Bull. Korean Math. Soc. 31 (1994), No. 1, pp. 125-132

CO-CLOSED SURFACES OF 1-TYPE GAUSS MAP

Young Ho KM

1. Introduction

Submanifolds of finite type were introduced by B.-Y. Chen ([2])
about ten years ago. Many works have been done in characterizing
or classifying submanifolds in Euclidean space with this notion. On the
other hand, the Gauss map is one of the most useful tools to study
submanifolds of Euclidean space. In a work of finite type theory, B.-Y.
Chen and P. Piccini ({3]) studied compact submanifolds with finite type
Gauss map. In general, non-compact manifolds are usually difficult to
be handled. In this article we are going to deal with a part of the fol-
lowing most general question: What kind of surfaces in 3-dimensional
Euclidean space have 1-type Gauss map?

A submanifold M of Euclidean m-space E™ is said to be of finite
type ([2]) if each component of its position vector X can be represented
as a finite sum of eigenfunctions of Laplace-Beltrami operator A of M
with respect to the induced metric from that of E™ that is,

X = Xo+ Xy +- + Xy

where X, is a constant map, X, - , X} are ron-constant maps satis-
fying AX,; = [;X;,l; being constants, : = 1,2.--- | k. In particular, if
I1,- -+ 1} are mutually different, we say that M is of k-type. Similarly,
a smooth map ¢ of a Riemannian manifold M into E™ is said to be
of finite type if ¢ is a finite sum of E™-valued eigenfunctions of A(¢ is
not necessarily isometric).
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2. Co-closed surfaces

Let M be a surface in E3 and €1, ep principal directions of M. We
denote by w!, w? their dual 1-forms. We then have the connection forms
w] of M defined by Vee; =3, w;‘(ei)ek where V is the Levi-Civita
connection induced from that of E*. We now give the definition of
co-closed surface.

DEFINITION. A surface of Euclidean 3-space is called co-closed if the
connection form w? is co-closed, that is, trace (Vw?) = 0.

REMARK. (Geometric meaning of co-closed surfaces). Let M be a
co-closed surface and 6 the co-differential operator of M. Then Sw? =0,
where w{ is the connection form in the definition above. Let w? = fwl+
gw?, where f and g are smooth functions. Then bwi=—xdxw?=0
if and only if e; f + €59 = 0, where * denotes the Hodge-star operator.
Since *w] = fw? — gw!, d*w? = 0 implies that gw! — fw? = du locally
for some function wu, that is, w? = —(eou)w! + (e3u)w?. The structure
equation provides that

—Kuw' Aw? = dw? = {ere1u + egequ + (equ)? + (eu)*}o! A w?

= —(Au)w! A W?,

which implies
K = Au,

where K is the Gauss curvature of M , that is, the Gauss curvature can
be locally expressed as Laplacian of some function.

EXAMPLE 1. Every flat surface is co-closed.
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EXAMPLE 2.. Surfaces of revolution are co-closed. In fact, let M
be a surface of revolution in E® parametrized (locally) by z(s,t) =

(f(s)cost, f(s)sint, g(s)) satisfying (f'(s))? + (¢'(s))? = 1 and f(s) >
0. Then the metric tensor is given by ((1) ]92> and thus the Christoffel

symbols are given by '}, = —ff' . T%, = % anc others are zero. We can

choose ¢; = %,62 = %E which are principal directions. In this case

= ‘%’oﬂ. We can easily check that (Ve w?)(e1) + (Ve,w?)(e2) = 0.

3. Co-closed surfaces in E* with 1-type Gauss map

Let M be a surface of E® with 1-type Gauss map and G the Gauss
map of M into G(2,3) which is the Grassmann manifold of the oriented
2-planes in E3. G(2,3) can be identified with the decomposable 2-
vectors of norm 1 in 3-dimensional Euclidean space A2E® = E3. Let
e; and e; be an oriented orthonormal frame cn M. Then, G : M —
G(2,3) can be given by G(p) = (e; A e2)(p),p & M. Likewise Theorem
2.1 and Theorem 2.2 in [3] there exist a corstant ¢ and a constant
vector ¢ such that

(1) AG —a(G-¢)=0

where A is the Laplace operator on M. We now choose ¢, and e, as
principal directions of M and let z and y be the corresponding principal
curvatures of the shape operator A of M. Then (1) implies

(2) (ez+eqy)er Aez+ (12 + egy)es Aeg — (:c2 +y* —a)e; Aey = ac,
where e3 is the unit normal vector ﬁeld to M. Let w!,w? w3 be the

dual 1-forms to ey, €5 and e; and u)A the connection forms associated
with w!,w?, w3 satisfying wZ + w4 = 0 and

(3) €; = Z\U 6Ic + h]teii Ve.e_; ZW i )€k,
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(4) @eieg = Zw!f(e,—)ek,
k

(5) fc=wf(€1):hu,y=w§(62)r: hoa, hia = hyy =0,

where V and V are the Levi-Civita connections of E3 and M respec-
tively and A the second fundamental form of M. The indices A, B run
over the range {1,2,3} and ¢, 7,k over {1,2}. Let X be a vector field
tangent to M. Taking the covariant differentiation of (2.2), we have

{X(e22) + X(eay) + (€17 + €1 y)w?(X) — (|R])* — a)w3(X)}eq A eg
+ {(e22 + e2y)*(X) — X (e, + ery) + (|[h]]* — a)wd(X)}ez A ey
+ {(e27 + e2y)wi(X) + (€12 4 e1y)wi(X) — X||IR|*Yer A ey = 0.

If we take X as e;, then we obtain

(6) ereg(x +y) + e (z + y)wi(e) =0,
(7) e2(z + y)wile)) — eres(z + y)+z(]|h]|* = ¢) =0,
(8) rer(z +y) + ei][A]* = 0.

Similarly, taking X as e,, we get

9 eele+y)+ele + e -yl —a) =0,
(10) €2(1E+y)wf(62)~8281(1‘+y)=0,
(11) yea(z +y) + e2||R]|* = 0.

From (6)-(11), we have the following
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PROPOSITION 3.1. Let M be a surface of 3-dimensional Euclidean
space with 1-type Gauss map. If the mean curvature is constant, then
M is a part of plane or a part of circular cylinder or a part of sphere.

Proof. We see that ||h|* is constant from (8) and (11). The propo-
sition immediately follows from the proposition in pp. 118, [1]. |||

From now on, we assume that M is connected co-closed. (8) and
(11) imply that

(12) 3zeix + (x4 2y)eyy =0,

(13) (22 + y)eza + Byesy = 0

Using the structure equation: dw} = Z]‘ wf A w‘]3-., we obtain

(14) e2z = (y — )wy(er),

(15) e1y = (r — y)wi(e2),

since wi = zw',wj = yw? and dw' = 3 W AWl
Consider a subset My = {p € M|z(p) # 0,4(p) # 0,z(p) # y(p)}.
Suppose My # 0. On Mg, (12)-(15) imply

(16) ere = X2 ZY) 20
3z
(17) €oy = (y+2x)(x—y)w%(el),

3y

Substituting (14) and (17) into (6) and making use of (15) and (16),

we have after a long computation

322 + 2zy + Ty?
= yr iy wyle1)wi(e2),

(18) (Verwd)er) T
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where (V¢,w;)(e1) = e1(w](er)) ~ wi(ez)w?(eq). Putting (14) and (17)
into (9), we obtain

(19)
1 _ 3y* 22y, TTYoo 2
(Vewpler) = —5s(a =" —y") + “—L(ui(e)
222 + Jzy + Ty?
(i)

where (V.,w;)(e1) = ea(wj(e1)) + (wi(e2))?. Similarly, (7) and (14)-
(17) produce

(20)
(Vewd)er) = —55 —(a— 2 = y?) = TVl (ey))?
i 2(z — y)? y o °
Tz? + 3zy + 2y?
+ 3z2

where (V. ,wi)(e2) = e1(w?(eq)) — (wier))? . Also, (10) together with
(14)-(17) yields

(wilea))?,

7z? + 22y + 3y? .
31_y WQI(Q] )w]’(e2)a

(21) (Ve,wi)(ez) =

where (Ve,w?)(e2) = e2(wi(ez)) — wi(er)wi(es).
Since M is co-closed, (18) and (21) implies

- —gz);x . y)“’%(ﬁl)wlz(ez) = 0.

It follows that
(22) (z + y)wy(er)wi(er) = 0 on M,.
Let My = {p € My|w;(e1)wi(e2) # 0}. Suppose that M; is not empty.
Then z +y = 0 on M. (7) and (9) imply that ||A||? = 22 + y? = «.

Differentiating this covariantly with respect to e; and making use of
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(15) and (16), we obtain —(I;y)zw;"(eﬂ = (), which is a contradiction.
Thus, M, is empty and wi(e;)w?(e;) = 0 on My. Consider the set
M; = {p € My|w?(ez) # 0}. Suppose M, # §. Then wi(er) = 0 on
M,. Thus, ez = e3y = 0 on the open set M,. On M,, (7) and (8)
become

(23) erer(z +y) = a(z* + y* - a),

(24) zey(z +y)+ei(z® +y?) = 0.

Since 0 = ex(wj(e1)) = (Ve,wi)(er) — (wh(ez))?, it follows that

(25) (w%(eg))2 = %;(:cz +y% - a) on M,.

Differentiating (24) covariantly with respect o ¢; and making use of
(9) with ez = eay = 0, (21) and (25), we get

(a — 2% — y*)(22? — 4y + 3azy — 323y + 2y? — 3zy®) = 0,

or, since y # 0 and z? + y? — a # 0,
(z +2y){2(z — y)* + 3zy(a — 22 — y*)} = 0 on M,.

Let M3 = {p € Ma|(z + 2y)(p) # 0}. Suppose Mz # §. Then, 2(z —
y)? + 3zy(a — 22 — y2) = 0 on M;, which and (25) imply

(wy(e2))? =1 on Ms.

It follows that (V. ,w?)(e2) = 0 on M3. On tae other hand, (19) and
(25) imply
(Veswp)(er) = 1.

Since —K = dwi(e1,e3) = (Vo,w?)(e2) — (Ve,wd)(er) where K is the
Gauss curvature of M, K = zy = —1. Differentiating this covariantly
with respect to e; and using (15) and (16), we get 322 — 2y — 2y2 = 0
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on Ms. It gives y = -%x on Mj;. Since ry = —1,z and y are constant
on M3, which contradicts eyz # 0,e,y # 0 on Mj. Therefore, M = {),
that is, 2 + 2y = 0 on M,. Differentiating this with respect to e; and
using (15) and (16), we get z = y which is a contradiction.

Hence M, must be empty, that is, w?(es) = 0 on My. By developing
the same argument before, we see that w?(e;) = 0 on My. Thus, z
and y are constant on each component of My. By proposition 3.1, a
component of Mj is a part of plane, a circular cylinder or a sphere.
However, it is impossible on My. Therefore, My = ) and M can be
expressed as Ny U N, U N3 where N; = {p € Mlz{p) = 0}, Ny =
{p € Mly(p) = 0} and Ny = {p € M|z(p) = y(p) # 0}. Suppose
that Int(N;) # 0, where Int(N;) means the interior of N;. (12) and
(13) imply that y is constant on each component of Int(N;). On a
component C; of Int(N;), the mean curvature and the length of second
fundamental form are constant on C;> Hence, C; is coritained in a plane
or a circular cylinder by the proposition, pp. 118 in [1]. By continuity,
() is also closed and so C; is M. We have the same situatiation as
the previous case if Int(N;) # 0. Suppose Int(N;) 7 0. Let C3 be a
component of Ny. We can easily show that r is constant on C3. Thus
C3 is contained in a sphere. By continuity, Cj is closed. Consequently,
Cg = A/I

Thus, we have

THEOREM 3.2. Planes, spheres and circular cylinders are the only
co-closed connected surfaces in E® with 1-type Gauss map.
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