TRUNCATE PRODUCTS OF LATTICES

DEOK RAK BAE AND JEH GWON LEE

A lattice is called *bounded* if it has both the least element and the largest element which are usually denoted by 0 (zero) and 1(unit), respectively. Recently, Bennett [2] defined the rectangular product of two bounded lattices L_1 and L_2 to be the set

$$\{(x,y) \in L_1 \times L_2 \mid x \neq 0, y \neq 0\} \cup \{(0,0)\}$$

with the order induced from the direct product $L_1 \times L_2$. With a minor change from this, the truncate product $L_1 \diamondsuit L_2$ of the two bounded lattices L_1 and L_2 is defined to be the set

$$\{(x,y)\in L_1\times L_2\mid x\neq 0\neq y, x\neq 1\neq y\}\cup\{(0,0),(1,1)\}$$

with the order also induced from the direct product $L_1 \times L_2$. In this paper, we investigate lattice properties preserved by taking truncate products. We assume throughout that every lattice is finite and bounded and we let $L^* = L - \{0,1\}$ for any bounded lattices L.

We first observe the following simple facts for any lattices L_1 and L_2 :

- (i) $(x,y) \neq (0,0)$ in $L_1 \diamondsuit L_2$ if and only if $x \neq 0$ in L_1 and $y \neq 0$ in L_2 .
- (ii) $(x,y) \neq (1,1)$ in $L_1 \diamondsuit L_2$ if and only if $x \neq 1$ in L_1 and $y \neq 1$ in L_2 .
- (iii) $(x,y) \wedge (r,s) = (0,0)$ in $L_1 \diamondsuit L_2$ if and only if $x \wedge r = 0$ in L_1 or $y \wedge s = 0$ in L_2 .
- (iv) $(x,y) \lor (r,s) = (1,1)$ in $L_1 \diamondsuit L_2$ if and only if $x \lor r = 1$ in L_1 or $y \lor s = 1$ in L_2 .
- (v) Nonzero meets and nonunit joins agree on both $L_1 \diamondsuit L_2$ and $L_1 \times L_2$.

Received June 21, 1993.

This work was supported by KOSEF Grant 921-01:00-010-2.

Let L be a lattice. For elements a > b in L, we write a > b or $b \prec a$ (a covers b or b is covered by a) if $a \geq c > b$ implies a = c for every element c of L. An atom is any element which covers the least element and a dual atom is any element which is covered by the greatest element. Let us denote by A(L) and DA(L) the sets of all atoms and all dual atoms, respectively, of L. Then $A(L_1 \diamondsuit L_2) = A(L_1) \times A(L_2)$ and $DA(L_1 \diamondsuit L_2) = DA(L_1) \times DA(L_2)$, for any lattices L_1 and L_2 . Furthermore, if L_1 or L_2 is isomorphic to 1 or 2, where n denotes an n-elements chain, then $L_1 \diamondsuit L_2$ is isomorphic to 2 and so, in this paper, we may assume that all lattices are not isomorphic to 1 and 2.

The truncate product of 2^3 and 2^2 is given in Figure 1. The resulting lattice is neither distributive nor modular. Furthermore, it is not uniquely complemented.

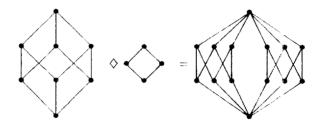


Figure 1

LEMMA 1. Let L_1 and L_2 be lattices. Then the following statements hold:

- (i) If a is a complement of c in L_1^* , then (a, y) is a complement of (c, z) in $L_1 \diamondsuit L_2$ for any $y, z \in L_2^*$.
- (ii) If b is a complement of d in L_2^* , then (x, b) is a complement of (w, d) in $L_1 \diamondsuit L_2$ for any $x, w \in L_1^*$.
- (iii) If $a \lor c = 1$ in L_1 and $b \land d = 0$ in L_2 or $a \land c = 0$ in L_1 and $b \lor d = 1$ in L_2 for $a, c \in L_1^*$ and $b, d \in L_2^*$, then (a, b) is a complement of (c, d) in $L_1 \diamondsuit L_2$.

COROLLARY 1. Let L_1 and L_2 be lattices and let $a \in L_1^*$ and $b \in L_2^*$. If a is a complement of c in L_1 and b is a complement of d in L_2 , then (c,y) and (x,d) are complements of (a,b) in $L_1 \diamondsuit L_2$ for any $x \in L_1^*$ and $y \in L_2^*$.

LEMMA 2. For any lattice $L, L \diamondsuit 3 \cong L$.

THEOREM 1. The truncate product of two lattices is uniquely complemented if and only if one of its factors is uniquely complemented and the other is isomorphic to 3.

Proof. The sufficiency of the condition follows easily from Lemma 2. To prove the necessity, let the truncate product of two lattices L_1 and L_2 be uniquely complemented. Let $a \in L_1^*$, $b \in L_2^*$ and let (c,d) be a unique complement of (a,b) in $L_1 \diamondsuit L_2$. Then $c \in L_1^*$, $d \in L_2^*$ and $(a,b) \lor (c,d) = (1,1)$, $(a,b) \land (c,d) = (0,0)$ in $L_1 \diamondsuit L_2$. Then we have four cases to consider:

- (i) $a \lor c = 1$ and $a \land c = 0$ in L_1 .
- (ii) $b \lor d = 1$ and $b \land d = 0$ in L_2 .
- (iii) $a \lor c = 1$, $a \land c \neq 0$ in L_1 and $b \lor d \neq 1$, $b \land d = 0$ in L_2 .
- (iv) $a \lor c \neq 1$, $a \land c = 0$ in L_1 and $b \lor d = 1$, $b \land d \neq 0$ in L_2 .

By symmetry we only treat the cases (i) and (iii).

CASE (1). $a \lor c = 1$ and $a \land c = 0$ in L_1 .

Since a is a complement of c in L_1 , (c, y) is a complement of (a, b) in $L_1 \diamondsuit L_2$ for any $y \in L_2^*$ by Lemma 1(i). Since (c, d) is a unique complement of (a, b) in $L_1 \diamondsuit L_2$, we have y = d in L_2 , and hence $|L_2^*| = 1$. Thus $L_2 \cong 3$ and so $L_1 \diamondsuit L_2 \cong L_1$ by Lemma 2. Hence L_1 is uniquely complemented, as required.

CASE (III). $a \lor c = 1$, $a \land c \neq 0$ in L_1 and $b \lor d \neq 1$, $b \land d = 0$ in L_2 .

If $a \leq x < 1$ in L_1 , then $x \vee c = a \vee c = 1$ in L_1 . Since $b \wedge d = 0$ in L_2 , it follows from Lemma 1(iii) that (a,d) and (x,d) are complements of (c,b) in $L_1 \diamondsuit L_2$. As $L_1 \diamondsuit L_2$ is uniquely complemented, we have a = x in L_1 . Thus a is a dual atom in L_1 . Similarly, c is also a dual atom in L_1 and so $|DA(L_1)| \geq 2$. Thus, choose a dual atom z in L_1 with $z \neq a$,

then $a \vee z = 1$ in L_1 . Hence (c, d) and (z, d) are complements of (a, b) in $L_1 \diamondsuit L_2$ by Lemma 1(iii). Since $L_1 \diamondsuit L_2$ is uniquely complemented, we have z = c in L_1 . Therefore, L_1 has exactly two dual atoms, that is, $DA(L_1) = \{a, c\}$.

Consider the element $(a \wedge c, b)$ in $L_1 \diamondsuit L_2$. Since $L_1 \diamondsuit L_2$ is uniquely complemented, there exists a unique element (p,q) in $(L_1 \diamondsuit L_2)^*$ such that $(p,q) \lor (a \land c,b) = (1,1)$ and $(p,q) \land (a \land c,b) = (0,0)$. Since $P \neq 1$ in L_1 and $DA(L_1) = \{a,c\}$, we have $p \leq a$ or $p \leq c$ in L_1 .

Now we claim that $p \wedge a \wedge c \neq 0$ in L_1 . If $p \leq a$ and $p \leq c$, then clearly $p \wedge a \wedge c = p \neq 0$ in L. Next we consider the case when $p \leq a$ and $p \not\leq c$. Suppose that $p \wedge a \wedge c = 0$ in L_1 . Since $p \leq a$, $p \not\leq c$ in L_1 and $c \in DA(L_1)$, $p \wedge c = p \wedge a \wedge c = 0$ and $p \vee c = 1$ in L_1 , and hence p is a complement of c in L_1 . Thus (p,b) is a complement of (c,d) in $L_1 \diamondsuit L_2$ by Lemma 1(i). Since (a,b) is a unique complement of (c,d) in $L_1 \diamondsuit L_2$, we have p = a in L_1 . Hence $p \wedge a \wedge c = a \wedge c \neq 0$ in L_1 , which is a contradiction. Hence $p \wedge a \wedge c \neq 0$ in L_1 . The case when $p \not\leq a$ and $p \leq c$ is similarly treated.

By the preceding claim, $(p,q) \land (a \land c,b) = (0,0)$ implies that $q \land b = 0$ in L_2 . Since $(p,q) \lor (a \land c,b) = (1,1)$ and $DA(L_1) = \{a,c\}$, we have $p \lor (a \land c) \le a \prec 1$ or $p \lor (a \land c) \le c \prec 1$, and so $q \lor b = 1$ in L_2 . Hence b has a complement q in L_2^* . By duality, we obtain $A(L_2) = \{b,d\}$ and so a has a complement r in L_1^* . By Corollary 1, (a,q) (r,q) and (r,b) are distinct complements of (a,b) in $L_1 \diamondsuit L_2$, which is a contradiction.

COROLLARY 2. The truncate product of two lattices is isomorphic to 2^n if and only if one of its factors is isomorphic to 2^n and the other is isomorphic to 3.

A lattice L is said to be (upper) semimodular (or satisfy the upper covering property) if for any elements a, b and c, of L $a \prec b$ implies that $a \lor c = b \lor c$ or $a \lor c \prec b \lor c$. The lower semimodularity (or lower covering property) is defined dually. We observe that a lattice is semimodular if and only if $x \succ x \land y$ implies $x \lor y \succ y$. In [1], it is shown that the rectangular product of lattices L_1 and L_2 is semimodular if and only if L_1 and L_2 are semimodular with $|A(L_1)| = 1$ or $|A(L_2)| = 1$. But this condition does not apply for the truncate product (Figure 2).

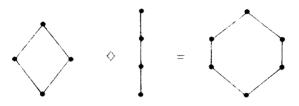


Figure 2

The length of an n-element chain **n** is defined to be n-1. More generally, the length l(P) of an ordered set P is defined as the supremum of the lengths of chains in P. In an ordered set P of finite length with the least element 0, the height h(x) of an element $x \in P$ is l([0,x]), where $[0,x] = \{y \in P | y \leq x\}$. If P has the greatest element 1, then clearly h(1) = l(P).

THEOREM 2. The truncate product of lattices L_1 and L_2 is semi-modular if and only if L_1 and L_2 are semi-modular and one of the following conditions holds:

- (i) L_1 and L_2 are isomorphic to M_r and M_s , respectively, for some positive integers r and s, where M_n is the lattice of length 2 with n atoms.
- (ii) L_1 or L_2 is isomorphic to 3.
- (iii) $|DA(L_i)| = 1$ for i = 1, 2 and $|A(L_1)| = 1$ or $|A(L_2)| = 1$.

Proof. (\Longrightarrow) Suppose that $L_1 \diamondsuit L_2$ is semimodular such that $L_1 \diamondsuit L_2 \ncong M_n$ for any positive integer n and neither L_1 nor L_2 is isomrphic to 3. Then we shall show that both L_1 and L_2 are semimodular, $|DA(L_i)| = 1$ (i = 1, 2) and $|A(L_1)| = 1$ or $|A(L_2)| = 1$.

CLAIM 1. Both L_1 and L_2 are semimodular.

Suppose that L_1 or L_2 is not semimodular. We may assume without loss of generality that L_2 is not semimodular. Then, there are elements $b, d \in L_2^*$ such that b covers $b \wedge d$ in L_2 and $b \vee d$ does not cover d in L_2 . Pick an element x in L_2 such that $d < x < b \vee d$ in L_2 . Consider the elements $(p, b) \wedge (p, d)$, (p, b), (p, d) and $(p, b) \vee (p, d)$ in $L_1 \diamondsuit L_2$ for some atom p in L_1 . Since $b \succ b \wedge d$ in L_2 , we have $(p, b) \succ d$

 $(p,b) \wedge (p,d)$ in $L_1 \diamondsuit L_2$. Furthermore, we know that if $b \vee d = 1$ in L_2 then $(p,b) \vee (p,d) = (1,1)$ in $L_1 \diamondsuit L_2$ and that if $b \vee d \neq 1$ in L_2 then $(p,b) \vee (p,d) = (p,b \vee d)$ in $L_1 \diamondsuit L_2$. In either case, we have $(p,d) < (p,x) < (p,b) \vee (p,d)$ in $L_1 \diamondsuit L_2$, and so $(p,b) \vee (p,d)$ does not cover (p,d) in $L_1 \diamondsuit L_2$, which is a contradiction.

CLAIM 2. $|DA(L_1)| = 1$ and $|DA(L_2)| = 1$.

Suppose that $|DA(L_1)| \geq 2$ or $|DA(L_2)| \geq 2$. We may assume without loss of generality that $|DA(L_2)| \geq 2$. Note that $L_i (i = 1, 2)$ does not isomorphic to 1, 2 and M_n for any positive integer n. Thus $l(L_1) \geq 3$. Since $|DA(L_2)| \geq 2$ and so there are distinct two dual atoms b,d in L_2 Pick y such that $1 \succ b \geq y \succ b \land d$. Since $l(L_1) \geq 3$, there are elements a and c in L_1 such that $0 \prec c < a \prec 1$. Since $b \geq y \succ y \land d = b \land d$ in L_2 , y and d are incomparable elements in L_2 . Furthermore, since d is a dual atom in L_2 , we have $y \lor d = 1$ in L_2 . If $y \land d = 0$ in L_2 , then $y \succ y \land d = 0$ in L_2 and so $y \in A(L_2)$. Hence $(c, y) \succ (c, y) \land (c, d) = (0, 0)$ in $L_1 \diamondsuit L_2$. But $(c, y) \lor (c, d) = (1, 1) \succ (a, d) > (c, d)$ in $L_1 \diamondsuit L_2$, which is a contradiction to the semimodularity of $L_1 \diamondsuit L_2$. But $(c, y) \lor (c, d) = (c, y) \land (c, d)$ in $L_1 \diamondsuit L_2$. But $(c, y) \lor (c, d) = (1, 1) \succ (a, d) > (c, d)$ in $L_1 \diamondsuit L_2$. But $(c, y) \lor (c, d) = (1, 1) \succ (a, d) > (c, d)$ in $L_1 \diamondsuit L_2$, which is also a contradiction to the semimodularity of $L_1 \diamondsuit L_2$, which is also a contradiction to the semimodularity of $L_1 \diamondsuit L_2$

CLAIM 3. $|A(L_1)| = 1$ or $|A(L_2)| = 1$.

Suppose that $|A(L_1)| \geq 2$ and $|A(L_2)| \geq 2$. Then, there are two distinct atoms p_i, q_i in each L_i for i = 1, 2. Then $(p_1, p_2) \succ (0, 0) = (p_1, p_2) \land (q_1, q_2)$ in $L_1 \diamondsuit L_2$. By Claim 2, $(p_1, p_2) \lor (q_1, q_2) \neq (1, 1)$ in $L_1 \diamondsuit L_2$ and so $(p_1, p_2) \lor (q_1, q_2) = (p_1 \lor q_1, p_2 \lor q_2) \vdash (q_1, p_2 \lor q_2) \succ (q_1, q_2)$ in $L_1 \diamondsuit L_2$. Thus, $(p_1, p_2) \lor (q_1, q_2)$ does not cover (q_1, q_2) in $L_1 \diamondsuit L_2$, which is a contradiction.

(\Leftarrow) Suppose that L_1 and L_2 are semimodular. Since other cases are trivial, we only assume that $|DA(L_i)| = 1$ for i = 1, 2 and $|A(L_1)| = 1$. Let $(a, b) \succ (a, b) \land (c, d)$ in $L_1 \diamondsuit L_2$. We shall show that $(a, b) \lor (c, d) \succ (c, d)$ in $L_1 \diamondsuit L_2$. We have three cases to consider.

CASE (1). If $a \wedge c = 0$ in L_1 , then $(a,b) \succ (a,b) \wedge (c,d) = (0,0)$ in $L_1 \diamondsuit L_2$ and so $a \in A(L_1)$ and $b \in A(L_2)$. Since $A(L_1) = \{a\}$ and $a \wedge c = 0$ in L_1 , we have c = 0 in L_1 . Hence, (c,d) = (0,0) in $L_1 \diamondsuit L_2$ and so $(a,b) \lor (c,d) = (a,b) \succ (0,0) = (c,d)$ in $L_1 \diamondsuit L_2$.

CASE (II). If $a \wedge c \neq 0$ in L_1 and $b \wedge d = 0$ in L_2 , then $(a, b) \succ (a, b) \wedge (c, d) = (0, 0)$ in $L_1 \diamondsuit L_2$ and again $a \in A(L_1)$ and $b \in A(L_2)$. Since $A(L_1) = \{a\}$ and $a \wedge c \neq 0$, we have $a \leq c$ in L_1 . As $b \succ 0 = b \wedge d$ and L_2 is semimodular, $b \vee d \succ d$ in L_2 . Now, since $|DA(L_2)| = 1$, we have $b \vee d \neq 1$ in L_2 and so $(a, b) \vee (c, d) = (c, b \vee d) \succ (c, d)$ in $L_1 \diamondsuit L_2$.

CASE (III). If $a \wedge c \neq 0$ in L_1 and $b \wedge d \neq 0$ in L_2 , then $(a,b) \succ (a,b) \wedge (c,d) = (a \wedge c,b \wedge d)$ in $L_1 \diamondsuit L_2$. Hence, $a=a \wedge c$ in L_1 and $b \succ b \wedge d$ in L_2 , or $a \succ a \wedge c$ in L_1 and $b=b \wedge d$ in L_2 . Since L_1 and L_2 are semimodular, $a \leq c$ in L_1 and $b \vee d \succ d$ in L_2 , or $a \vee c \succ c$ in L_1 and $b \leq d$ in L_2 . Observe that $c \neq 1 \neq d$ in either case. If $a \leq c$ in L_1 and $b \vee d \succ d$ in L_2 , then $b \vee d \neq 1$ in L_2 . For, otherwise we have b=1 and so a=1, whence c=1, contradicting to the preceding observation. Similarly, if $b \leq d$ and $a \vee c \succ c$, then $a \vee c \neq 1$. Now, since $(a,b) \vee (c,d) = (c,b \vee d)$ in $L_1 \diamondsuit L_2$ or $(a,b) \vee (c,d) = (a \vee c,d)$ in $L_1 \diamondsuit L_2$, we have $(a,b) \vee (c,d) \succ (c,d) \mapsto (c,d)$ in $L_1 \diamondsuit L_2$.

Let L be a lattice of finite length. It is well known that L is modular if and only if L is both upper and lower semimodular. By Theorem 2 and duality, the following corollaries are immediately obtained.

CORORLLARY 3. The truncate product of lattices L_1 and L_2 is modular if and only if L_1 and L_2 are modular and one of the following conditions holds:

- (i) L_1 and L_2 is isomorphic to M_r and M_s , respectively, for some positive integers r and s.
- (ii) L_1 or L_2 is isomorphic to 3.
- (iii) $|DA(L_i)| = 1$ and $|A(L_i)| = 1$ for i = 1, 2.

COROLLARY 4. The truncate product of lattices L_1 and L_2 is distributive if and only if L_1 and L_2 are distributive and one of the following conditions holds:

- (i) L_1 or L_2 is isomorphic to 3.
- (ii) $|DA(L_i)| = 1$ and $|A(L_i)| = 1$ for i = 1, 2.

Finally, we list a series of propositions whose proofs are quite straightforward.

An ordered set P with 0 is called *graded* if for $x, y \in P$, $x \leq y$ and h(x) + 1 = h(y) if and only if $x \prec y$, and is said to satisfy the

Jordan-Dedekind Chain Condition if all maximal chains between the same endpoints have the same finite length. Observe that an ordered set P with 0 is graded if and only if every interval of P is of finite length and satisfies the Jordan-Dedekind Chain Condition.

PROPOSITION 1. The truncate product of lattices L_1 and L_2 is graded if and only if both L_1 and L_2 are.

We call a lattice *atomic* when every nonzero element is the join of the atoms below it.

PROPOSITION 2. The truncate product of lattices L_1 and L_2 is atomic if and only if both L_1 and L_2 are.

We call a lattice L biatomic when every nonzero element is the join of the atoms below it and whenever p is an atom of L with $p \leq a \vee b$ there are atoms $a_1 \leq a$ and $b_1 \leq b$ with $p \leq a_1 \vee b_1$. In [2], it is shown that a rectangular product of lattices is biatomic exactly when both of its factors are biatomic. But the biatomicity need not be preserved by taking truncate product, as Figure 1 shows. A pair of nonzero elements a and b of a lattice L is called a biatomic pair if whenever p is an atom of L with $p \leq a \vee b$ there are atoms $a_1 \leq a$ and $b_1 \leq b$ with $p \leq a_1 \vee b_1$. We then define an atomic lattice to be weakly biatomic if for any nonzero elements a and b with $a \vee b \neq 1$ form a biatomic pair.

PROPOSITION 3. The truncate product of lattices L_1 and L_2 is weakly biatomic if and only if both L_1 and L_2 are.

PROPOSITION 4. If the truncate product of lattices L_1 and L_2 is biatomic, then L_1 and L_2 are also biatomic.

A lattice L is said to be join-semidistributive if $a \lor b = a \lor c$ implies that $a \lor b = a \lor (b \land c)$ for all $a, b, c \in L$. As we see in Figure 1, even if L_1 and L_2 are join-semidistributive, $L_1 \diamondsuit L_2$ need not be join-semidistributive. Furthermore, in [1], if L_1 and L_2 are biatomic and join-semidistributive and if they satisfy the ascending chain condition, then the rectangular product of L_1 and L_2 is join-semidistributive. Although $L_1 = L_2 = 2^2$ satisfies the hypotheses, $L_1 \diamondsuit L_2 = M_4$ is not join-semidistributive. But the following proposition shows that the converse is true for truncate products.

PROPOSITION 5. If the truncate product of lattices L_1 and L_2 is join-semidistributive, then L_1 and L_2 are also join-semidistributive.

We know that, in any lattice L, the following conditions are equivalent:

- (i) For any elements $x_1, x_2, \dots, x_n \in L$, if $x_i \wedge x_j \neq 0$ for all $i \neq j$, then $x_1 \wedge x_2 \wedge \dots \wedge x_n \neq 0$ in L.
- (ii) For any elements x, y, z in L, if each of $x \wedge y$, $y \wedge z$ and $z \wedge x$ is nonzero elements, then $x \wedge y \wedge z$ is nonzero.

A lattice L is said to satisfy the Chinese Remainder Theorem(C R T) if and only if the condition (i) (and hence (ii)) holds in it. In [1], we have shown that the rectangular product of L_1 and L_2 satisfies the C R T if and only if both L_1 and L_2 do. Since nonzero meets and nonunit joins agree on both the truncate product and the rectangular product, we obtain the following proposition.

PROPOSITION 6. The truncate product of lattices L_1 and L_2 satisfies the C R T if and only if both L_1 and L_2 do.

A lattice L satisfies the *strict Chinese Remainder Theorem* (strict C R T) if L is atomic and, for any atoms p,q,r in L, $M(p,q,r) = (p \vee q) \wedge (q \vee r) \wedge (r \vee p)$ is an atom in L. Note that the strict C R T implies the C R T, but the converse may not hold (see M_n). In [1], it is shown that the rectangular product of L_1 and L_2 satisfies the strict C R T if and only if both L_1 and L_2 do. But the truncate product of $\mathbf{2}^2$ and M_n is M_{2n} which does not satisfy the strict C R T. However the converse is true.

PROPOSITION 7. If the truncate product of lattices L_1 and L_2 satisfies the strict C R T, then both L_1 and L_2 do.

An atomic lattice L satisfies the switching condition if $p, q \leq r \vee s$ and $p \leq r \vee q$ imply that $q \leq s \vee p$ for any atoms p, q, r, s of L. In [1], it is shown that the rectangular product of L_1 and L_2 satisfies the switching condition if and only if both L_1 and L_2 do. We also have the following proposition.

PROPOSITION 8. The truncate product of lattices L_1 and L_2 satisfies the switching condition if and only if both L_1 and L_2 do.

References

- 1 D. R. Bae, Properties of lattices preserved by taking rectangular products, Comm. Korean Math. Soc 9(1) (1994), 37-47.
- 2 M. K. Bennett, Rectangular products of lattices, Discrete Mathematics 79 (1990), 235-249.

Department of Mathematics Sogang University Seoul, 121-742, Korea