ON THE GAUSS MAP OF QUADRIC HYPERSURFACES

Dong-Soo Kim

1. Introduction

Let M^n be a connected hypersurface in Euclidean (n+1)-space E^{n+1} , and let $G: M^n \to S^n(1) \subset E^{n+1}$ be its Gauss map. Then, according to a theorem of E.A. Ruh and J.Vilms [5], M^n is a surface of constant mean curvature if and only if as a map from M^n to $S^n(1)$, G is harmonic, or equivalently, if and only if

$$\Delta G = \|dG\|^2 G,\tag{1.1}$$

where Δ is the Laplace operator on M^n corresponding to the induced metric on M^n from E^{n+1} and where G is seen as a function from M^n to E^{n+1} . A special case of (1.1) is given by

$$\Delta G = \lambda G, (\lambda \in R) \tag{1.2}$$

that is, the case where the Gauss map $G: M^n \to E^{n+1}$ is an eigenfunction of the Laplacian Δ on M^n . And such hypersurfaces satisfying (1.2) were classified for some cases in [4].

On the other hand, F.Dillen, J. Pas and L. Verstraelen [3] proved that among the surfaces of revolution in E^3 , the only ones whose Gauss map satisfy the condition

$$\Delta G = AG, (A \in \mathbb{R}^{3 \to 3}) \tag{1.3}$$

are the planes, the spheres and the circular cylinders. And C. Baikoussis and D.E. Blair [1] recently proved that among the ruled surfaces

Received May 3, 1993.

This work was partially supported by GARC-KOSEF, and BSRI-94-1425, Ministry of Education, 1994.

in E^3 , the only ones whose Gauss map satisfy (1.3) are the planes and the circular cylinders.

There are hyperplanes, hyperspheres and the cylinders over round spheres which satisfy the condition

$$\Delta G = AG, \quad (A \in R^{(n+1)\times(n+1)}).$$
 (1.4)

And those examples are quadric hypersurfaces in E^{n+1} .

A question which arises now is: Are there any other quadric hypersurfaces in E^{n+1} satisfying condition (1.4)?

In particular, we will prove the following:

THEOREM. Among the quadric hypersurfaces in E^{n+1} , the only ones whose Gauss map satisfy (1.4) are the hyperplanes, the hyperspheres and the cylinders over round spheres.

Our proof of the above theorem essentially follows a reasoning which is given in [2], where B.Y. Chen, F.Dillen and H.Z. Song classified the quadirc hypersurfaces of finite type.

2. Examples and preliminaries

- (1) hyperplane. In this case G is constant, so $\Delta G = 0$ and the hyperplane satisfies (1.4) with A = 0.
- (2) sphere. Let $S^n(r)$ be the sphere with center 0 and radius r. If x denotes the position vector field of $S^n(r)$, then the Gauss map G is given by $\frac{1}{r}x$. Since $\Delta x = -nH$ and $H = -\frac{1}{r}G$, where H is the mean curvature vector field on $S^n(r)$, we have $\Delta G = \frac{1}{r^2}G$. Hence we find that $S^n(r)$ satisfies (1.4) with $A = \text{diag } (1/r^2, \dots, 1/r^2)$.
- (3) cylinder over a round sphere. We consider the hypersurface $M=S^p(r)\times R^{n-p}$. Then as in the case of sphere, we have $\Delta G=AG$ with

$$A = diag(1/r^2, \dots, 1/r^2, 0, \dots, 0)$$
 (with $n - p$ zeros).

Let M^n be a hypersurface in the Euclidean space E^{n+1} . We denote by G, A, σ and α the Gauss map of M^n , the Weingarten map, the second fundamental form and the mean curvature of M^n with respect to G defined by $\alpha = \frac{1}{n} < \operatorname{tr}(\sigma), G >$. Then we have the following ([4]):

$$\Delta G = n\nabla\alpha + |A|^2 G,\tag{2.1}$$

where $|A|^2$ is defined by $tr(A^2)$.

If $\Delta G = 0$, then $|A|^2 = \mu_1^2 + \dots + \mu_n^2 = 0$, where μ_1, \dots, μ_n are principal curvature of M^n with respect to G. Hence M^n is totally geodesic and we obtain the following:

LEMMA 1. The hyperplanes are the only hypersurfaces satisfying $\Delta G = 0$.

3. Quadric hypersurfaces

A subset M of an (n+1)-dimensional Euclidean space E^{n+1} is called a quadric hypersurface if it is the set of points (x_1, \dots, x_{n+1}) satisfying the following equation of the second degree:

$$\sum_{i,j=1}^{n+1} a_{ij} x_i x_j + \sum_{i=1}^{n+1} b_i x_i + c = 0,$$
(3.1)

where a_{ij} , b_i , c are all real numbers. Suppose that M is not a hyperplane. Then A is not a zero matrix and we may assume without loss of generality that the matrix $A = (a_{ij})$ is symmetric. By applying a coordinate transformation in E^{n+1} if necessary, we may assume that (3.1) takes one of the following canonical forms:

(I)
$$\sum_{i=1}^{r} a_i x_i^2 + 2x_{r+1} = 0,$$
(II)
$$\sum_{i=1}^{r} a_i x_i^2 + 1 = 0,$$
(III)
$$\sum_{i=1}^{r} a_i x_i^2 = 0,$$

where $(a_1, \dots, a_r, 0, \dots, 0)$ is proportional to the eigenvalues of the matrix A with $a_1a_2 \cdots a_r \neq 0$. In the cases where r = n in (I) and r = n + 1 in (II) and (III) the hypersurface is called a properly n-dimensional quadric hypersurface, and in other cases, a quadric cylindrical hypersurface. In the case (I), the quadric cylindrical hypersurface is the product of an (n - r)-dimensional linear subspace and a properly r-dimensional quadric hypersurface. In case (II) and (III), the quadric cylindrical hypersurface is the product of an (n - r)-dimensional linear subspace and a properly (r-1)-dimensional quadric hypersurface.

Now let M be a hypersurface in E^{n+1} . We consider a parametrization

$$x(u_1, \dots, u_n) = (u_1, \dots, u_n, v)$$
 (3.2)

where $v = v(u_1, \dots, u_n)$.

Denote $\partial v/\partial u_i$ by v_i . Then we have ([2])

$$g_{ij} = \delta_{ij} + v_i v_j, \quad g^{ij} = \delta_{ij} - v_i v_j / g$$
(3.3)

where

$$g = \det(g_{ij}) = 1 + \sum_{i=1}^{n} v_i^2,$$
 (3.4)

and $g_{ij} = \langle \partial_i x, \partial_j x \rangle$. The Laplacian Δ of M is given by

$$\Delta = -\sum_{i,j} \left(\frac{\partial_i g}{2g} g^{ij} + \partial_i g^{ij} \right) \partial_j - \sum_{i,j} g^{ij} \partial_i \partial_j.$$
 (3.5)

And the Gauss map G of M is given by

$$G = (G_1, \dots, G_n, G_{n+1}) = g^{-\frac{1}{2}}(-v_1, \dots, -v_n, 1).$$
 (3.6)

If M is a properly n-dimensional quadric hypersurface, then M is one of the following three kinds:

(I)
$$v = \frac{1}{2} \sum_{i=1}^{n} a_{i} u_{i}^{2}, \quad a_{1} \cdots a_{n} \neq 0,$$

(II) $v^{2} = \sum_{i=1}^{n} a_{i} u_{i}^{2} + c, \quad a_{1} \cdots a_{n} c \neq 0,$
(III) $v^{2} = \sum_{i=1}^{n} a_{i} u_{i}^{2}, \quad a_{1} \cdots a_{n} \neq 0.$

4. Proper quadric hypersurfaces of kind (I)

We consider the following parametrization:

$$x = (u_1, \dots, u_n, v), \quad v = \frac{1}{2} \sum_{i=1}^n a_i u_i^2, \quad a_1 \dots a_n \neq 0.$$
 (4.1)

In this case, we have

$$g_{ij} = \delta_{ij} + a_i a_j u_i u_j, \quad g^{ij} = \delta_{ij} - g^{-1} a_i a_j u_i u_j,$$
 (4.2)

$$g = \det(g_{ij}) = 1 + \sum_{i} a_i^2 u_i^2, \tag{4.3}$$

$$\Delta = -g^{-2} \sum_{i} a_i^3 u_i^2 \sum_{j} a_j u_j \partial_j + g^{-1} \sum_{i} a_i \sum_{j} a_j u_j \partial_j - \sum_{i,j} g^{ij} \partial_i \partial_j$$

$$\tag{4.4}$$

and we have

$$G = (G_1, \dots, G_n, G_{n+1}) = g^{-\frac{1}{2}}(-a_1u_1, \dots, -a_nu_n, 1). \tag{4.5}$$

LEMMA 2. For each $k = 1, \dots, n$ we have

$$\Delta G_k$$

$$= -a_k u_k g^{-\frac{7}{2}} \left\{ 4 \left(\sum_i a_i^3 u_i^2 \right)^2 - 2g \sum_i a_i^4 u_i^2 - g \left(\sum_i a_i \right) \sum_j a_j^3 u_j^2 \right.$$

$$\left. - 3g a_k \sum_i a_i^3 u_i^2 + g^2 \sum_i a_i^2 + g^2 a_k \sum_i a_i \right\}.$$

$$(4.6)$$

And we have

$$\Delta G_{n+1} = g^{-\frac{7}{2}} \left\{ 4 \left(\sum_{i} a_{i}^{3} u_{i}^{2} \right)^{2} - g \sum_{i} a_{i} \sum_{j} a_{j}^{3} u_{j}^{2} - 2g \sum_{i} a_{i}^{4} u_{i}^{2} + g^{2} \sum_{i} a_{i}^{2} \right\}.$$

$$(4.7)$$

Proof. Note that the Gauss map $G = (G_1, \dots, G_n, G_{n+1})$ is given by $G_k = -a_k u_k g^{-\frac{1}{2}}$ for $1 \le k \le n$ and $G_{n+1} = g^{-\frac{1}{2}}$. From (4.2) and

(4.4) we may derive the above formula (4.6) and (4.7) by a straightforward computation.

Now suppose that M satisfies the condition (1.4) with $A=(a_{ij})$, $1 \leq i,j \leq n+1$. Then for each $k=1,\dots,n$ we have from (4.6) and (4.7)

$$g^{3}\left\{\sum_{j}a_{kj}a_{j}u_{j}-a_{k}_{n+1}\right\}=a_{k}u_{k}\{*\}$$
(4.8)

$$g^{3}\left\{-\sum_{j}a_{n+1j}a_{j}u_{j}+a_{n+1n+1}\right\}=\{**\}$$
(4.9)

where $\{*\}$ and $\{**\}$ are the parentheses in the right side of (5.6) and (5.7), respectively. Note that g is a polynomial in u_1, \dots, u_n of degree 2 and note that the left side of (4.8) is a polynomial in u_1, \dots, u_n of possible degree 0, 6 or 7 and the right side of (4.8) is a polynomial in u_1, \dots, u_n of degree less than or equal to 5. Hence we have

$$a_{k\ell} = 0, \quad 1 \le k \le n, \quad 1 \le \ell \le n+1.$$
 (4.10)

Similarly from (4.9) we have

$$a_{n+1} \ell = 0, \quad 1 \le \ell \le n+1.$$
 (4.11)

Thus (1.4), (4.10) and (4.11) show that M satisfies the condition $\Delta G = 0$. Hence by Lemma 1, we see that M is a hyperplane, which is not a quadric hypersurface of kind (I).

5. Proper quadric hypersurfaces of kind (II)

For each hypersurfaces we consider a parametrization

$$x = (u_1, \dots, u_n, v), \quad v^2 = a_1 u_1^2 + \dots + a_n u_n^2 + c, \quad a_1 \dots a_n c \neq 0.$$
(5.1)

In this case, we have

$$g_{ij} = \delta_{ij} + W^{-1} a_i a_j u_i u_j, \quad g^{ij} = \delta_{ij} - \tilde{g}^{-1} a_i a_j u_i u_j,$$
 (5.2)

$$g = 1 + W^{-1} \sum_{i} a_i^2 u_i^2, \quad g^{-1} = 1 - \tilde{g}^{-1} \sum_{i} a_i^2 u_i^2,$$
 (5.3)

where

$$W = v^2 = \sum_{i} a_i u_i^2, \quad \tilde{g} = gW = c + \sum_{i} a_i (1 + a_i) u_i^2. \tag{5.4}$$

And the Gauss map G of M is given by

$$G = (G_1, \dots, G_n, G_{n+1}) = \tilde{g}^{-\frac{1}{2}}(-a_1u_1, \dots, -a_nu_n, v).$$
 (5.5)

As in Section 4, by a straightforward computation, we have the following:

LEMMA 3. For each $k = 1, \dots, n$ we have

$$\Delta G_{k}$$

$$= a_{k}u_{k}\tilde{g}^{-\frac{7}{2}}W^{-1} \Big\{ 2\tilde{g}WB - WCD - \tilde{g}CE + CE^{2} - a_{k}^{2}\tilde{g}^{2}W \\
+ a_{k}\tilde{g}WD + a_{k}\tilde{g}^{2}E - a_{k}\tilde{g}E^{2} + \tilde{g}W \sum_{j} \alpha_{j}^{2}a_{j}^{2}(1 + a_{j})u_{j}^{2} \\
- a_{k}\tilde{g}^{2}W\alpha_{k} + 3\tilde{g}WF - \tilde{g}^{2}W \sum_{i} a_{i}(1 + a_{i}) \\
- \tilde{g}^{2}Wa_{k}(1 + a_{k}) - 3WC^{2} + 2a_{k}\tilde{g}WC \Big\}.$$
(5.6)

And we have

$$\Delta G_{n+1}$$

$$= \tilde{g}^{-\frac{7}{2}}W^{-\frac{3}{2}} \left\{ -2\tilde{g}W^{2}B + W^{2}CD - \tilde{g}WCE - WCE^{2} + 2\tilde{g}^{2}WD - \tilde{g}WED - 2\tilde{g}^{2}E^{2} + \tilde{g}E^{3} - \tilde{g}W^{2}\sum_{j}\alpha_{i}a_{i}^{2}(1+a_{i})u_{i}^{2} + \tilde{g}^{2}W\sum_{i}\alpha_{i}a_{i}^{2}u_{i}^{2} + 3W^{2}C^{2} - 3\tilde{g}W^{2}F + \tilde{g}^{2}W^{2}\sum_{i}a_{i}(1+a_{i}) + 2\tilde{g}^{2}WC + \tilde{g}^{3}E - \tilde{g}^{3}W\sum_{i}a_{i} \right\},$$

$$(5.7)$$

where

$$B = \sum_{i} a_{i}^{3} (1 + a_{i}) u_{i}^{2}, \quad C = \sum_{i} a_{i}^{2} (1 + a_{i}) u_{i}^{2}, \quad D = \sum_{i} a_{i}^{3} u_{i}^{2}, (5.8)$$

$$E = \sum_{i} a_{i}^{2} u_{i}^{2}, \qquad F = \sum_{i} a_{i}^{2} (1 + a_{i}) u_{i}^{2}, \quad \alpha_{i} = \sum_{j \neq i} a_{j}.$$

Now suppose that M satisfies the condition (1.4) with $A = (a_{ij})$, $1 \le i, j \le n+1$. Then we obtain from (5.6) and (5.7)

$$W\tilde{g}^{3}\left\{a_{k\,n+1}W^{\frac{1}{2}} - \sum_{\ell=1}^{n} a_{k\ell}a_{\ell}u_{\ell}\right\} = a_{k}u_{k}\{*\}, \ k = 1, \cdots, n, \quad (5.9)$$

$$\tilde{g}^{3} \left\{ W^{\frac{3}{2}} \left(-\sum_{\ell=1}^{n} a_{n+1} \ell a_{\ell} u_{\ell} \right) + a_{n+1} {}_{n+1} W^{2} \right\} = \{ ** \}, \tag{5.10}$$

where $\{*\}$ and $\{**\}$ are the parentheses in the right side of (5.6) and (5.7), respectively.

From (5.9) we see that $a_{k\,n+1}=0$ for all $k=1,\dots,n$ and that if $a_{k\ell}\neq 0$ for some $1\leq k,\,\ell\leq n$ then \tilde{g} must be a constant, that is, $a_i=-1$ for all $i=1,\dots,n$. And from (5.10) we see that $a_{n+1\ell}=0$ for all $\ell=1,\dots,n$ and that if $a_{n+1n+1}\neq 0$ then \tilde{g} must be a constant, that is, $a_i=-1$ for all $i=1,\dots,n$.

Hence if A is not a zero matrix, then M is a sphere. And if A = 0, then by Lemma 1, M is a hyperplane, which is not a quadric hypersurface of kind (II).

6. Proper quadric hypersurfaces of kind (III)

For such hypersurfaces we consider a parametrization

$$x = (u_1, \dots, u_n, v), v^2 = a_1 u_1^2 + \dots + a_n u_n^2, a_1 \dots a_n \neq 0.$$
 (6.1)

In Section 5 with c=0, the nondegeneracy of M implies that $\tilde{g}=\sum_{i=1}^{n}a_{i}(1+a_{i})u_{i}^{2}$ is a polynomial of degree 2, or equivalently, $a_{i}\neq -1$ for some $i=1,\cdots,n$. And the formulae (5.9) and (5.10) are also valid with c=0.

We now suppose that M satisfies the condition (1.4). As in Section 5, we see that if $A \neq 0$, then we have $a_i = -1$, $i = 1, \dots, n$, which is a contradiction. And we see that if A = 0, then by Lemma 1, M is a hyperplane, which is not a quadric hypersurface of kind (III).

7. Proof of theorem

Suppose that a quadric hypersurface M satisfies the condition (1.4) and that M is not a hyperplane. If M is a quadric cylindrical hypersurface in E^{n+1} , then M is the product of a proper quadric hypersurface N^p in E^{p+1} and a linear subspace E^{n-p} . Since N as a satisfies the condition (1.4) with a suitable square matrix, N is a hypersphere $S^p(r)$ in E^{p+1} . This completes the proof of the theorem.

References

- 1. C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), 355-359.
- 2. B. Y. Chen, F. Dillen and H. Z. Song, Quadric hypersurfaces of finite type, Colloquium Mathematicum LXIII (1992), 145-152.
- F. Dillen, J. Pas and L. Verstraelen, On the Gauss map of surfaces of revolution, Bulletin of the Institute of Mathematics Academia Sinica 18 (1990), 239-246.
- 4. D. S. Kim, On the Gauss map of hypersurfaces in \mathbb{R}^{n+1} and in \mathbb{R}^{n+1}_1 , Comm, Korean Math. Soc. 8 (1993), 429-436.
- E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970).

Department of Mathematics College of Natural Sciences Chonnam National University Kwangju, 500-757, Korea