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CAUCHY PROBLEM FOR THE EULER
EQUATIONS OF A NONHOMOGENEOUS
IDEAL INCOMPRESSIBLE FLUID

SHIGEHARU ITOH

1. Introduction

Let us consider the Cauchy problem

pe+1v-Vp=0
p[vt +{v- V)U] +Vp =pf
dive =0 (1.1)

ple=o = po(2)

vli=0 = vo(a)

in Qr = R® x [0, 7], where f(x,t),po(z) and vo(z) are given, while the
density p(z,t), the velocity vector v(z,t) = {vl(x,t),vz(a:,t),v3(m,t))
and the pressure p(x,t) are unknowns. The equations (1.1); — (1.1);
describe the motion of a nonhomogeneous ideal incompressible fluid.

The aim of the present paper is to establish the unique solvability,
local in time, of the problem (1.1). For the problem in a bounded
domain with the boundary condition v -n = 1), where n is the unit out
normal to the boundary, that fact has been proved under appropriate
assumptions by many authors, for instance, [1], [2], [3], [7], [8]. On
the other hand, as far as we know, there s no investigation in an
unbounded domain.

Our theorem is the following.

THEOREM. Assume that

po(x) — p &€ H¥R®) for some positive constant p, (1.2)
inf pg(x) =m > 0 and sup po(z) = M < oo, (1.3)
vo(z) € H*(R*) and div vg =0 (1.4)
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and

f(z,t) € L'(0,T: Ha(Rs)) and div f € LY(Qr). (1.5)

Then there exists T* € (0,T) such that the problem (1.1) has a unique
solution (p, v,p) which satisfies

(p— p,v,Vp) €eL>=(0,T* : H*(R®)) (1.6)
x L=(0,T* : H¥(R®)) x L'(0,T* : H*(R?)).

Moreover, if f(z,t) € C°(0,T : H*(R®)) and div f € c°(0,T :
L'(R?)), then the solution (p,v,p) is classical.

In section 2, we solve three linear problems in sequence and get the
estimates. In section 3, we first show the existence of a fixed point
of some map, and then it is proved that this becomes the solution of

(1.1).
2. Preliminaries

LEMMA 2.1. For a given v € L>(0,T : H¥R?)) with divv =0,
the problem

<Vp=10
{ prtveVp (2.1)
pli=o = po(z)
has a solution satisfying
m< p< M. (2.2)
Moreover, if we put p = p — p, then
t
15611 < ollsexp(er [ u()lsds). (2.3)

where po = po — p,c1 is a positive constant depending only on imbed-
ding theorems and || - [}k = || - || m*(m3)-

Proof. It is well-known that, using the classical method of charac-
teristics, the solution of (2.1} is given by

p(,1) = po(y(r,2,t)]r=0), (2.4)
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where y(7, z,t) is the solution of the Cauchy problem

d
{ E;‘é = v(y,T)

ylr:t = .

(2.5)

Thus the first assertion has shown. Next we establish the estimate for
p. Tt follows from (1.1); and (1.1)4 that j satisfies the equation

{,5,+v-v,3=0

Plimo = po(z). (2:6)

Applying the operator D*(= (9/8z,)* (0/022)**(8/0z3)**) to (2.6)1,
multiplying the result by D, integrating over R® and adding in o with
la| (= a1 + a2 + a3) < 3, then we have

d 2 ~s :
S 1215 < elle@®lsll a5 (2.7)

Hence, by Gronwall’s inequality, it is easy to see that (2.3) holds.
Q.E.D.
LEMMA 2.2. Let p and v be in Lemma 2.1. Then the problem
div (p™'Vp) = = viwl + divf=F (2.8)
i

has a solution satisfying

IVp(®)lls (2.9)

s(}j 1) oI+ DF@lls + I div F(1)]21cx0),

where ¢y is a positive constant depending only on m, M, imbedding
theorems and interpolation inequalities.

Proof. Thanks to (2.2), the solvability easily follows from the general
theory of the elliptic partial differential equations of second order (cf.
[5]), and so we can restrict ourselves to get the estimate (2.9).
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Multiplying (2.8) by p and integrating over R*®, then we obtain
M=YVp|I§ <UF || ors @y Il oo (2.10)
<ca||Fllersray | Vpllo
<esl Il tao 1F1" 1921l

<ea[(2/3)IF ||z sy + (1/3) Fllo] 1 VPllo-
Hence we get

IVpllo < s (I1F N 2t mey + £ 7o) (2.11)

In order to accomplish our purpose, we use the following inequality
(cf. [7]):

lull2 < (3/2)Y2 (| Aullo + |lllo) for any u € H*(R?). (2.12)

Noting that (2.8) can be written in the form Ap = pF' + p~1Vp - Vp,

we get that for o with |a] =2
IDpll2 < (3/2)'*(IID*(pF + p~ V- Vp)llo + I D“Pllo).  (2.13)

By the direct calculation, we obtain

the right hand of (2.13)

3
< o[ 4 19p1)1Fls + (3~ IVpIE) [901e] - (219
3=0

Now, from the interpolation inequality and Young’s inequality, we have
AllVpll: < ANVRI " IVPl" (215)
=A4{9pllo + AIV?pl; 1Vl
<e||V?pllz + (A + 72 A% Vp[lo.
Therefore, we find that

9
19pls < e (SONVRIE) (IF ey + IFll2). (2.16)
j=0

On the other hand, it is easy to verify that
IF | rqrey + 1F N2 < es(|l div fllzis) + | div fllz +Voll3). (2.17)
Consequently, the desired estimate is established. Q.E.D.

Moreover, similar to the above lemmas, we have
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LEMMA 2.3. Let p and v be in Lemma 2.1 and p in Lemma 2.2.
Then the problem

we+(v-Viw=—p~Vp +
{ ¢+ ( Ju P p+ f (2.18)
wli=g = vo(x)
has a solution satisfying
[leo(®)]l3 (2.19)

<[l + [ istaas + [ (3o m= 041506 1) 1pte) s
0 M5

t
exp (61/ ”U(S)H3(13>.
0

3. Proof of Theoren

Let P be the orthogonal projector in {[2(R3)}3 onto H = the
closure of J = {u € {C&(R*)}® : divu = 0} in {Lz(Rs)}3_ Then it
is immediately follows from lemmas in section 2 that if ||]|s < 4 and
v(t)|ls = [[v(t)]l3.00,7 < K, then

SUPg<i<T

1Pt (31)
<le(®)lls < [llvolls + Ifll21 0,7 m3ms)) + h(Ae™FT)
(A’?T + H.f”L‘(U,T:Hﬂ(ma)) + H div f”Ll(QT))] GC‘AT,

where h(r) = ¢y (Z?:n Tj> (Zj‘:o m_(-"'””rj/i.
Therefore if we choose
I 2 |fvolls + | fll L1 o7 59w (3:2)
+h2A) (1o, rsmamayy + 1| div fllLi@r))
and define § = {v € L*°(0,7T; H}R®)) : Pv = v [Jo(t)]|3,00,7 < K},

then, from (3.1), the map F : v — Puw satisfies F(S) C S for sufficiently
small T', for example 7' < T* = min{[4Kh(24)]71, (¢; ')~ log2}. Let
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{v;} € S. Then we can verify that {Fv;} is the Cauchy sequence in
L>°(0,T; H3(R?®)) with few difficulties. Hence, as F becomes a compact
map, there exists a fixed point v = Pw from Schauder’s theorem. We
have thus solved the problem

5+ Pw-Vj=0

wy + (Pw-V)w=—p 'Vp+f

div [p™'Vp + (Pw - V)Pw — fl=0 (3.3)
Pli=o = po(z)

Wli=0 = vo(T)

This is equivalent to (1.1) if Pw = w.
Let us show that Qu = (I — P)w = 0. Apply the projection @ to
(3.3)2, then, due to (3.3)3, we have

(Qu)¢ + Q[(Pw - V)Qu] = 0. (3.4)

Multiplying (3.4) by Qw and integrating over R?, we get

—Ei_ wQI w - wt - Yw dr =
dt/mJQ "d +/NQ[(P V)Qu] - Quw dz =0.  (3.5)

Furthermore, from the definition of P, we obtain

/;8 Q[(Pw  V)Qu] - Quw dz (3.6)

— (Pw . V)Qw . Qw dzr — / P[(Pw ’ V)Qw] ) Qw de
RS R

::-1-/ Pw - V|Qw|*dz = 0.
2 Jgs

Hence we find that Qw = 0, since Qw|i=¢ = Qvo = 0.
Uniqueness is proved in [4].
This completes the proof.
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