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FOUNDATIONS OF THE KKM THEORY
VIA COINCIDENCES OF COMPOSITES
OF UPPER SEMICONTINUOUS MAPS

SEHIE PARK

1. Introduction

In the KKM theory, there exist mutually equivalent fundamental
theorems from which most of the other important results in the theory
can be deduced. We give such fundamental vheorems related to com-
posites of upper semicontinuous (u.s.c.) multifunctions in a very large
class.

An ws.c. multifunction with nonempty compact convex values will
be called a Kakutani map. Recently, Simons [Sil] and Lassonde [L2]
extended the well-known fixed point theorems due to Kakutani [Kk]
and Himmelberg [Hi] to multifunctions factorizable by Kakutani maps
through convex sets in topological vector spaces. Such multifunctions
arise in a natural way in minimax and coincidence theories. For the
literature, see [L2], [GL2], [Grl-3]. Later Lessonde [L4] obtained the
same results for a larger class of multifunctions.

On the other hand, Ben-El-Mechaiekh [Bnl] obtained an elemen-
tary proof of a fairly general fixed point theorem for composites of
Kalkutani maps defined on a class of general extension spaces contain-
ing locally convex and some not necessarily locally convex topological
vector spaces. He also deduced some general coincidence theorems
for composites of multifunctions. The aim i1 [L2], (Bn1] lies to give
elementary approach to the convex-valued multifunctions not using ho-
mological methods. Recently, Ben-El-Mechaicklh and Deguire [BD1-3]
generalized the main results of [Bn1] to a very large class of “admissi-
ble”™ u.s.c. maps with non-convex values.

An us.c. multifunction with compact acyclic values will be called
an acyclic map. In [P5], the results in [Sil] were generalized to acyeclic
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maps. Later the present author [P6] obtained a general Fan-Browder
type coincidence theorem related to acyclic maps, and gave its equiva-
lent formulations to fundamental theorems in the KKM theory. More-
over, a number of its applications were given to the KKM theory and
fixed point theory. Further applications to acyclic maps were also given
in the author’s previous works [P7-9].

The purpose in this paper is, first, to establish some coincidence the-
orems for composites of multifunctions including a class of very general
u.s.c. maps. Consequently, we obtain generalizations of main results
of {L2,4], [Bnl], [BD1-3], [P6] to a class of maps which properly in-
cludes that of multifunctions factorizable by Kakutani or acyclic maps.
Secondly, we show that fundamental theorems in the KIXM theory can
be obtained in far-reaching generalized forms related to such class of
maps. Those are the KKM theorem, the matching theorem, the Fan-
Browder fixed point theorem, the Ky Fan minimax inequality, analytic
alternatives, geometric properties of convex sets, and others.

Our new results extend, improve, and unify main theorems in more
than one hundred published works.

2. Preliminaries

We mainly follow [Br], [P6].

A maultifunction (or map) F : X — 2Y is a function from a set X
into the power set 2 of Y; that is, a function with the values Fz C Y
for € X and the fibers F-y={v € X :y € Fz} fory € Y. As usual,
the set {(z,y) : y € Fz} is called either the graph of F, or, simply, F.
Therefore (z,y) € F if and only if y € Fz.

For A C X, let F(A)=|J{Fz:z € A}. For any B C Y, the lower

mverse and upper inverse of B under F are defined by
F(B)={z€X:FxNB+#0}and FH(B)={2 € X : Fz C B},

resp. The (lower) inverseof F : X — 2 is the multifunction F~: Y —
2% defined by z € F~y if and only if y € Fz. Given two multifunctions
F:X —2Y and G:Y — 2% the composite GF : X — 2% is defined
by (GF)x = G(Fz) for z € X.

For topological spaces X and Y, a multifunction F : X — 2V is said
to be upper semicontinuous (u.s.c.) if for each closed set B C Y, F~(B)
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1s closed in X; and compact if F(X) is contained in a compact subset
of Y. Int and — denote the interior and closure, resp. A nonempty
topological space is acyelic if all of its reduced Cech homology groups
over rationals vanish.

A topological vector space is abbreviated as t.v.s.

For a set D, let (D) denote the set of nonempty finite subsets of D.

Let X' be a set (in a vector space) and D « nonempty subset of X.
Then (X, D) is called a convez space if convex hulls of any N € (D)
is contained in X and X has a topology that induces the Euclidean
topology on such convex hulls. Such convex Lull will be called a poly-
tope. A subset A of (X, D) is said to be D-convez if, for any N € (D),
N € A implies co N C 4, where co denotes th> convex hull. If X = D,
then X' = (X,.X) becomes a convex space i1 the sense of Lassonde
[L1]. Note that for a convex space (X.D), X itself is not necessarily
convex. For example, let X' be any space containing an n-simplex A,
as a subspace and D the set of vertices of A,. Then (X, D) is a convex
space, and X may not be convex, but D-convex.

For a convex space (X, D). a multifunction G : D — 2V is called
a KKM map if coN C G(N) for cach N € (:9). The KKM theory is
the study of KKM maps and their applications. For the literature, see
[Au], [AE], [Gr2,3], [P6], |Z].

Given a class L of multifunctions, L(X,Y) denotes the set of multi-
functions T : X — 2" belonging to L, and L, the set of finite compo-
sites of multifunctions in L.

Let (X, D) be a convex space and ¥ a topclogical space. Define

T e ®(XN.Y) &= T yis D-convex for each y € Y and {Int Tz :
x € D} covers Y.

T & M(X,Y) <= T7|; has a continuous selection s : K — X for
every nonempty compact subset A of ¥ such shat 3(K) C P for some
polytope P of (X, D).

For a topological space X, define

T € K{X.Y) <= T is a Kakutani map; that is, ¥ is a convex space
and T is u.s.c. with nonempty compact convex values.

T € V(X,Y) «== T is an acyclic map; that is, T is w.s.c. with
compact acyclic values.

We now introduce an abstract class 2 of multifunctions motivated

by Ben-El-Mechaickh and Deguire BD2,3]:
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A class 2 of multifunctions is one satisfying the following:

(i) 2 contains the class C of (single-valued) continuous functions;
(ii) each F € 2, is u.s.c. and compact-valued; and
(iii) for any polytope P, each F € 2 (P, P) has a fixed point.
Note that C, K, and V are examples of A by a Lefschetz type fixed
point theorem for composites of acyclic maps due to Goérniewicz and
Granas [GG1,2]. See also [Si1], [P5]. Moreover, the class of approach-
able maps in topological vector spaces is an example of 20 [BD3]. For
other examples of related classes, see [BD1-3], [L4].
Further, we define the following:
T € AI(X,Y) < for any o-compact subset K of X, there is a
I' e A.(K,Y) such that T'a C Tz for each z € K.
T € AX(X,Y) <= for any compact subset I of X, there is a
e A(K,Y) as above.
Note that 2 ¢ U, C A7 C AX. The class K7 is due to Lassonde [L4]
and V7 to Park, Singh, and Watson [PSW]. Note that KZ includes the
classes @~ = {F~ : F € &}, M™, and T in [L4].

3. Coincidences of compact composites of maps

We begin with the following coincidence theorem:

THEOREM 1. Let (X, D) be a convex space, Y a topological space,
F e A5(X,Y), and G € M (X,Y). If F is compact. then F and G
have a coincidence point; that is, there exists an xo € X such that

F.’IJ(]OGCC(]#@.

Proof. Since F is compact, there exists a compact set ' such that
F(X) Cc K CY. Since G € M(X,Y) = M(X,Y), G7|x has a
continuous selection s : K — P C X, where P is a polytope of (X, D).
Then (sF)|p € A%(P, P) has a fixed point zp € P C X. Since z¢ €
(8F)zqo, Fzo N Gzg D Faxg Ns™(ap) # 0. This completes our proof.

REMARK. In fact, F' € A5(X,Y) can be replaced by any F : X —
2Y such that F € A%(P.Y) for any polytope P in (X,D). Some
equivalent or particular forms of Theorem 1 for V replacing ¥ were
adopted by Ben-El-Mechaiekh et «l. [BDG2,3], Ha [Hal], Granas and
Liu [GL2], Komiya [Ko], Ben-El-Mechaiekh [Bn1}, and Park [P86] as
the starting point of some of their own studies.
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We obtain the following extended version of a coincidence theorem

due to Granas and Liu [GL2].

THEOREM 2. Let (X, D) be a convex space, Y a Hausdorff space,
and F,G : X — 2" multifunctions satisfving

(2.1) FeAX(X.Y) is compact;
(2.2) for eachy € F(X), G~y is D-convex: and

(2.3) {IntGz :x € D} covers F(X).
Then F and G have a coincidence point xy € ; that is, FroynGzo £ 0.

Proof. Since F(X) is compact and included in (J{IntGz : = €
D}, there exists an N = {vi.x9,... 20} € (D) such that F(X) C
U{Int G - 2 € N} Let {A\,}7., be the partition of unity subordinated
to this cover, and P = coN € X. Define f }’1(—\‘)— - P by

ff/ - i/\l('f])vﬁ = Z /\I<Z/)1'i

=1 iéNy

for y € F(X) C Y, where
1 €N, &= AN(y) # 0=y € Int Ga;.

Then », € G7y for each i € N,. Clearly f is continuous and, by
(2.2). we have fy € co{x; : + € Ny} C Gy for each y € F(X).
Since P X and Flp € AS(P, F(X)). f(Flp): P — 2" has a fixed
pomt zy € P C X. Since 2g € (fF)rg and f~wg C Gug, we have
FagNGrg # 0. This completes our proof.

REMARKS. 1. As in Theorem 1, (2.1) can e replaced by

(2.1) F € A3(P.Y) for any polyvtope P in ' X, D)
without affecting the conclusion of Theorem 2.

2. If we assume

(2.2} for each y € F(_\j, Gy 1s D-convex
mstead of (2.2), then Theorem 2 follows from Theorem 1. In this case,
the proof works for that of & « M.
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PARTICULAR FORMS. The origin of Theorem 2 goes back to Brow-
der [Bw1-3]for X = D =Y and F = 1x. For X = D and V instead
of A%, Theorem 2 reduces to the main result of Granas and Liu [GL2].
For X = D and K¢ instead of A%, Theorem 2 reduces to Lassonde
[L4, Théoréme 4]. Moreover, [PSW, Theorem 1] is a particular case
of Theorem 2 for X = D and V?. For other cases, see the particular
forms of Theorem 5.

From Theorem 2, we have the following:

THEOREM 3. Let X and C be nonempty convex subsets of a lo-
cally convex Hausdorff t.v.s. E, and F € A(X,X + C) a compact
multifunction. Suppose that one of the following conditions holds:

(i) X is closed and C is compact.
(i1) X is compact and C' is closed.
(iii) C = {0}.
Then there is an & € X such that Fz N (2 + C) # 0.

Proof. Let V be an open convex neighborhood of the origin 0 in
E, and Y a compact set such that F(X) C Y C X + C. Define
G:X —-2Yby Gz =(z+C+V)NY for z € X. Then each Gz
isopeninY and Gy = (y — C — V)N X is convex for each y € Y.
Moreover, since Y C X + C, for every y € Y, there exists an z € X
such that y € z+C+V; that is, {Gz : z € X'} covers Y. Therefore, by
Theorem 2, there exist zv € X and yy € ¥ such that yy € FavNGey;
that is, yv — zv € C + V. In other words, we obtain the assertion:

(%) for each neighborhood V of 0 in E,
(F=)(X)n(C+V)#0,

where 7 : X — E is the inclusion. Now we consider Cases (i)-(iii).

Case (1). Since X is closed so is (F —¢)(X). Since C' is compact
and FE is regular, (*) implies (F — )(X) N C # 0; that is, there exists
an £ € X such that F2 N (2 + C) # 0.

Case (ii). Since (F — i)(X) is compact and C is closed, the same
conclusion follows as in Case (1).

Case (iii). Since F' is u.s.c., for each neighborhood V of 0 in E,
there exist zv, yyv € X such that yv € Fazy and yv —2v € V. Since
F(X) is relatively compact, we may assume that yv converges to some
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r. Then zv also converges to #. Since the graph of F is closed in
X x F(X), we have € F#.
This completes our proof.

PARTICULAR FORMS. For V instead of 2., Theorem 3 is due to
Park [P6, Theorem 7], which extends Lassonde [L1, Theorem 1.6 and
Corollary 1.18] for K. For V, instead of 2., Theorem 3 includes Park,
Singh, and Watson [PSW, Theorem 2].

THEOREM 4. Let X be a nonempty convex subset of a locally con-
vex Hausdorff t.v.s. E, and F € A9(X, X). If F is compact, then F
has a fixed point.

Proof. Let M = coF(X). Then M C X since F(X) C X and X
15 convex. Also M is o-compact [L4, Proposition 1(3)]. Since F €
A7(X, M), there exists a I' € A(M, M) such that Tz C Fz for all
x € M. Since T" is compact and M is a nonempty convex subset of F,
by Theorem 3(iii), I' has a fixed point o € M thatis, zp € Tzg C Fxo.
This completes our proof.

PArTiCULAR FORMS. 1. Theorem 4 includes Ben-El-Mechaiekh
and Deguire [BD2, Corollaries 3.4 and 3.6], Ben-El-Mechaiekh [Bn3,
Theorem 2.4], Lassonde [L2, Theorem 4], [L4, Théoreme 5], Ben-El-
Mechaiekh et al. [BDG2], Simons [Sil}, Pcwers [Pw. Theorem 7.1],
and Himmelberg [Hi].

2. Himmelberg's theorem; that is, Theorern 4 for K, generalizes ear-
lier works of Schander [S], Mazur [M], Bohnenblust and Karlin [BK],
Hukuhara [Hu], and Singbal [Sn]. Further if X itself is compact, then
X is an lc space, and Theoren 4 for V follows from Begle [Be]. For
this case, it generalizes well-known results of Brouwer [B], Schauder
[S], Tychonoff [Ty], Kakutani [Kk], Fan [F1], and Glicksberg [G]. For
the literature, see Dugundji and Granas [DG2] or Park [P6)].

REMARKS. 1. If F € A(X.Y), then F € A7(X,Y). Therefore,
Theorem 3(iii) and Theorem 4 are equivalent.

2. If Eis real and F is a convex-valued compact multifunction, then
the upper semicontinuity, upper demicontinuity, and upper hemicon-
tinuity of F' are all the same. See Shih and Tan [ST5). Therefore, in
this case, Theorem 4 for K can be applied to an upper hemicontinuous
multifunction F.
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4. The KKM theorems related to non-compact composites
of maps

In this section, we show that Theorem 2 is equivalens to far-reaching
generalizations of the Fan-Browder fixed point theorem, the Ky Fan
matching theorem for open covers, the Knaster-Kuratowski-Mazurkie-
wicz theorem, and a whole intersection theorem. Those are a part of
the very useful fundamental theorems in the KKM theory.

We begin with the following non-compact version of Theorem 2,
which generalizes the main result of our previous work [P6].

THEOREM 5. Let (X, D) be a convex space, Y a Hausdorff space,
S:D —2Y, T:X — 2Y multifunctions, and F € A%(X,Y). Suppose
that

(5.1) for each x € D, Sz C Ta and Sx is compactly open;

(5.2) for each y € F(X), T™y is D-convex;

(5.3) there exists a nonempty compact subset I\ of Y such that
F(X)nIK C S(D); and

(5.4) for each N € (D), there exists a compact D-convex subset Ln
of X containing N such that F(LNy)\K C S(Ly N D).

Then F and T have a coincidence point.

Proof. Since F(X )N is compact, by (5.3), there exists an N € (D)
such that F(X)N K C S(N). Let Ly be the set in (5.4). Since Ly
1s compact and F' € A% (X, 1Y), there exists a I' € A (Ln,Y) such that
T's C Fr for each z € Ly.

We claim that T(Lx) C S(Ly N D). Note that
NLmNEK c F(IX)NnK Cc S(N)C S(Ly 0 D).

On the other hand, T(Ly)\I' C F(Ly)\K C S(Lny N D) by (5.4).
Hence, we have I'(Ly) C S(Ly N D).

Note that I'(L n ) is compact since it is the image of the compact set
L under the composite ' of compact-valued u.s.c. multifunctions.

Now we use Theorem 2 with (I'|zv.T |y, Ln, Ly N D) replacing
(F,G,X,D). Note that T|1, has D-convex fibers T~y N Ly for each
y € I'(Ln) by (5.2), and S(LyND) covers I(Ly); that is, {Int Tz : z €
Ly N D} covers IN(Ln) = T(Ln). Hence, all of the requirements are
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satisfied, and thus, I'|;, and T
This completes our proof.

L~ have a coincidence peint z¢ € Ly .

REMARKS. 1. Theorem 5 is actually equivalent to Theorem 2. In
fact, we derived Theorem 5 from Theorem 2. Note that the converse is

clear: By putting ¥ = I and T = G, Theorem 5 reduces to Theorem
f)

2. The coercivity condition (5.4) is motivated by Chang [C].
3. Note that, if F is single-valued, the Hausdorffness assumption on
Y is not necessary. See the argument in [P6]

Parricurar Forms. 1. The origin of Theorem 5 is the same as
Theorem 2: Browder [Bw1-3/for X = D =Y = I and F = 1. Note
that numerous applications of the Fan-Brow der fixed point theorem
have appeared in various fields as fixed point theory, minimax theory,
variational inequalitics. and so on. See [P2].

2. For V instead of A%, Theorem 5 reduces to Park [P6, Theorem
1], which includes earlier works of Browder [BWI—S], Tarafdar [Tr1-
4], Tarafdar and Husain [TH]|, Ben-El-Mechaickh et al. (BDG1,2],
Yannelis and Prabhakar [YP). Lassonde [L1,2], Ko and Tan (KT,
Simons [Si1,2], Takahashi [Tk2!. Komiya [Ko], Mehta {Me], Mehta
and Tarafdar [MT]. Sessa [Ss]. Tinng [J1-3], McLinden [Mc]. Granas
and Liu [GL1,2]. Park [P1,2,4], and Chang C).

Among the munerous applications of Theorem 5. we give only an
abstract variational inequality:

COROLLARY 1. Let (X. D he a Hausdortf convex space, p : X x
X = (=00,00]. ¢ : DxX — (00,00, h: X > [—o00,0c] with h # oo,
Fell(X. X)), and I a nom'mptv compact subset of X. Suppose that

(1) qlayy) < pley) for (o y) = D x X, and
plasy)+ hiy) < hix) f()z r e X andy € Fa

(2) forcachh r € D, {y € X :yle.y)+ h( ) > hir }} is compactly
open;

(3) for cach y € F(X). {v € X : pla,y) + h(y) > hiz)} is D-
convex: andl
(4) foreach N ¢ (D). therc exists a compact D-convex subset Ly
of X containing N sucli that
(LI C U fv € X iqla,y) -+ hly) > hie)).

Ry NN Qv
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Then there exists a solution yg € F(X)NK of the variational inequality:

g(z,y0) + h(yo) < h(2) forall z € D.

Moreover, the set of all solutions yo is a compact subset of F(X)N K.

Proof. Define multifunctions S: D — 2% and T: X — 2X by
Sz ={ye X :qlz,y)+ h(y) > h(z)} for z € D;

and

Tz ={y € X :p(z,y) + h(y) > h(z)} for z € X.

Suppose that there exists a yo € F(X)N K such that yo ¢ S(D). Then
the conclusion follows. Therefore we may assume that F(X)N K C
S(D). Then all of the requirements of Theorem 5 are satisfied. Hence,
there exists an rg € X such that FoqNTxq # 0. Let yo € Fzo N Txzo.
Then y¢ € Fzg and

(2o, y0) + h(yo) > h(zo),

which contradicts (1). Moreover, the set of all solutions yo is the in-
tersection

N {v € F(X)NK : q(z,y) + h(y) < h(z))
zeD

of compactly closed subsets of the compact set F(X) N K. This com-
pletes our proof.

REMARK. If X = K itself is compact, then yo € Fzy for some
zo € X. Even for F = 1y, Corollary 1 is a basis of existence theorems
of many results concerning variational inequalities. For the literature,

see [Gr3], [P6], [Gw].

PARTICULAR FORMS. For F' = ly, there have appeared a lot of
particular forms of Corollary 1. See Brézis, Nirenberg, and Stampac-
chia [BNS], Juberg and Karamardian [JK], Mosco [Mo], Allen [Al],
Takahashi [Tk1], Gwinner [Gw], Lassonde [L1], Park [P6], and Ben-
El-Mechaiekh [Bn2].

From Theorem 5, we obtain the following Ky Fan type matching
theorem for open covers:
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THEORE'M 6. Let (X, D) be a convex space, Y a Hausdorff space,
S:D—=2Y and Fe AX(X,Y"). Suppose that

(6.1) for each x € D, Sx is compactly open;

(6.2) there exists a nonempty compact subset K of Y such that
F(X)nK ¢ §(D); and

(6.3) for each N € (D), there exists a compact D-convex subset Ly
of X containing N such that F(LN)\K C S(Ln N D).

Then there exists an M € (D) such that F(co M)NN{Sz : ¢ € M} # 0.

Proof. For each y € Y, put T7y = co S~y which is the minimal D-
convex set containing S”y. This defines a multifunction T : X — 2Y.
Then all of the requirements of Theorem 5 are satisfied. In fact, for
each @ € D, 2 € S7y for some y € Y implies 2 € T y; that is,
Sz € Tx. This and (6.1) imply (5.1). Moveover, Ty, which may
be empty, is D-convex for each y € F(X). This shows (5.2). Since
(6.2) and (6.3) are same as (5.3) and (5.4), resp., by Theorem 5, T
and F have a coincidence point xq € X; taat is, Tzy N Fzg # 0.
For y € Txy N Fay, we have vy € Ty = ¢c0S™y, and hence, there
exists a finite set M = {&y,22,...,2,} In S™y C D such that zq €
co{xr.x2,...,2,}. Since x; € S™y implies y ¢ Sz; for all i, 1 <i < n,
we have y € Fag N (-, Sw;. This completes our proof.

PARTICULAR FORMS. 1. The origin of Theorem 6 goes back to Fan
[F7,9] for X =Y and F=1x.

2. For V instead of Y, Theorem 6 reduces to Park [P6, Theorem
2], which includes carlier results in [P1,4].

Theorem 6 can be stated in its contrapositive form and in terms of
the complement Gr of Sx in Y. Then we obtain the following KKM
theorem:

THEOREM 7. Let (X, D) be a convex space, Y a Hausdorff space,
and F € A5(X.Y). Let G : D — 2" be a multifunction such that
(7.1) for each x € D, Ga is compactly closed in Y;
(7.2) for any N € (D), F(coN)C G(N); and
(7.3) there exist a nonempty compact subset ¥ of Y and, for each
N € (D). a compact D-convex subse: Ly of X containing N

such that F(LNy)N({Ge:a e LyN D} C K.
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Then F(X)N K N ({Gz : z € D} # 0.

Proof. Suppose the conclusion does not hold. Then F(X)N K C
S(D) where Sz = Y\Gz for z € D. Note that (7.1) and (7.3) imply
(6.1) and (6.3), resp. Therefore, by Theorem 6, there exists an M €
(D) such that F(coM)YN[(){Sz : z € M} # 0; that is, F(coM) ¢
G(M). This contradicts (7.2).

REMARK. Condition (7.2) is equivalent to coN C FTG(N); that
is, the multifunction F*G is a KKM-map. A KKM type theorem for
this case different from Theorem 7 can be found in [P6, Theorem 4].

PARTICULAR FORMS. 1. The origin of Theorem 7 goes back to
Sperner [S] and Knaster, Kuratowski, and Mazurkiewicz [KKM] for
X =Y = K = A, an n-simplex, D its set of vertices, and F = 1x.

2. As we noted in [P6], a particular form [P6, Theorem 3] of The-
orem 7 for V instead of A includes earlier works of Fan [F2,7,9],
Lassonde [L1], Chang [C], and Park [P1,4]. Moreover, in [P9], we
showed that {P6, Theorem 3] extends a number of KKM type theo-
rems recently due to Sehgal, Singh, and Whitfield [SSW], Lassonde
[La3], Shioji [So], Liu [Lu], Chang and Zhang [CZ], and Guillerme
[Gu].

From Theorem 7, we deduce two KKM type results of fundamental
importance.

Recall that a family of sets is said to have the finite intersection
property if the intersection of each finite subfamily 1s not empty.

COROLLARY 2. Let (X, D) be a convex space, Y a Hausdorff space,
F € AYX,Y), and H : D — 2V such that, for any N € (D),
F(coN) ¢ H(N). Then the family {Hz : « € D} has the finite

intersection property

Proof. Let M € (X) and L = coM. Let I € A(L,Y) such that
Te Cc Frforallz € L, K = (L), and Ga = Hz for € M. We use
Theorem 7 with I" replacing F'. Conditions (7.1) and (7.2) hold clearly.
Moreover, since I'(Ly) = I'(L) C K for any N € (M), (7.3) is satisfied
automatically. Therefore, by Theorem 7, we have ({Hzx : x € M} # 0.



Foundations of the KIKM theory 505

PARTICULAR FORMS. 1. The origin of Corollary 2 is due to Fan
[F2] forat.v.s. E =X =Y and F = 1g and to Dugundji and Granas
[DG1).

2. For K. nstead of U¥, X = D, and a ccnvex space Y, Corollary
2 reduces to Lassonde [L2, Theorem 2].

From Theorem 7, we can obtain the finite intersection property for
an open-valued KKM map. We need the following due to Shih [Sh,
Theorem 1]:

LeMMA. Let X' be a Hausdorff convex space and M € (X). If
G : M — 2% is a KKM map with open values, then there is a KKM
map H : M — 2% with closed values such that Hx C Ga forz € M.

COROLLARY 3. Let {X. D) be a convex space, Y a Hausdorff space,
F: X —2Y a compact-valued u.s.c. multifunction, and G : D — 2Y
such that

(1) for each 2 € D, Ga iz compactly open; and
(2) for any N € (D), coN ¢ F*G(N).
Then {Ga : @ € D} has the finite intersection property.

Proof. Let M € (D), Xy = coM, Fy = F|x,, Gy = G|um, and
Y1 = Fi(Xy). Then Y| is compact and we have

(1) for each = € M. (F;"G\)a is relatively open in X1; and

(2) for each N € (M), coN C FFG(N).

Therefore, FPGy 0 M — 2% is a KKM map with open values. Then,
by Lemma, there exists a KKM map H : A -» 2% with closed values
such that Hr C (F,"Gy)x for each € M. So by Corollary 2 with
Fo=1lx,

(N (FrGoe> (] He #0:

reM reM
that is, [{Ga : 2 € M} = ({Gi2 : 2 € M} # 0. This completes our
proof.

ParrticuLAR ForMms. 1. The origin of Corollary 3 is due to Kim
[Kil] for X =Y and F =1y.

2. Other forms of Corollary 3 can be seen in Kim [Ki2], Park {P3,9],
and Lassonde [L3].

From Theorem 7. we have another whole intersection property as
follows:
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THEOREM 8. Let (X, D) be a convex space, Y a Hausdorff space,
and F € A5(X,Y). Let G : D — 2Y be a multifunction satisfying
(7.1) and (7.3). Suppose that there exists a multifunction H : X — 2Y
satisfying

(8.1) for eachz € D, Ha C Gu;

(8.2) foreachz € X, Fa C Hz; and

(8.3) for each y € F(X), X\H y is D-convex; that is, H has D-

convex cofibers on F(X).
Then F(X)NKN({Gz:z € D} #0.

Proof. 1t suffices to show that (8.1)—(8.3) imply (7.2). Suppose that
there exists an N € (D) such that F(coN) ¢ G(N); that is, there
exist an z € coN and y € Fz such that y ¢ Gz for all z € N. In other
words, by (8.1), y ¢ Hz for all z € N, and hence z € X\H™y. By
(8.3), coN C X\H y. Since v € coN, we have z ¢ H yory ¢ Hz.
Since y € F'z, this contradicts (8.2). This completes our proof.

Here, in order to show that Theorems 5-8 are equivalent, the follow-
ing suffices:

Proof of Theorem 5 using Theorem 8. Suppose that Fa N Tz = §
forall z € X. Let Gz = Y\Sz fora € D and Hz = Y'\Tx for z € X.
Then all of the requirements of Theorem 8§ are satisfied. Therefore,
there exists a yy € F(X)NKN(){Gz : 2 € D}; thatis. yp € F(X)NK
such that yo ¢ Sa for all # € D. This contradicts (5.3). This completes
our proof.

REMARK. The first particular form of Theorem 8 is due to Tarafdar
[Tr2] for X = D =Y and F = 1x. Horvath [Ho] also obtained a
form of Theorem 8 for a space more general than convex spaces. Other
particular forms are due to Guillerme [Gu], who applied them to obtain
some minimax inequalities.

5. Minimax inequalities and geometric properties

There are many equivalent and useful formulations of Theorems 5
8 in the KKM theory. In this section, we give analytic alternatives,
minimax inequalities, and geometric properties of convex sets.

We begin, in this section, with the following useful reformulation of
Theorem 5:
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THEOREM 9. Let (X, D) be a convex space, Y a Hausdorff space,
FeAN(X,Y), A,B C Z sets. f,g : X xY —» Z functions, and Il a
nonempty compact subset of Y. Suppose that

(9.1) foreachz € D, {y € Y : g(m,y) € A} is compactly open and

contained in {y € Y : f(z,y) € B};
(9.2) for eachy € F(X), {z € X f(z,y) € B} is D-convex; and
(9.3) for each N € (D), theu exists a compact D-convex subset Ly
of X containing N such that for each y € F(Ly)\I\, there
exists an * € Ly N D satisfyving g(z,y) € A.
Then erther
(i) there exists a j € F(X)N K such that g(z,7) ) ¢ A for all
€ D; or
{(i1) there exists an (2.9} € F such that f(z,y) € B.

Proof of Theorem 9 using Theorem 5. Consider the multifunctions
S:D -2 and T: X — 2V given by

Ser={yeY :g(x,y)e A} for z€D

and

Te={yeY: flz,y)e B} for ze€X.
Then (9.1), (9.2), and (9.3) imply (5.1), (5.2), and (5.4), resp. Suppose
(1) does not hold. Then, for each y € F(X) N i\ there exists an x € D
such that g(x,y) € A; that is, F(X)N K C S D). Hence (5.3) holds.

Therefore, by Theorem 5, F' and T have a coincidence point; that is,

(i1) holds.

REMARK. In our previous work [P8], a particular form of Theorem
9 has been given to derive Theoremn 3(ii1) for V. In fact, Theorem 3(iii)
follows from Theorem 9 with X = D as follows:

Proof of Theorem 3(w1) nsing Theorern 9. Suppose that F is u.s.c.
Let ¥ be a compact set such that F{X) C Y € X, and V an open
convex neighborhood of the origin of £. We apply Theorem 9 with

=D Y=K 4A=B=V,Z=F and f=¢g:X xY — FE defined
by f(r,y) =y — 2 for (x,y) € X x Y. Then all of the requirements
are satisfied. However, Condition (i) does not hold. Now, Condition
(i1) implies the assertion () in the proof of Theorem 3. This suffices
for the existence of fixed point of F as in the proof of Theorem 3(iii).
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PARrTICULAR FORMS. 1. The first form of Theorem 9 is due to
Lassonde [L1, Theorem 1.1']. Note that if F is single-valued, then Y is
not necessarily Hausdorff. Lassonde used his result to generalize earlier
works of Iohvidov [I], Fan [F4], and Browder [Bw2]. Applications of
this kind of results to the Tychonoff fixed point theorem and the study
of invariant subspaces of certain linear operators are given in [I], [F4].

2. For X = D and V instead of £, Theorem 9 reduces to [P6,
Theorem 5].

From Theorem 9, we have the following analytic alternative, which
is a basis of various minimax inequalities.

THEOREM 10. Let (X.D) be a convex space, Y a Hausdorff space,
FeAf(X,YV),a>8f: X xY =R, g:DxY — R extended real-
valued functions, and K a nonempty compact subset of Y. Suppose
that

(10.1) g(a,y) < f(a,y) for all (z,y) € D x Y;
(10.2) for each x € D, {y €Y : g(x,y) > a} is compactly open;
(10.3) for eachy € F(X), {x € X : f(z,y) > B} is D-convex ; and
(10.4) for each N € (D), there exists a compact D-convex subset L
of X containing N such that, for each y € F(Ly)\K, there
exists an x € Ly N D satisfying g(z,y) > a.
Then either
(i) there exists a § € F(X)N K such that g(x,9) < a for all
z € D; or
(ii) there exists an (&,§) € F such that f(3,5) > 3.

Proof. Put Z=R, A = («, )|, and B = (8, o0] in Theorem 9.

PARTICULAR FORMSs. 1. The first form of Theorem 10 is due to
Ben-El-Mechaiekh ¢t al. [BDG1,2]for X =D =Y = K and F = 1y.
The authors used their result to variational inequalities of Hartman-
Stampacchia and Browder, a generalization of the Ky Fan minimax
inequality, and others.

2. See also Fan [F6], Brézis, Nirenberg, and Stampacchia [BNS],
Allen [Al], Granas [Gr1,2], Tan [T}, Lin [Ln], Ko and Tan [KT],
Deguire and Granas [DG], Takahashi [Tk2], Shih and Tan [ST6], Ding
and Tan [DT], Ben-El-Mechaiekh [Bn2], Deguire [D], and Park [P6].



Foundations of the KKM theory 509

From Theorem 10, we clearly have the following generalization of
the Ky Fan minimax inequality:

THEOREM 11. Under the hypothesis of Theorem 10, if @« = 8 =
sup{f(z,y): (a.y) € F}, then

(a) there exists a gy € F(X )N K such that

glz,y) < sup f(x,y) forall z & D
(z,y)EF

and (b) we have the minimax inequality:

min sup g(c.y) < sup flx,y).
YeN 1D {z,y)EF

In order to show that Theorem 11 is equivelent to any of Theorems
1-10, we give the following:

Proof of Theorem 8 using Theorem 11. Define functions ¢ : DxY —
Rand f: X xY — R by

(1) { 0 if y€eGae
gla,y) =
Ay 1 otherwise

for (r,y) € D x ¥ and

fla,y) :{

for (z,y) € X x Y. Put & = 4 = 0. Then (7.1) and (7.3) imply (10.2)
and (10.4), resp. Moreover, (8.1) implies (10..) clearly. Further, (8.2)
and (8.3) imply (10.3). In fact, for each y € F(X), we have y € H(X)
by (8.2) and hence y € Ha for some @ € X. Then X\H y={z € X :
flz,y) =1} = {a € X : f(a,y) > 0} is D-convex by (8.3). Therefore,
by Theorem 11, there exists a y € F(X) N K such that

0 if ye Ha

1 otherwise

g(z. ) < sup fla,y) forall ze D.
(z.)efl

However, sup{f(z,y): (z,y) € F} <sup{f(z. y):(z,y) € H} =0 by
(8.2) and the definition of f. Hence g(z,9) = 0 for all € D; that is,
g € Gua for all v € D. Therefore,

F(X)NKr(){Gx:x €D} #0.

This completes our proof.
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REMARK. Conclusion (b) can be written as follows:

min sup g(z,y) < inf sup  f(z,y).
yeK reD

' FE‘J:(X,Y)(I'y)Gp

PARTICULAR FORMS. 1. Theorem 11 originates from the Ky Fan
minimax inequality [F6] for X = D =Y =K, f = ¢, and F = 1x.
Fan applied his inequality to fixed point theorems, sets with convex
sections, and potential theory. Later, the inequality became an impor-
tant tool in nonlinear functional analysis, game theory, and economic
theory.

2. In [P6, Theorem 9], we obtained Theorem 11 for X = D and V
instead of 7. This includes earlier works of Fan [F6,9], Brézis, Niren-
berg, and Stampacchia [BNS], Takahashi [Tk1,2], Yen [Y], Aubin
[Au], Ben-El-Mechaiekh et ol. [BDG1-3|, Tan [T], Shih and Tan
[ST1,2], Aubin and Ekeland [AE], Lassonde [L1], Granas and Liu
(GL1,2], Lin [Ln], Ha [Hal,2], and Park [P2].

The KKM theorem and the whole intersection theorem can be re-
formulated to minimax inequalities.
The following minimax inequality is equivalent to Theorem 7.

THEOREM 12. Let (X, D) be a convex space, Y a Hausdorff space,
F ¢ A¥(X)Y), and K a nonempty compact subset of Y. Let ¢ :
D xY — R be an extended real-valued function and v € R such that

(12.1) foreachz € D, {y € Y : ¢(a,y) < v} is compactly closed;

(12.2) for each N € (D) andy € F(coN), min{¢(2,y): 2 € N} < ;
and

(12.3) for each N € (D), there exists a compact D-convex subset Ly
of X containing N such that, for each y € F(Lx)\IL, there
exists an @ € Ly N D satistying ¢(x,y) > .

Then (a) there exists a § € F(X) N K such that
olr,5) <~ forall z¢€ D;

and (b) if v = sup{@(z,y) : (z,y) € F}, then we have the minimax
inequality:

min sup ¢z, y) < sup  o(z,y).
.UEI\ zeD (I,]}]EF
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Proof of Theorem 12 using Theorem 7. Let Gz = {y € Y : é(z,y)
v} for £ € D. Then (12.1) and (12.3) imply (7.1) and (7.3) clearly. VVe
show that (12.2) implies (7.2). Suppose that there exists an N € (D)
such that F(coN) ¢ G(N). Choose a y € F(coN) such that y ¢
G(N), whence é(z,y) > + for all x € N. Then minzen ¢(z,y) > 7,
which contradicts (12.2). Therefore, by Theorem 7, there exists a § €

(_X ) N K such that § € Ga for all 2 € D; that is, oz, 9) < v for all
z € D. This completes the proof of (a). Note that (b) clearly follows
from (a).

Proof of Theorem 7 using Theorem 12. Define ¢: D x Y — R by

, 0 i yeGa
olx,y) =

1 otherwise

for (z,y) € D x Y. Put 5 = 0 in Theorem 12. Then (7.1) clearly
implies (12.1). We show that (7.2) implies 112.2). In fact, suppose
that there exist an N € (D) and y € F(co N such that min{¢(z,y) :

€ N} > 0. Then y ¢ Ga for all » € N: tlat is, F(co N)y @& G(N).
which contradicts (7.2). Moreover, we show that (7.3) implies (12.3).
In fact, for y € F(Ln )\, we have y € Gz for some z € Ly N D; that
is, &(z,y) > 0. Therefore, all of the requirenients of Theorem 12 are
satistied. Hence. there exists a g € F(X)N K such that ¢(z, ) = 0 for
all € D; that is. y € ({Gw : .+ € D}. This completes our proof.

REMARK. In the proof of the equivalency «f Theorems 7 and 12 we
used the fact that (12.2) is equivalent to
(12.2)" the map 2 +— Ga = {y € Y : é(r,y) < v} satisfies Condition
(7.2).
For similar arguments, see Ding, Kim, and Ta1, [DKT] and Chang and
Zhang [CZ].

PARTICULAR FoRrRMS. The first particular forms of Theorem 12 are
due to Zhou and Chen [ZC, Theorem 2.11 and Corollary 2.13] for
X =D=Y =N and F = 1y. Those resul:s are applied to obtain
a variation of the Ky Fan inequality, a saddle point theorem, and a
quasi-variational inequality.

In 1961, Fan [F2] gave a “geometric” lemmn which is the geometric
equivalence of his version of the KIKXM theorera. In many of his works
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in the KKM theory, Fan actually based his arguments mainly on the
geometric property of a convex space. We now deduce two geometric
forms of Theorem 7. The first one is as follows:

THEOREM 13. Let (X, D) be a convex space, Y a Hausdorff space,
FeAi(X,Y),and ACBCCCX xY. Suppose that

(13.1) foreachz € D, {y € Y : (a,y) € C} is compactly closed in Y;

(13.2) for each y € F(X), {x € X : (z,y) ¢ B} is D-convex;

(13.3) A is the graph of F; and

(13.4) there exist a nonempty compact subset K of Y and, for each
N € (D), a compact D-convex subset Ly of X containing N
such that F(LN)N(\,epvaply €Y i (z,y) € C} C K.

Then there exists a yo € F(X)N K such that D x {y¢} C C.

Proof of Theorem 13 using Theorem 7. For each x € D, let
Ge={yeY :(x,y) e},

which is compactly closed by (13.1). Moreover, for each N € (D), we
have

F(coN) C G(N).

In fact, let y € F(Y 1, Aix;) with 0 < \; < 1, Sr i Ai=1l,and N =
{z1,22,..., 2.} € (D). f y ¢ G(N), then (x;,y) ¢ C for each i. Since
B C C, we have (z;,y) ¢ B for each 7. By (13.2), {x € X : (z,y) ¢ B}
is D-convex, and hence (3., Niz;,y) ¢ B. Since A C B, we have
(Ciei dimi,y) ¢ A; that is, y ¢ F(301_, Aizi) by (13.3), which is a
contradiction. Since (13.4) clearly implies (7.3), G satisfies all of the
requirements of Theorem 7. Therefore, we have

F(X)nKn(){Gz:z€ D} #0.

Hence, there exists a yo € F(X)N K such that yo € N{Gz : z € D};
that is, D x {yo} C C.

PARTICULAR ForMS. 1. The original form of Theorem 13 due to
Fan [F2]isthecase X = D =Y, A=B=C, and F = 1y. Fan’s
geometric lemma has many applications, among which are fixed point
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theorems, theorems on minimax, existence of cquilibrium points, exten-
sions of monotone sets, a fundamental existence theorem in potential
theory, variational inequalities, and many otl.ers.

2. For X = D and F € V(X,Y), Theorem 13 reduces to Park (P9,
Theorem 12], which extends earlier results of Fan [F2,5,6], Takahashi
[Tk1], Shih and Tan [ST2], Lin [Ln), Park [P2,6], Ha [H1], Shioji
[So], and Sehgal, Singh, and Whitfield [SSW].

The following form of Theorem 13 is also widely used in the KKM
theory:

THEOREM 14. Let (X, D) be a convex spzce, Y a Hausdorff space,
K a nonempty compact subsct of Y, F € U%5(X,Y), and C C B C
AC X xY. Suppose that

(14.1) foreach r € D. {y €Y :(r.y) € C'} is compactly open in Y';

(14.2) for each y € F(X). {x € X : (z,y) € B} is D-convex;

(14.3) for each y € F(X) N LK, there exists an + € D such that
(x,y) € C; and

(14.4) for each N € (D), there exists a ccmpact D-convex subset
Ly of X containing N such that F(ix) 0 Mrcrvnplv €Y :
(x,y) ¢ C} C Iv.

Then there exist an 29 € X and a Yo € Fay such that (xo,y0) € A.

Proof of Theorem 14 wsing Theorem 18. Consider Theorem 13 with
(A, B, C°) mnstead of (4, B,C). Then (13.1), (13.2), and (13.4) are
satisfied automatically. Since (14.3) is the negation of the conclusion
of Theorem 13, we should have the negation of (13.3). Therefore, the
conclusion follows.

Proof of Theorem 5 using Theorem 14. Let 4 = B be the graph of T
and C' the graph of S. Then (5.1)-(5.4) imply (14.1)-{14.4). Therefore,
by Theorem 14, there exists an (v0,y0) € F such that (2¢,y9) € A;
that is. /7 and T have a coincidence point.

Consequently, Theorems 1-14 are all equivalent to each other.

PARTICULAR FoRrmS. 1. The origin of Theorem 14 goes back to
Fan [F6]for Y =D =Y =L, 4A=B=C,and F = 1x. This is

equivalent to the Fan-Browder fixed point theorem [Bw1-3).
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2. For X = D and F € V(X,Y), Theorem 14 reduces to [P9,
Theorem 13|, which extends earlier works of Fan [F7], Shih and Tan
[ST2,4,6], and Park [P2,4].

Finally, there have appeared many types of “gencralized” convex
spaces and the KKM type theorems for those spaces. Some of the
results in this paper can be modified for those new spaces.
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