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TRUNCATE PRODUCTS OF LATTICES

DEoOK RAK BAE AND JEH GWON LEE

A lattice is called bounded if it has both the least element and the
largest element which are usually denoted ty 0 (zero) and 1(unit),
respectively. Recently, Bennett [2] defined tte rectangular product of
two bounded lattices Ly and L, to be the set

I(e.y) € Ly x Ly |z # 0,y # 0} U{(0.0)}

with the order induced from the direct produc: Ly x Ly. With a minor
change from this, the truncete product L;{L, of the two bounded
lattices L, and L, is defined to be the set

{(eyy)e Ly x Lyl s #0# y,e £ 1 #1110 {(0,0),(1,1)}

with the order also induced from the direct product L; x L,. In this pa-
per, we investigate lattice properties preserved by taking truncate prod-
ucts. We assume throughout that every lattice is finite and bounded
and we let L* == L — {0,1} for any bounded lattices L.

We first observe the following simple facts for any lattices L; and
L2 :
(1) (r,y) #(0,0) i L, 0Ly if and only 1"z # 0 in L; and y # 0
i]'l Lz..
(1) (r,y)#(1,1)in L1OLy ifandonly i e # 1in Ly and y # 1
n LZ
(i) (r,y)A(r,s) =(0,0)in Ly$OLy if anc only if z Ar = 0in L,
oryAs=01n Ly,
(iv) (z,y)V(r,s)=(1,1)in L1QLy ifand only if zVr =1 in L,
oryVs=1Iin L,.
{v) Nomnzero meets and nonunit joins agiee on both Ly L, and

L] X Lz
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Let L be a lattice. For elements « > b in L, we write @ = b or
b~ a(acoversb or b is covered by a)if « > ¢ > b unplies a = ¢ for
every element ¢ of L. An atom is any element which covers the least
element and a dual atom is any element which is covered by the greatest
element. Let us denote by A(L) and DA(L) the sets of all atoms and
all dual atoms, respectively, of L. Then A(L; ¢ Ly) == A(L;) x A(Ly)
and DA(Ly O Ly) = DA(Ly) x DA(L,), for any lattices L, and L,.
Furthermore, if L; or L is isomorphic to 1 or 2, where n denotes an
n-elements chain, then Ly Ly is isomorphic to 2 and so, in this paper,
we may assume that all Jattices are not isomorphic te 1 and 2.

The truncate product of 2% and 2% 1s given in Figure 1. The result-
ing lattice is neither distributive nor modular. Furthermore, it is not
uniquely complemented.

Figure 1

LEMMA L. Let Ly and Ly be lattices. Then the following statements
hold:

(i) If a is a complement of ¢ in L}, then (a,y) is 4 complement of
(c,z) in L1 QL for any y,z € L.
(i1) Ifb is a complement of d in L}, then (x,b) is 2 complement of
(w,d) in LyQLy for any x,w € LY,
(i) faVe= 1L andbANd=01in Ly oraAc=0inL, and
bvd=1in Ly for a,c € L} and b.d € L3. then (a,b) is a
complement of (e¢,d) in L{$Ly.
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COROLLARY 1. Let Ly and L, be lattices and let a € L} and b € L3.
If a is a complement of ¢ in Ly and b is a complement of d in L,, then
(¢,y) and(z,d) are complements of (a,b) in i,y $ Ly for any z € L} and
ye L.

LEMMA 2. For any lattice L, Lo 3 = L.

THEOREM 1. The truncate product of two lattices is uniquely com-
plemented if and only if one of its factors is uniquely complemented
and the other is isomorphic to 3.

Proof. The sufficiency of the condition follows easily from Lemma
2. To prove the necessity, let the truncate product of two lattices L,
and Ly be uniquely complemented. Let a € L}, b € L} and let (¢, d)
be a unique complement of (a.b) in Ly$Ly. Then e € L}, d € L} and
(a,b) V (e.d) == (1,1), (a,b) A (e, d) = (0,0) :n L;$Ly. Then we have

four cases to consider :

(i) aVes==land ¢ Ac=01n Ly.

(i1) hvd:==Tland bAd=01in L,.
(i) aVes=1l.aAc#0 in Ly and bvd #1,bAd=01in L,.
(iv) aVes#l.aAc=0in L, and bvd = 1,bAd # 0 in L.

By syminetry we only treat the cases (i) and (iii).

CASE (1). aVe=1land aAc=01in L.

Since a is a complement of ¢ in Ly, (¢,y) is a complement of (a,b)
in Li¢Ly for any y € L3 by Lemma 1(i). Since (c,d) is a unique
complement of (a,b) in L1 Ly, we have y = ¢ in Ly, and hence | L3 | =
1. Thus Ly =3 and so L;$Ly = L) by Lemma 2. Hence L, is uniquely
complemented. as required.

CASE (111). aVe=1,aAc#0 in Ly and bvd # 1,bAd =0in L,.

lfa<r<linLj, thenzVe=aVe=1inLy. Since bAd = 01in Lo,
it follows from Lemma 1(iii) that («,d) and (r,d) are complements of
(e,h)in LyOL,. As Ly O Ly is uniquely comp:emented, we have a = «
in L. Thus ais a dual atom in L. Similarily, ¢ is also a dual atom in
Ly and so [DA{L,)| > 2. Thus, choose a dual atom z in L; with z # «,



562 Deok Rak Bae and Jeh Gwon Lee

then @V z = 11in L,. Hence (¢,d) and (z,d) are complements of (a,b)
in L1 $Ly by Lemma 1(iii). Since L1{ Lo is uniquely complemented,
we have 2 = ¢ in L;. Therefore, L, has exactly two cual atoms, that
is, DA(Ly) = {a,c}.

Consider the element {a A ¢,b) in L $Ly. Since Ly O Lg 1s uniquely
complemented, there exists a unique element (p,q) in (L;<L2)* such
that (p,q)V(aAc,b)={1,1)and (p,q)AlaAc,b) = (0,0). Since P # 1
in Ly and DA(L,) = {a,c}, we have p < a or p < ¢ in Ly.

Now we claim that pAaAc# 0in L. fp < a and p < ¢, then
clearly pA« Ac=p+# 0in L. Next we consider the case when p < a
and p £ c. Suppose that pAaAc=01in L;. Since p Ta,p € cin Ly
and c € DA(L,), pAec=pAarc=0and pVe=1i1L;. and hence
p is a complement of ¢ in Ly. Thus (p, b) is a compleinent of (¢, d) in
Li{$ L, by Lemma 1(i). Since (a.b) is a unique complement of (¢, d) in
Li$Ly, we have p=a in L. Hence pAaAc=ahcst0in Ly, which
is a contradiction. Hence pAa Ac# 0in L. The case when p £ a
and p < ¢ is similarly treated.

By the preceding claim, (p, ¢)A(aAc,b) = (0,0) implies that gAb = 0
in Ly. Since (p,q) V(a Ace,b) = (1,1) and DA(Ly) = {a,c}, we have
pV(anc)<a<lorpv(aAe)<c=<1 andso ¢Vb=:1in L,. Hence
b has a complement ¢ in L;. By duality, we obtain 4(.2,) = {b,d} and
so a has a complement r in L}. By Corollary 1, (a,q) (r.q) and (r,b)
are distinct complements of (a,b) in L{{ Ly, which 1s a4 contradiction.

COROLLARY 2. The truncate product of two lattic=s is isomorphic
to 2™ if and only if one of its factors is isomorphic to 2™ and the other
1s 1somorphic to 3.

A lattice L is said to be (upper) semimodular (or satisfy the upper
covering property) if for any elements a,b and c, of L a < b implies that
aVe=bVcorave < bve. The lower semimodularity (or lower covering
property) is defined dually. We observe that a lattice is semnimodular
if and only if x> 2 A y implies r Vy = y. In [1], it is shown that the
rectangular prodict of lattices Ly and L, is semimodular if and only
if Ly and L, are semimodular with |A(L{)| =1 or |£(L;) = 1. But
this condition does not apply for the truncate product ( Figure 2 ).
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Figure 2

The length of an n-clement chain n is defined to be n — 1. Morc gen-
erally, the length [(P) of an ordered set P is defined as the supremum
of the lengths of chains in P. In an ordered sct P of finite length with
the least element 0, the height h(x) of an element x € P is ([0, z)),
where [0,z] = {y € Ply < x}. If P has the sreatest element 1, then
clearly h(1) = I( P).

THEOREM 2. The truncate product of lat-ices L; and L, is semi-
modular if and only if Ly and L, are semiimnodular and one of the
following conditions holds:

(1) Ly and Ly are isomorphic to M, and M,, respectively, for some
positive integers r and s, where M, s the lattice of length 2
with n atoms.

(i1) L; or Lo is isomorphic to 3,

(i) |[DA(Ly) =1fori=1,2and |[A(L))| =1 or

A(Ly)| = 1.

Proof. (== ) Suppose that L;{ L, is semimodular such that Ly $ Ly 2
M, for any positive integer n and neither L; nor L, is isomrphic
to 3. Then we shall show that both L; ard L, are semimodular,

[DA(L;)| = (¢ = 1,2) and [A(L,)| == 1 or |A(Ly)| = 1.
CiLAm 1. Both L; and L, are semimodulsar.

Suppose that L or L; is not semimodular. We may assume without
loss of generality that Ly is not semimodular. Then, there are elements
b,d € L} such that & covers hbAd in L, and bV d does not cover
d in Ly. Pick an element 2 in Ly such tha d < ¢ < bV d in L,.
Consider the elements (p,b) A (p,d). (p,b), (p d) and (p,b) V (p,d) in
L< Ly for some atom p in Ly. Since b= b A ¢ in L., we have (p,b) =
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(&) A (p,d) in Ly$L,y. Furthermore, we know thet if hVd = 1 in
L, then (p,b) Vv (p.d) = (1,1) in L, $Ly and that if hvd # 1 in
Ly then (p,b) vV (p,d) = (p,bVv d) in L;{L,. In either case, we have
(p,d) < (p,x) < (p.b)V(p,d)in Ly $L,, and so (p, bV (p,d) does not
cover (p,d) in L,$ Ly, which is a contradiction.

CrLamm 2. |DA(Ly)| = 1and |DA(L,)| = 1.

Suppose that | DA(Ly)] > 2 or | DA(Ly)| > 2. We may assume
without loss of generality that | DA(L,)| >> 2. Note that L;( = 1,2)
does not isomorphic to 1, 2 and M, for any positive integer n. Thus
{(Ly) > 3. Since |DA(Ly)| > 2 and so there are listinct two dual

there are clements ¢ and ¢ in Ly such that 0 < ¢ < @ < 1. Since
b>y>yAd=HbAdin Ly, y and d are incomparabl- elements in L,.
Furthermore, sitce d is a dual atom in Ly, we have yVd = 1in L. If yA
d=0in Ly, then y » yAd=01in Ly and so y € A(L,). Hence (¢,y) >
(c,y) Ale,d) =1{0,0)in L ¢ Ly, But (e,y) V (e,d) = (1.1} = (a,d) >
(e.d) in L,{ L,, whirh is a contradiction to the scmimodularity of
Li$Ly. fyAnds# 0in Ly, then (e,y) = (e,y Ad) = (e,y) A (c,d) in
LiOL,. But (e, y) v (e d) = (1.1) = (a,d) > (¢,d) in Ly{ Ly, which is

also a contradiction to the semimodularity of L, L,
Cram 3. |A(Ly)| =1or |A(Ly) | = 1.

Suppose that | A(L)] > 2 and |A(Ly)| > 2. Then, there are two
distinct atoms p,, ¢, in cach L; for i = 1,2, Then (74,p2) = (0,0) =
(P1op2) A (g1 q2) in Ly GL,y. By Claim 2, (pr,pe) V (a1, q2) # (1,1) in
LiGLy and so (p1,p2) V(g1 q2t = (p Vg1.p2 V a2) = (¢1,02 V q2) >
(91,92) in Ly QL,. Thus, (pr,p2) V (¢1,42) does not cover (q;,¢qz) in
L1$ Lg, which is a contradiction.

(<==) Suppose that L, and L, are semimodular. Since other cases
are trivial, we oniy assume that |[DA(L,)| = lfor7 = 1. 2 and [A(L)| =
1. Let (a,b) = (a.b)A(c,d)in LD Ly. We shall show that (a,b)V(c,d) =
(e,d)in L;$Ly. We have three cases to consider.

Case (1). If « A e = 0in Ly, then (a,b) = (a,b) A (c.d) = (0,0)
in LyGLy and so a € A(Ly) and b € A(Ly). Since A(L;) = {a} and
afNc=01in L, we have ¢ = 0 in L,. Hence, (¢,d) = (0,0) in L;$L,
and so (a, &)V (e.d) = (., b) = (0,0) = (e.d) in LyOL .
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CASE (11). f aAe #0in Ly and bAd = 0 in Ly, then (a,b) >
(a,b) A (c,d) = (0,0) in L; Ly and again a € A(L;) and b € A(L,).
Since A(Ly) = {a} and aAc # 0, we have a < cin L;. Asb> 0= bAd
and L, is semimodular, 5V d > d in L,. Now. since | DA(L;)| =1, we
have bV d # 1 in Ly and so (a.b) V (¢,d) = (¢. bV d) > (¢,d) in L;$ L.

Case (). If aAce # 0in Ly and A d # 0 Ly, then (a,b) »
(a,b) A (e, d) == (a AebAd)in LyOL,. Hetce, « = aAcin Ly and
b bAdin Ly,ora>aAcinL; and b =bAdin Ly. Since Ly and
L, are semimodular, a < cin Ly and bvd = din Ly, or aVe > cin
Lyand b < dwn Ly. Observe that ¢ # 1 # ¢ in either case. If a < ¢
in Ly and v d > din Ly, then bvd # 1in L,. For, otherwise we
have b = 1 and so a = 1, whence ¢ == 1, contradicting to the preceding
observation. @ixnilary, ifhb<dand aVe > ¢, then aV ¢ # 1. Now,
since (a,b)V (¢,d) = (c,bV d) in L1 {Ly or (a,b)V (¢,d) = (aVe,d)in
Li$L,y, we haw (a,b)V (ce,d) = (¢, d) in Ly OLz.

Let L be a lattice of finite length. It is well known that L is modular
if and ouly if L is both upper and lower semimodilar. By Theorem 2
and duality, the following corollaries are immediately obtained.

CORORLLARY 3. The truncate product of lattices Ly and L4 is mod-
ular if and only if L, and Ly are modular and one of the following
conditions holils:

(1) Ly and L, is isomorphic to M, and My, respectively, for some
positive integers r and s.
(11) Ly or Ly is isomorphic to 3.

(11) [DA(L;)| =1 and |A(L,)| =1 for i =1,2.

COROLLARY 4. The truncate product of lattices Ly and Ly, is dis-
tributive if and only if L and L, are distributive and one of the fol-
lowing conditions holds :

(1) Ly or Ly is isomorphic to 3.
(1) [DA(L))| =1 and |JA(L;)| = 1 for i = 1,2.

Finally, we list a series of propositions whose proofs are quite straight-
forward.

An ordered set P with 0 is called graded if for 2,y € P,z < y
and h(z) + 1 = h(y) if and only if 2 < y, end is said to satisfy the
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Jordan-Dedekind Chain Condition if all maximal chains between the
same endpoints have the same finite length. Observe that an ordered
set P with 0 i1s graded if and only if every interval of P is of finite
length and satisfies the Jordan-Dedekind Chain Condition.

PROPOSITION 1. The truncate product of lattices Ly and L, is
graded if and only if both Ly and Ly are.

We call a lattice atomic when every nonzero element is the join of
the atoms below 1t.

ProprosITION 2. The truncate product of lattices Ly and Lq is
atomic if and only if both L; and L, are.

We call a lattice L biatomic when every nonzero element is the join
of the atoms below it and whenever p is an atom of 1, with p < aV b
there are atoms ¢; < a and b < b with p <ay V by. In [2], it is shown
that a rectangular product of lattices is biatomic exuactly when both
of its factors are biatomic. But the biatomicity need not be preserved
by taking truncate product, as Figure 1 shows. A pair of nonzero
elements a and b of a lattice L is called a biatomic pair if whenever p
is an atom of L with p < a V b there arc atoms a; < a and &, < b with
p < ay Vb We then define an atomic lattice to be weakly biatomic if
for any nonzero elements « and 5 with a v b # 1 form a biatomic pair.

ProprosITION 3. The truncate product of lattices L, and Ly is
weakly biatomic if and only if both L, and L, are.

PROPOSITION . If the truncate product of lattices Ly and Lq Is
biatomic, then L, and L., are also biatomic.

A lattice L is said to be join-semadistributive if a V i = a V ¢ implies
that a Vb == aV (bA ) for all a,b,c € L. As we see in Figure 1,
even if L, and L, are join-semidistributive, L;{ L, need not be join-
semidistributive. Furthermore, in [1], if L, and L, are biatomic and
join-semidistributive and if they satisfy the ascending chain condition,
then the rectangular product of Ly and L, is join-semidistributive,
Although L, = L, =27 satisfies the hypotheses, L Ly = My is not
join-semidistributive. But the following proposition shows that the
converse is true for truncate products.
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PROPOSITION 5. If the truncate product of lattices L, and Ly is
join-semidistributive, then L; and L, are alsc join-semidistributive.

We know that, in any lattice L, the following conditions are equiv-
alent:
(1) For any elements rq,xy, - &y € L1 2;A0;j # 0 forall 7 # 3,
then x; Azg A---Ax, #£#01n L.
(ii) For any elements r,y,z in L,ifeach of 2 Ay, yAz and z A7 is
nonzero elements, then = Ay Az is ronzero.

A lattice I is said to satisfy the Chinese Femainder Theorem(C R
T) if and only if the condition (i) (and hence (ii)) holds in it. In [1],
we have shown that the rectangular product of Ly and L, satisfies the
C R T if and only if both L; and L, do. Since nonzero meets and
nonunit joins agree on both the truncate procuct and the rectangular
product, we obtain the following proposition.

PROPOSITION G. The truncate product of lattices Ly and Ly satis-
fies the C R T if and ouly if both L| and Ly lo.

A lattice L satisfies the strict Chinese Remainder Theorem (strict
C R T) if L is atomic and, for any atoms p,q,r in L, M(p,q.7) =
(pV @ AlgVr)A(rVp) is an atom in L. Note that the strict CR T
implies the C R T, but the converse may not hold (see M,). In [1], it
is shown that the rectangular product of L and L, satisfies the strict
C R T if and only if both L; and L, do. But the truncate product of
22 and M, is M,, which does not satisfy the strict C R T. However
the converse is true.

d

PROPOSITION 7. If the truncate product of lattices Ly and Ly sat-
isfies the strict C R T, then both L, and L, do.

An atomic lattice L satisfies the switching condition if p,g < rVs
and p < r Vg imply that ¢ < sV p for any atoms p,q,r.s of L. In
[1], it is shown that the rectangular product ¢f L, and L, satisfies the
switching condition if and only if both L; and L, do. We also have the
following proposition.

PROPOSITION 8. The truncate product of lattices Ly and Ly satis-
fies the switching condition if and only if both Ly and L, do.
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