces a homomorphism $p_\pi:\pi_1(X^X,f) \longrightarrow \pi_1(X,f(x_0))$. The Jiang subgroup $J(f,x_0)$ is the image of the homomorphism p_π . A homotopy $H:X \times I \longrightarrow X$ is said to be an f-cyclic homotopy of order g if $H(\cdot,0) = f$ and $H(\cdot,1) = gf$, where g is an element of G.

DEFINITION 1. $J(f,x_0,G) = \{ [\alpha;g] \in \sigma(X,f(x_0),G) | \alpha \text{ is homotopic to the traces of an } f\text{-cyclic homotopy of order } g \}.[4]$

If we define $i_G: J(f,x_0) \longrightarrow J(f,x_0,G)$ by $i_G([\alpha]) = [\alpha:\epsilon]$, then the Jiang subgroup $J(f,x_0)$ is identified with a subgroup of $J(f,x_0,G)$. Thus $J(f,x_0,G)$ is called the extended Jiang subgroup. Define $\pi': X^X \times G \longrightarrow X^X$ by $\pi'(f,g) = gf$, then (X^X,G,π') is a transformation group and $p:(X^X,G) \longrightarrow (X,G)$ is a homomorphism. Thus p induces a homomorphism $p_\sigma:\sigma(X^X,f,G) \longrightarrow \sigma(X,f(x_0),G)$ given by $p_\sigma([\alpha:g]) = [p\alpha:g]$. It is easy to show that $p_\sigma(\sigma(X^X,f,G)) = J(f,x_0,G)$.

In [2], a transformation group (X, G) is said to admit a family of preferred paths at x_0 if it is possible to associate with every element g

of G a path k_g from gx_0 to x_0 such that the path k_e associated with the identity element e of G is homotopic to \hat{x}_0 and for every pair of elements g, h, the path k_{gh} from ghx_0 to x_0 is homotopic to $gk_h + k_g$, where $\hat{x_0}(t) = x_0$ for each $t \in I$.

3. An extension of the Jiang's results

In [2], Rhodes has shown that if (G, G) admits a family of preferred paths at e, then $\sigma(X, x_0, G)$ is isomorphic to $\pi_1(X, x_0) \times G$. Now we look for a condition to be $J(f, x_0, G) = Z(f_{\sigma}(\sigma(X, x_0, G)), \sigma(X, f(x_0), G))$.

DEFINITION 2. A family **K** of preferred paths at $f(x_0)$ is called a family of preferred f-traces at x_0 if for every preferred path k_g in $\mathbf{K}, k_g \rho$ is the traces of an f-cyclic homotopy of order g at x_0 , where $\rho(t) = 1 - t$. Especially, a family **K** of preferred 1_X -traces at $f(x_0)$ is a family of preferred traces at $f(x_0)$ which was defined in [3].

THEOREM 1. Let (X, G, π) be a transformation group. If (G, G) admits a family of preferred paths at e, then (X, G) admits a family of preferred f-traces at x_0 for any self map f of X.

Proof. Let **H** be a family of preferred paths at e in (G, G). Define $\mathbf{K} = \{k_g | k_g(t) = \pi(f(x_0), h_g(t)), h_g \in \mathbf{H}\}$. Let $F: X \times I \longrightarrow X$ be a map such that

$$F(x,t) = \pi(f(x), h_{\sigma}\rho(t))$$

Then

$$F(x,0) = \pi(f(x), h_g(1)) = h_g(1)f(x) = f(x),$$

$$F(x,1) = \pi(f(x), h_g(0)) = h_g(0)f(x) = gf(x)$$

and

$$F(x_0, t) = \pi(f(x_0), h_g \rho(t)) = h_g \rho(t) f(x_0) = k_g \rho(t).$$

Thus F is an f-cyclic homotopy of order g with trace $k_g \rho$. Therefore \mathbf{K} is a family of preferred f-traces at x_0 .

The following example shows that the converse of Theorem 1 does not hold.

EXAMPLE. Let R be the real space, Z the additive integer group and $\pi: R \times Z \longrightarrow R$ a map defined by $\pi(r,n) = r+n$. Then (R,Z,π) is a transformation group and it admits a family of preferred f-traces at 0 for any self map f of R. Because, let $\mathbf{K} = \{k_n | k_n \text{ is a path from } n \text{ to 0 in } R\}$, then $\mathbf{H} = \{h_n | h_n = f(0) + k_n, k_n \in K\}$ is a family of preferred paths at f(0). For each $n \in Z$, define $G: R \times I \longrightarrow R$ by $G(r,t) = f(r) + k_n \rho(t)$. Then G is an f-cyclic homotopy of order n with trace $h_n \rho$. Thus \mathbf{H} is a family of preferred f-traces at 0. Since Z is a discrete space, there is no path from n to 0 in Z, where n is any nonzero integer. Thus (Z,Z) cannot admit a family of preferred paths at 0.

THEOREM 2. Let f be a self map of X. Then the existence of a family of preferred f-traces is independent of the representatives of the homotopy class of f.

Proof. Let f, f' be homotopic self maps of X and H be a homotopy from f to f'. We assume that f admits a family $\mathbf{K} = \{k_g | g \in G\}$ of preferred f-traces at x_0 . Let α be the traces of the homotopy H at x_0 , that is, $\alpha(t) = H(x_0, t)$ for each $t \in I$. Define $\mathbf{K}' = \{h_g | h_g = g\alpha\rho + k_g + \alpha, k_g \in K\}$. Since,

$$h_e = e\alpha\rho + k_e + \alpha \sim \hat{f'(x_0)}$$

and

$$\begin{split} h_{g_1g_2} &= g_1g_2\alpha\rho + k_{g_1g_2} + \alpha \\ &\sim g_1g_2\alpha\rho + (g_1k_{g_2} + k_{g_1}) + \alpha \\ &\sim g_1(g_2\alpha\rho + k_{g_2} + \alpha) + (g_1\alpha\rho + kg_1 + \alpha) \\ &\sim g_1h_{g_2} + h_{g_1}, \end{split}$$

 \mathbf{K}' is a family of preferred paths at $f'(x_0)$, where $h \sim h'$ denotes h is homotopic to h'. Next, we show that \mathbf{K}' is a family of preferred f'-traces at x_0 . Since \mathbf{K} is a family of preferred f-traces at x_0 , there exists an f-cyclic homotopy J of order g with trace $k_g \rho$ for each $g \in G$. Let us define a homotopy $J': X \times I \longrightarrow X$ by

$$J'(x,t) = \begin{cases} H(x,1-3t), & 0 \le t \le 1/3\\ J(x,3t-1), & 1/3 \le t \le 2/3\\ gH(x,3t-2), & 2/3 \le t \le 1 \end{cases}$$

Then J'(x,0) = f'(x), J'(x,1) = gf'(x) and $J'(x_0,\cdot) = \alpha \rho + k_g \rho + g\alpha = (g\alpha \rho + k_g + \alpha)\rho = h_g \rho$. Thus $h_g \rho$ is the traces of an f'-cyclic homotopy J' of order g at x_0 .

THEOREM 3. Let (X,G) be a transformation group. If λ is a path from x_0 to x_1 , then a family of preferred f-traces at x_0 gives rise to a family of preferred f-traces at x_1 .

Proof. Let $\mathbf{K} = \{k_g | g \in G\}$ be a family of preferred f-traces at x_θ . For each element g of G, let $h_g = gf\lambda \rho + k_g + f\lambda$. Since

$$h_e = f\lambda\rho + k_e + f\lambda \sim \hat{f(x_1)}$$

and

$$\begin{split} h_{g_1g_2} &= (g_1g_2)f\lambda\rho + k_{g_1g_2} + f\lambda \\ &\sim (g_1g_2)f\lambda\rho + g_1k_{g_2} + k_{g_1} + f\lambda \\ &\sim (g_1g_2)f\lambda\rho + g_1k_{g_2} + g_1f\lambda + g_1f\lambda\rho + k_{g_1} + f\lambda \\ &\sim g_1(g_2f\lambda\rho + k_{g_2} + f\lambda) + (g_1f\lambda\rho + k_{g_2} + f\lambda) \\ &\sim g_1h_{g_2} + h_{g_1}, \end{split}$$

 $\mathbf{H} = \{h_g | g \in G\}$ is a family of preferred paths at x_1 . Since the induced isomorphism $(f\lambda)_*$ carries $J(f,x_0,G)$ isomorphically onto $J(f,x_1,G)$ by Theorem 8 in [4], $(f\lambda)_*[k_g\rho:g] \coloneqq [f\lambda\rho + \nu_g\rho + gf\lambda:g] = [h_g\rho:g]$ belongs to $J(f,x_1,G)$ for any element $[k_g\rho-g]$ of $J(f,x_0,G)$. Thus $\mathbf{H} = \{h_g | g \in G\}$ is a family of preferred f-traces at x_1 .

LEMMA 4. Let $f: X \longrightarrow X$ be a self map. If k is the traces of an f-cyclic homotopy of order g at x_0 , then for every loop α at x_0 , $f\alpha$ is homotopic to $k+gf\alpha+k\rho$. In particular, if f is a homeomorphism and α is a loop at $f(x_0)$, α is homotopic to $k+gc+k\rho$

Proof. Let $H: X \times I \longrightarrow X$ be an f-cyclic homotopy of order g with trace k and α be a loop at x_0 . Define $F: I \times I \longrightarrow X$ by

$$F(s,t) = \left\{ egin{array}{ll} k(4s), & 0 \leq s \leq t/4 \ H(lpha((4s+t)/(4-2t)),t), & 1/4 \leq s \leq (4-t)/4 \ k
ho(4s-3), & 4-t)/4 \leq s \leq 1. \end{array}
ight.$$

Then F is well defined, $F(s,0) = H(\alpha(s),0) = (f\alpha)(s)$ and $F(s,1) = (k+gf\alpha+k\rho)(s)$. In particular, suppose that f is a homeomorphism and β is a loop at $f(x_0)$. Then $f^{-1}\beta$ is a loop at x_0 . Thus β is homotopic to $k+gf(f^{-1}\beta)+k\rho = k+g\beta+k\rho$.

For a group G and a subgroup H, the centralizer Z(H,G) of H in G is the subgroup of G defined by $Z(H,G) = \{g \in G | gh = hg \text{ for all } h \in H\}$. In [1], Jiang has shown that $J(f,x_0) \subset Z(f_{\pi}(\pi_1(X,x_0)), \pi_1(X,f(x_0)))$. Now we generalize this result to the fundamental group of a transformation group as the following:

THEOREM 5. Let f be an endomorphism of (X,G) and G be abelian. If (X,G) admits a family $\{k_g|g\in G\}$ of preferred 1_X -traces at $f(x_0)$, where k_g is homotopic to an f-image of a path from gx_0 to x_0 , then $J(f,x_0,G)\subset Z(f_\sigma(\sigma(X,x_0,G)),\sigma(X,f(x_0),G))$.

Proof. Let $\mathbf{K} = \{k_g | g \in G\}$ be a family of preferred 1_X -traces at $f(x_0)$, where k_g is homotopic to an f-image of a path h_g from gx_0 to x_0 . For $[\alpha:g_1] \in J(f,x_0,G)$ and $[\beta:g_2] \in \sigma(X,x_0,G)$, we must show $[\alpha:g_1] \circ f_{\sigma}[\beta:g_2] = f_{\sigma}[\beta:g_2] \circ [\alpha:g_1]$. Since G is abelian, it is sufficient to show that $\alpha + g_1 f \beta$ is homotopic to $f\beta + g_2 \alpha$. If we use Lemma 4 and k_g , ρ is the traces of 1_X -cyclic homotopy of order g_1 at $f(x_0)$, we have

$$\begin{aligned} \alpha + g_1 f \beta &\sim \alpha + k_{g_1} + k_{g_1} \rho + g_1 f \beta + k_{g_1 g_2} + k_{g_1 g_2} \rho \\ &\sim \alpha + k_{g_1} + k_{g_1} \rho + g_1 (f \beta + k_{g_2}) + k_{g_1} + k_{g_1 g_2} \rho \\ &\sim \alpha + k_{g_1} + f \beta + k_{g_2} + k_{g_1 g_2} \rho \end{aligned}$$

and

$$f\beta + g_2\alpha \sim f\beta + k_{g_2} + k_{g_2}\rho + g_2\alpha + k_{g_2g_1} + k_{g_1g_1}\rho$$
$$\sim f\beta + k_{g_2} + k_{g_2}\rho + g_2(\alpha + k_{g_1}) + k_{g_1} + k_{g_2g_1}\rho$$
$$\sim f\beta + k_{g_2} + \alpha + k_{g_1} + k_{g_2g_1}\rho.$$

From these results, we know that $\alpha + g_1 f \beta$ is homotopic to $f \beta + g_2 \alpha$ if and ony if $\alpha + k_{g_1} + f \beta + k_{g_2}$ is homotopic to $f \beta + k_{g_2} + \alpha + k_{g_1}$. Since $[\alpha:g_1] \in J(f,x_0,G)$ and $k_{g_1} \in \mathbf{K}$, there exists an f-cyclic homotopy H of order g_1 at x_0 such that $H(x_0,\cdot)$ is homotopic to α and 1_X -cyclic

homotopy G of order g_1 at $f(x_0)$ such that $G(f(x_0), \cdot)$ is homotopic to $k_{g_1}\rho$. Define $J: X \times I \longrightarrow X$ by

$$J(x,t) = \left\{ \begin{array}{ll} H(x,2t), & 0 \le t \le 1/2 \\ G(f(x),2-2t), & 1/2 \le t \le 1. \end{array} \right.$$

then J is an f-cyclic homotopy such that $J(x_1, \cdot)$ is homotopic to $\alpha + k_{g_1}$. Thus $\alpha + k_{g_1}$ is the traces of an f-cyclic homotopy of order 1_X . By Lemma 4 and $k_{g_2} \sim f h_{g_2}$ for a path h_{g_2} from $g_2 x_0$ to x_0 , we obtain

$$\begin{aligned} \alpha + k_{g_1} + f\beta + k_{g_2} &\sim \alpha + k_{g_1} + f\beta + fh_{g_2} \\ &\sim (\alpha + k_{g_1}) + (\alpha + k_{g_1})\rho + f(\beta + h_{g_2}) + (\alpha + k_{g_1}) \\ &\sim f\beta + k_{g_2} + \alpha + k_{g_1}. \end{aligned}$$

Let G be the trivial group $\{1_X\}$. Then G is abelian, any self-map of X is an endomorphism of (X, G) and (X, G) has a family K of preferred 1_X -traces at $f(x_0)$, where the only one element of K is the f-image of the constant path at x_0 . As a corollary of the above theorem, we have the following Jiang's result in [1].

COROLLARY 6. If f is a self-map of X, then $J(f, x_0) \subset Z(f_{\pi}(\pi_1(X, x_0)), \pi_1(X, f(x_0)))$.

COROLLARY 7. Let f be an automorphism of (X,G) and G be abelian. If (X,G) admits a family $\{k_g|g\in G\}$ of preferred 1_X -traces at $f(x_0)$, then $J(f,x_0,G)$ is contained in $Z(\sigma(X,f(x_0),G))$.

In [1], the main result concerning the Jiang subgroup of maps on connected aspherical(in the sence that $\pi_i(X, x_0) = 0$ for i > 1) polyhedron is that if X is a connected aspherical polyhedron and f is a self map of X, we have $J(f, x_0) = Z(f_{\pi}\pi_1(X, x_0), \pi_1(X, f(x_0)))$.

Let X be a connected aspherical polyhedron and f be an endomorphism of (X,G). If (X,G) admits a family $\{k_g|g\in G\}$ of preferred 1_X -traces at $f(x_0)$, where k_g is homotopic to an f-image of a path from gx_0 to x_0 , then the extended Jiang subgroup $J(f,x_0,G)$ can be given explicitly.

616 Moo Ha Woo

THEOREM 8. Let X be a connected aspherical polyhedron, G be abelian and f be an endomorphism of (X,G). If (X,G) admits a family $\{k_g|g\in G\}$ of preferred 1_X -traces at $f(x_0)$ where k_g is homotopic to an f-image of a path from gx_0 to x_0 , then $J(f,x_0,G)=Z(f_{\sigma}(\sigma(X,x_0,G)),\sigma(X,f(x_0),G))$.

Proof. Let f be an endomorphism of (X,G). If (X,G) admits a family $\{k_g|g\in G\}$ of preferred 1_X -traces at $f(x_0)$,where k_g is homotopic to an f-image of a path h_g from gx_0 to x_0 , then we first show that there exists an isomorphism ϕ from $\sigma(X, f(x_0), G)$ onto $\pi_1(X, f(x_0)) \times G$ which carries $J(f, x_0, G)$ onto $J(f, x_0) \times G$. Define $\phi: \sigma(X, f(x_0), G) \to \pi_1(X, f(x_0)) \times G$ by $\phi([\alpha:g]) = ([\alpha + k_g], g)$, then ϕ is well defined. Because, $[\alpha:g] = [\alpha':g']$ implies $g = g', \alpha$ is homotopic to α' and hence $\alpha + k_g$ is homotopic to $\alpha' + k_g$.

Suppose $\phi([\alpha : g]) = \phi([\alpha' : g])$. Then $\alpha + k_g$ is homotopic to $\alpha' + k_g$. This implies that α is homotopic to α' . Therefore ϕ is injective.

For any element $([\alpha], g) \in \pi_1(X, f(x_0)) \times G$, there exists an element $[\alpha + k_g \rho : g]$ in $\sigma(X, f(x_0), G)$ such that $\phi([\alpha + k_g \rho : g]) = ([\alpha], g)$. Therefore, ϕ is surjective.

Next, we show that ϕ is a homomorphism. Let $[\alpha_1 \ g_1]$ and $[\alpha_2 : g_2]$ be elements of $\sigma(X, f(x_0), G)$. Then

$$\phi([\alpha_1:g_1] \circ [\alpha_2:g_2]) = ([\alpha_1 + g_1\alpha_2 + k_{g_1g_2}], g_1g_2)$$

and

$$\phi([\alpha_1:g_1])\circ\phi([\alpha_2:g_2])=([\alpha_1+k_{g_1}+\alpha_2+k_{g_2}],g_1g_2).$$

Since $\alpha_2 + k_{g_2}$ is a loop at $f(x_0)$ and $k_{g_1}\rho$ is the traces of an 1_X -cyclic homotopy of order g_1 at $f(x_0)$, $\alpha_2 + k_{g_2}$ is homotopic to $k_{g_1}\rho + g_1(\alpha_2 + k_{g_2}) + k_{g_1}$ by Lemma 4. Therefore, we have

$$\begin{split} \alpha_1 + k_{g_1} + \alpha_2 + k_{g_2} &\sim \alpha_1 + k_{g_1} + k_{g_1} \rho + g_1 (\alpha_2 + k_{g_2}) + k_{g_1} \\ &\sim \alpha_1 + g_1 (\alpha_2 + k_{g_2}) + k_{g_1} \\ &\sim \alpha_1 + g_1 \alpha_2 + g_1 k_{g_2} + k_{g_1} \\ &\sim \alpha_1 + g_1 \alpha_2 + k_{g_1 g_2}. \end{split}$$

This implies that ϕ is a homomorphism. Finally, we show ϕ sends $J(f, x_0, G)$ onto $J(f, x_0) \times G$. Let $[\alpha : g]$ be an element of $J(f, x_0, G)$.

Then there exists an f-cyclic homotopy $H: X \times I \longrightarrow X$ of order g with trace α and an 1_X -cyclic homotopy $J: X \times I \longrightarrow X$ of order g with trace $k_g \rho$.

Define $F: X \times I \longrightarrow X$ by

$$F(x,t) = \begin{cases} H(x,2t), & 0 \le t \le 1/2 \\ J(f(x), 2(1-t)), & 1/2 \le t \le 1. \end{cases}$$

Then F(x,0) = H(x,0) = f(x), F(x,1) = J(f(x),0) = f(x) and

$$F(x_0, t) = \begin{cases} H(x_0, t), & 0 \le t \le 1/2 \\ J(f(x_0), 2(1 - t)), & 1/2 \le t \le 1 \\ = (\alpha + k_g)(t). \end{cases}$$

Thus F is an f-cyclic homotopy with trace $F(x_0, \cdot)$ homotopic to $\alpha + k_g$ and hence $[\alpha + k_g]$ belongs to $J(f, x_0)$.

For any element $([\alpha], g) \in J(f, x_0) \times G$, there exists an f-cyclic homotopy $H: X \times I \longrightarrow X$ with trace α . Since $\{k_g | g \in G\}$ is a family of preferred 1_X -traces at $f(x_0)$, there exists an 1_X -cyclic homotopy $J: X \times I \longrightarrow X$ of order g with trace $k_g \rho$. Define

$$F(x,t) = \begin{cases} H(x,2t), & 0 \le t \le 1/2 \\ J(f(x),2t-1), & 1/2 \le t \le 1. \end{cases}$$

then F is an f-cyclic homotopy of order g with trace $\alpha + k_g \rho$ and hence there exists an element $[\alpha + k_g \rho : g]$ in $J(f, x_0, G)$ such that $\phi([\alpha + k_g \rho : g]) = ([\alpha], g)$.

Let $[\alpha:g]$ be any element of $Z(f_{\sigma}(\sigma(X,x_0,G)),\sigma(X,f(x_0),G))$. Thus $[\alpha:g]$ belongs to $J(f,x_0,G)$ if and only if $[\alpha+k_g]$ belongs to $J(f,x_0)$. Thus it is sufficient to show that $[\alpha+k_g] \in J(f,x_0)$. For any element $[\beta] \in \pi_1(X,x_0)$, we have $[f\beta+k_{g'}\rho:g']=f_{\sigma}([\beta+h_{g'}\rho:g'])$ and hence $[f\beta+k_{g'}\rho:g']$ belongs to $f_{\sigma}(\sigma(X,x_0,G))$. Since $[\alpha:g]$ belongs to $Z(f_{\sigma}(\sigma(X,x_0,G)),\sigma(X,f(x_0),G))$ we have

$$[\alpha:g]\circ[f\beta+k_{g'}\rho:g']=[f\beta+k_{g'}\rho:g']\circ[\alpha:g].$$

This implies

$$([\alpha + k_g], g) \circ ([f\beta], g') = \phi([\alpha : g]) \circ \phi([f\beta + k_{g'}\rho : g'])$$

$$= \phi([f\beta + k_{g'}\rho : g'] \circ \phi([\alpha : g])$$

$$= ([f\beta], g') \circ ([\alpha + k_g], g).$$

Therefore, we have $[\alpha+k_g]\circ[f\beta]=[f\beta]\circ[\alpha+k_g]$ for any $[\beta]\in\pi_1(X,x_0)$. Hence $[\alpha+k_g]$ belongs to $Z(f_\pi(\pi_1(X,x_0)),\pi_1(X,f(x_0)))=J(f,x_0)$ and this completes one part of the proof. The revrese implication follows from Theorem 5.

COROLLARY 9. Let X be a connected aspherical polyhedron, G be abelian and f be an automorphism of (X,G). If (X,G) admits a family $\{k_g|g\in G\}$ of preferred 1_X -traces at $f(x_0)$, then $J(f,x_0,G)=Z(\sigma(X,f(x_0),G))$.

COROLLARY 10. Let $G = \{1_X\}$, X a connected aspherical polyhedron and f be a self-map of X, then $J(f, x_0) = Z(f_\pi \pi_1(X, x_0), \pi_1(X, f(x_0)))$.

References

- 1. B. J. Jiang, Lectures on Nielsen fixed point theory, Contemp. Math. 14 (1983).
- 2. F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. (3) 16 (1966), 635-650.
- 3. M. H. Woo, A representation of $E(X, x_0, G)$ in terms of $G(X, x_0)$, J. of Korean Math. Soc. 23 (1986), 101-108.
- 4. M. H. Woo and S. H. Han, An extended Jiang subgroup of the fundamental group of a transformation group, Comm. of Korean Math. Soc. 28 (1991), 135-143.

Department of Mathematics Education Korea University Seoul 136, Korea