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ON THE GAUSS MAP OF
QUADRIC HYPERSURFACES

DoNG-500 KM

1. Introduction

Let M™ be a connected hypersurface in Euclidean (n + 1)-space
E™! and let G : M™ — S"(1) C E™*! De its Gauss map. Then,
according to a theorem of E.A. Ruh and J.Vilms [5], M" is a surface
of constant mean curvature if and only if as a map from M™ to S(1),
G is harmonic, or equivalently, if and only if

AG = ||dG|* G, (1.1)

where A is the Laplace operator on M™ corresponding to the induced
metric on M™ from E™! and where G is seen as a function from M”
to E"t1. A special case of (1.1} is given by

AG = )G, (VeR (1.2)

that is, the case where the Gauss map G : M™ — E™*! is an eigen-
function of the Laplacian A on M™. And such hypersurfaces satisfying
(1.2) were classified for some cases in [4].

On the other hand, F.Dillen, J. Pas and L. Verstraelen [3] proved
that among the surfaces of revolution in E?, the only ones whose Gauss
map satisfy the condition

AG = AG, (A€ R¥?) (1.3)

are the planes, the spheres and the circular cylinders. And C. Baik-
oussis and D.E. Blair [1] recently proved that among the ruled surfaces
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in E3, the only ones whose Gauss map satisfy (1.3) are the planes and
the circular cylinders.

There are hyperplanes, hyperspheres and the cylinders over round
spheres which satisfy the condition

AG = AG, (A e RIntDx(n41)y (1.4)

And those examples are quadric hypersurfaces in E**1,

A question which arises now is : Are there any other quadric hyper-
surfaces in E"*! satisfying condition (1.4)?

In particular, we will prove the following:

THEOREM. Among the quadric hypersurfaces in E™t1) the only
ones whose Gauss map satisfy (1.4) are the hyperplanes, the hyper-
spheres and the cylinders over round spheres.

Our proof of the above theorem essentially follows a reasoning which
is given in [2], where B.Y. Chen, F.Dillen and H.Z. Song classified the
quadirc hypersurfaces of finite type.

2. Examples and preliminaries

(1) hyperplane. In this case G is constant, so AG = 0 and the
hyperplane satisfies (1.4) with A = 0.

(2) sphere. Let S™(r) be the sphere with center 0 and radius r.
If z denotes the position vector field of S™(7), then the Gauss
map G is given by 1z. Since Az = —nH and H = —-1@G,
where H is the mean curvature vector field on $™(r), we have
AG = 4G. Hence we find that S™(r) satisfles (1.4) with
A =diag (1/r2,--- ,1/7?).

(3) cylinder over a round sphere. We consider the hypersurface
M = SP(r) x R"7?. Then as in the case of sphere, we have
AG = AG with

A = diag(1/r%, - .- 1/, 0, ,0) (with n — p zeros ).
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Let M™ be a hypersurface in the Euclidean space E™*!. We denote
by G, A, ¢ and a the Gauss map of M", the Weingarten map, the
second fundamental form and the mean curvature of M™ with respect
to G defined by o = =+ < tr(o),G >. Then we have the following ([4]):

AG = nVa + |A*C, (2.1)

where |A|* is defined by tr(A?).

If AG = =2 4+ 4t =0, where g, -, pn are
principal curvature of M"™ with respect to . Hence M" is totally
geodesic and we obtain the following:

LEMMA 1. The hyperplanes are the onlv hypersurfaces satisfying
AG =0.

3. Quadric hypersurfaces

A subset M of an (n+1)-dimensional Euclidean space E™*1 is called
a quadric hypersurface if it is the set of points (z1,- -+ , Tn+1) satisfying
the following equation of the second degree:

n+1 n+1
Z ATy —f—Zb,‘JJ,’-‘rc:O, (3.1)
t,7=1 i=1

where a;;, b;, ¢ are all real numbers. Suppose that M is not a hyper-
plane. Then A is not a zero matrix and we may assume without loss
of generality that the matrix A = (a;;) is symmetric. By applying a
coordinate transformation in E™*! if necessary, we may assume that
(3.1) tal\eq one of the following canonical forms:

I) ZG i + 22,4, = 0,
(II)ZazL + 1 =0,
(I11) Za,-;z:f =0,

i=1
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where (a1, -+ ,ar,0,---,0) is proportional to the eigenvalues of the
matrix A with a@jaz -+ a, # 0. In the cases where r = n in (I)
and r = n + 1 in (II) and (III) the hypersurface is called a prop-
erly n-dimensional quadric hypersurface, and in other cases, a quadric
cylindrical hypersurface. In the case (I), the quadric cylindrical hy-
persurface is the product of an (n — r)-dimensional linear subspace
and a properly r- dimensional quadric hypersurface. In case (II) and
(I1I), the quadric cylindrical hypersurface is the product of an (n —r)-
dimensional linear subspace and a properly (r — 1)-dimensional quadric
hypersurface.

Now let M be a hypersurface in E™"*t!. We consider a parametriza-
tion

x(uy, - ,un) = (Ur, -+ ,Un,v) (3.2)

where v = v(ur, -, un).

Denote Ov/0u; by v;. Then we have ([2])

915 = bij +vivj, g7 =6 —vivj/g (3.3)
where
n
g =det(gi;) =1+ Y v, (3.4)
i=1
and g;; =< 0;z,0;2 >. The Laplacian A of A is given by
Oiq . g g
A=— Z(;gggl] + &-g”)aj — Z g”al‘aj. (3.5)
ij 7 .3

And the Gauss map G of M is given by
G=(G1,,Gn,Gny1) = g—%(‘“vl,"' y —Un, 1). (3.6)

If M is a properly n-dimensional quadric hypersurface, then M is

one of the following three kinds:
n

1
(I)v=§Za,~u?, ay - -an #0,
=1
(I) v? = Zaiuf +e¢, ay--aze#0,
i=1

(II) v? = Zaiu?, ay---an # 0.

=1
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4. Proper quadric hypersurfaces of kind (I)

We consider the following parametrization:

o= (uy, L u,.v), v= = Z(' Ui cean # 0. (4.1)

In this case, we have

Gij = 0ij + a;aju;u;, g’j = ;5 -- g*laiajuiu], (4.2)
g=det(gi;) =1+ Zu uf (4.3)
= —g~? Z alui Z aju;0; + 97" Z a; Z a;u;0; — Zgijaiaj
; j ; j i
(4.4)

and we have
_1
G=(Gi. - ,Gu.Gng1) = g 2 (—a1ur, -+ ,—anunp,1). (4.5)
LEMMA 2. Foreach bk =1.---  n we have

AGy, (4.6)

== o H{a(Satt) -2 St —s(e) Dad

1

——3(/(sz(1 ul + g* Z(z +g° GLZ }

And we have

AG oy (4.7)

:g"%{éi(z a:u,) - gZ a; Zaju;’ - 'ZgZa?uf + ¢? Za?}.
1 7 [

1

Proof. Note that the Gauss map G = ((y, -+ ,Gn.GnH) is given
by Gi = —akuk.g'li for 1 <k <nand Gpyy = % From (4.2) and
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(4.4) we may derive the above formula (4.6) and (4.7) by a straightfor-
ward computation.

Now suppose that M satisfies the condition (1.4) with A = (a;;),
1<1,7 <n+1. Then for each & = 1,--- ,n we have from (4.6) and
(4.7)

gg{z agja;u; — ar n+1} = arur{*} (4.8)
J

93{— Z Ant15a5u5 + an+1n+1} = {#*} (4.9)
3

where {*} and {*x} are the parentheses in the right side of (5.6) and
(5.7), respectively. Note that ¢ is a polynomial in uy,- - ,un of degree
2 and note that the left side of (4.8) is a polynomial in u;,--- ,uy, of
possible degree 0, 6 or 7 and the right side of (4.8) is & polynomial in
uy, - ,un of degree less than or equal to 5. Hence we have

are=10, 1<k<n, 1<€<n+1. (4.10)
Similarly from (4.9) we have
Gnp10=0, 1<C<n+1. (4.11)

Thus (1.4), (4.10) and (4.11) show that M satifies the condition
AG = 0. Hence by Lemma 1, we see that M is a hyperplane, which is
not a quadric hypersurface of kind (1).

5. Proper quadric hypersurfaces of kind (II)

For each hypersurfaces we consider a parametrization
- ; 2 2 2
T = (U, U, v), v =aul 4 Fagud e, ap--ape#0.
(5.1)
In this case, we have

gi; = bij + VV'la,'aju,-u_,-, gij = 6ij — g—la,-aju.,u]-, (5.2)

g=1+W™Y aluf, ¢7'=1-5"'Y alul,  (53)
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where

W == Za,-uf-, g=gW =c+ Z ai(l + a; )u?. (5.4)

And the Gauss map G of M is given by
G=(Gy, - ,Gn, Gpy1) = _(}_%(—-alul,- ce L —ApUn, V). (5.5)
As in Section 4, by a straightforward computation, we have the follow-
ng:
LEMMA 3. For each k = 1,--- ,n we have
AGy (5.6)
:akuk_('}_% Wt {Qg"W'B ~WCD - §CE + CE* — &} 3*W

+ argWD + ar§’E — argE* + §W T a?a?(l + aﬂu?
- ari?Wap + 3GWF — 32V Z (14 a;)

— #War(1+ar) —3WC? + 2“"’6[4'0}'
And we have
AG, (5.7)
S {_QgW?B +W?CD - §WCE - WCE?

+2§°WD — GWED — 25*E? + GE® — W? Z aia(1 + a;)u?
7
+§W Z aiaiui + 3WAC? — 3gW3AF + W72 Z ai(1+ ai)
+ 2 WC + §°E — §°W Z } |
where

B:Za?(l—%aﬂuf, C
E = Zu uy F =

It

1 t

(
a2(1+c¢)u?, a; = za.j.

1 j#1

Zaf 1+ oi)ul, D:Zafu?,(58)
> )
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Now suppose that M satisfies the condition (1.4) with A = (aij),
1 <1, 5 <n+1. Then we obtain from (5.6) and (5.7)

wg? {ak n.HVV% — Z akgagug} =aqrup{*}, k=1.---,n, (5.9)
=1
& {W%(“ Z Qn+1 £aeue) + Gni1 n+1W2} = {**}, (5.10)
=1

where {*} and {**} are the parentheses in the right side of (5.6) and
(5.7), respectively.

From (5.9) we see that axny1 = O for all k = 1,--- ,n and that if
are # 0 for some 1 < k, ¢ < n then § must be a constant, that is,
a; = =1forallz =1,--- ,n. And from (5.10) we see that a1 = 0
forall £ =1,--- ,n and that if a,41n+1 # 0 then § must be a constant,
that is, a; = —1foralli=1,.--- ,n.

Hence if A4 is not a zero matrix, then M is a sphere. And if 4 = 0,

then by Lemma 1, M is a hyperplane, which is not a quadric hyper-
surface of kind (II).

6. Proper quadric hypersurfaces of kind (III)

For such hypersurfaces we consider a parametrization
_ 2 _ 2 2 0 6.1
.’E—(UI,"‘,UH,'L)), v _a]u]'}""'—*—anun’ al---a,,# . ( . )

In Section 5 with ¢ = 0, the nondegeneracy of M implies that § =
i1 @ai(14a;)u? is a polynomial of degree 2, or equivalently, a; # —1

for some z = 1,--- ,n. And the formulae (5.9) and (5.10) are also valid
with ¢ = 0.

We now suppose that M satisfies the condition (1.4). As in Section
5, we see that if A # 0, then we have ¢; = —1, i =1,... ,n, which is

a contradiction. And we see that if A = 0, then by Lemma 1, M is a
hyperplane, which is not a quadric hypersurface of kind (III).
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7. Proof of theorem

Suppose that a quadric hypersurface M satisfies the condition (1.4)
and that M is not a hyperplane. If A is a quadric cylindrical hypersur-
face in E™*!| then M is the product of a proper quadric hypersurface
NP in EP*! and a linear subspace E"~P. Since N aslo satisfies the con-
dition (1.4) with a suitable square matrix, N is a hypersphere $?(r) in
EP*1. This completes the proof of the theorer.
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