ON RELATIVE CHINESE REMAINDER THEOREM

YOUNG SOO PARK AND SEOG-HOON RIM

Previously T. Porter [3] has given a relative Chinese Remainder Theorem under the hypothesis that given ring R has at least one τ -closed maximal ideal (by his notation $\operatorname{Max}_{\tau}(R) \neq \phi$). In this short paper we drop his overall hypothesis that $\operatorname{Max}_{\tau}(R) \neq \phi$ and give the proof and some related results with this Theorem.

In this paper R will always denote a commutative ring with identity element and all modules will be unitary left R-modules unless otherwise specified.

Let τ be a given hereditarty torsion theory for left R-module category R-Mod. The class of all τ -torsion left R-modules, dented by $\mathcal J$ is closed under homomorphic images, submodules, direct sums and extensions. And the class of all τ -torsionfree left R-modules, denoted by $\mathcal F$, is closed under taking submodules, injective hulls, direct products, and isomorphic copies([2], Proposition 1.7 and 1.10).

Notation and terminology concerning (hereditaty) torsion theories on R-Mod will follow [2]. In particular, if τ is a torsion theory on R-Mod, then a left R-submodule N of M is said to be τ -closed (τ -dense, resp.) submodule of M if and only if M/N is τ -torsionfree (τ -torsion, resp.). A module M is called τ -cocritical if $M \in \mathcal{F}$ and $M/N \in \mathcal{J}$ for each nonzero submodule N of M. A left ideal L of R is τ -critical if R/L is τ -cocritical.

Follow Porter [3], we denote $\operatorname{Max}_{\tau}(M)$ be the set of all maximal τ -closed submodules of M and we say ideals I, J are τ -comaximal if I+J is τ -dense in R. Let I_1, I_2, \dots, I_n be ideals of R, they are pairwise τ -comaximal in case $I_i + I_j$ is τ -dense in R whenever $i \neq j$. For example, if each I_i is a maximal τ -closed ideal of R or each I_i is a τ -critical ideal, then these ideals are pairwise τ -comaximal.

Received November 9, 1992. Revised February 17, 1993.

This work was partially supported by the Basic Science Research Institute Programs, Ministry of Education, 1992, and KOSEF-TGRC.

The following Lemma 1 and Theorem 2 can be found in [3], we give the proof of Lemma 1 for the completeness of this paper.

LEMMA 1. (Porter, [3]) Let M be a left R-module, and I, J be τ -comaximal ideals in R, then $(IM \cap JM)/IJM$ is τ -torsion.

Proof. If $x \in IM \cap JM$, $(I+J)x \in IJM$. Since I+J is τ -dense in R, we have that ann(x+IJM) is τ -dense in R. As x was arbitrary we find $ann((IM \cap JM)/(IJ)M) \supseteq I+J$. Thus we have the desired result.

The author can find the following relative Chinese RemainderTheorem in [3]. The version of Porter gave us an impression to study it.

THEOREM 2 (PORTER). Let R be a commutative ring and τ be a torsion theoryon R-Mod. Suppose that $Max_{\tau}(R) \neq \phi$ and let $\{I_i|i=1,2,\cdots,n\}$ be a finite family of pairwise τ -comaximal idelas in R. For any left R-module M, we have

- (1) $(\prod_{i=1}^n I_i)M \longrightarrow (\bigcap_{i=1}^n I_i)M$ is τ -surjective and
- (2) $M \longrightarrow \bigoplus_{i=1}^n M/I_iM$ is τ -surjective with kernel $\bigcap_{i=1}^n I_iM$

The condition $\operatorname{Max}_{\tau}(R) \neq \phi$ was used by the fact that every member in $\operatorname{Max}_{\tau}(R)$ is prime ideal in R, which is Albu and Năstăsescu's work [1].

In order to drop the condition $\operatorname{Max}_{\tau}(R) \neq \phi$, we need a lemma, which is useful in the proof of main Theorem.

LEMMA 3. Let R be a commutative ring and $\{I_i|i=1,2,\cdots,n\}$ be pairwise τ -comaximal idels of R. Let M be any left R-module, then we have the following:

- (1) $I_i + \bigcap_{i \neq i} I_i$ is τ -dense in R for each $i = 1, 2, \dots, n$
- (2) $I_iM + (\bigcap_{i \neq i} I_i)M$ is τ -dense in M for each $i = 1, 2, \dots, n$.

Proof. (1) We prove for the case $I_1 + D_1$ is τ -dense in R, where $D_1 = \bigcap_{j \neq 1} I_j$. For the case n = 1 is clear. Assume that $I_1 + \bigcap_{j=2}^k I_j$ is τ -dense in R.

Note that $I_1 + \bigcap_{j=2}^{k+1} I_j$ contains $(I_1 + \bigcap_{j=2}^k I_j)(I_1 + I_{k+1})$, which is τ -dense in R, thus $I_1 + \bigcap_{j=2}^{k+1}$ is τ -dense in R i.e., the induction step is proved. Consequently $I_1 + \bigcap_{j=2}^n I_j = I_1 + D_1$ is τ -dense in R. A similar

argument shows that for each $i=1,2,\cdots,n,\ I_i+D_i$ is τ -dense in R, where $D_i=I_1\cap I_2\cap\cdots I_{i-1}\cap I_{i+1}\cap\cdots\cap I_n$.

(2) For each $i=1,2,\cdots,n$, note that $I_iM+D_iM=(I_i+D_i)M$. $M/(I_i+D_i)M$ can be a left $R/(I_i+D_i)$ -module by the action $(r+I_i+D_i)(m+(I_i+D_i)M)=rm+(I_i+D_i)M$

We regard $M/(I_i + D_i)M$ as a homomorphic image of free $R/(I_i + D_i)$ -module $\bigoplus_{\alpha \in M} (R/(I_i + D_i))_{\alpha}$, by (1) $R/(I_i + D_i)$ is τ -torsion and τ -torsion class is closed under direct sum, we have that $I_iM + D_iM$ is τ -dense in M.

THEOREM 4.(RELATIVE CHINESE REMAINDER THEOREM). Let R be a commutative ring and $\{I_i|i=1,2,\cdots,n\}$ be a finite family of pairwise τ -comaximal ideals in R. For any left R-module M, we have

- (1) $(\prod_{i=1}^n I_i)M \longrightarrow (\bigcap_{i=1}^n I_i)M$ is τ -surjective and
- (2) $M \longrightarrow \bigoplus_{i=1}^{n} M/I_{i}M$ is τ -surjective with kernel $\bigcap_{i=1}^{n} I_{i}M$

Proof. (1) The case n=1 is trivial. Assume the result holds for any left R-module M and all families of pairwise τ -comaximal ideals having fewer than n. Consider $\{I_i|i=1,2,\cdots,n\}$ and we denote by $P_i=\Pi_{j\neq i}I_j$ and $D_i=\cap_{j\neq i}I_j$ We want to show that I_i+P_i is τ -dense in R. By Lemma 3 (1), for each $i=1,2,\cdots,n$, I_i and D_i is τ -comaximal ideals in R. Now apply to Lemma 1, we have that $\frac{I_i+D_i}{I_iD_i}$ is τ -torsion, so its homomorphic image $\frac{I_i+D_i}{I_i+P_i}$ is τ -torsion. Consider the following short exact sequence,

$$0 \longrightarrow \frac{I_i + D_i}{I_i + P_i} \longrightarrow \frac{R}{I_i + P_i} \longrightarrow \frac{R}{I_i + D_i} \longrightarrow 0$$

By the Lemma 3(1), $R/I_i + D_i$ is τ -torsion module. And the τ -torsion class is closed under extension, so we have $R/(I_i + P_i)$ is τ -torsion, thus $I_i + P_i$ is τ -dense in R.

Now we can apply the Lemma 1, and get

$$\left(\prod_{k=1}^n I_k\right) M = I_i P_i M \longrightarrow I_i M \cap P_i M$$
 is an τ -epimorphism.

Now by the induction hypothesis, $I_iM \cap P_iM \longrightarrow I_iM \cap (D_iM)$ is τ -surjection.

Thus $(\prod_{k=1}^n I_k)M \longrightarrow (\bigcap_{k=1}^n I_k)M$ is τ -surjection.

(2) The case n = 1 is clear.

We also assume the result holds for any left R-module M and all families of pairwise τ -comaximal ideals having fewer than n.

Consider the following short exact sequence

$$0 \longrightarrow \frac{M}{(\cap_{j \neq i} I_j M) \cap I_i M} \longrightarrow \frac{M}{D_i M} \oplus \frac{M}{I_i M} \longrightarrow \frac{M}{D_i M + I_i M} \longrightarrow 0$$

By the Lemma 3(2), $M/(D_iM + I_iM)$ is τ -torsion. Thus $M/(D_iM \cap I_iM)$ is τ -dense in $M/D_iM \oplus M/I_iM$. Now apply the induction hypothesis

$$\frac{M}{D_{i}M} \oplus \frac{M}{I_{i}M} \longrightarrow \oplus_{j \neq i} \frac{M}{I_{i}M} \oplus \frac{M}{I_{i}M} \simeq \oplus_{i=1}^{n} \frac{M}{I_{i}M}$$

is τ -surjection. Thus we have the desired result.

We examine R-submodules $\{I_iM|i=1,2,\cdots,n\}$ of M in above lemmas and theorems, and consider the following concept in module theoretic sense.

DEFINITION. Let M be a left R-module, a set of left R-submodules of M $\{N_i|i=1,2,\cdots,n\}$ is called τ -coindependent in M if (i) each N_i is not τ -dense in M and (ii) $N_i+\cap_{j\neq i}N_j$ is τ -dense in M for each $i=1,2,\cdots,n$.

For example, given pairwise τ -commaximal ideals of commutative ring R $\{I_i|i=1,2,\cdots,n\}$, consider left R-submodules $\{I_iM|i=1,2,\cdots,n\}$, then the Lemma 3(2) shows that $\{I_iM|i=1,2,\cdots,n\}$ is a set of τ -coindependent in M.

Properties on τ -coindependent submodules can be found in [4].

In here, we mention only the fact related with Relative Chinese Remainder Theorem.

PROPOSITION 5. Let R be a ring with identity (R may not be commutative) and let $\{N_i|i=1,2,\cdots,n\}$ be a set of τ -coindependent R-submodules of M. Then we have $M \longrightarrow \bigoplus_{i=1}^n \frac{M}{N_i}$ is τ -surjective with $kernel \cap_{i=1}^n N_i$.

On relative chinese remainder theorem

Proof. The case n=1 is clear. We assume for any left R-module M and all families of τ -coindependent submodules having less than n. Consider the following short exact sequence;

$$0 \longrightarrow \frac{M}{(\cap_{i=1}^{n-1} N_i) \cap N_n} \longrightarrow \frac{M}{\cap_{i=1}^{n-1} N_i} \oplus \frac{M}{N_n} \longrightarrow \frac{M}{\cap_{i=1}^{n-1} N_i + N_n} \longrightarrow 0$$

By the τ -coindepency of $\{N_i|i=1,2,\cdots,n\}$, $\bigcap_{i=1}^{n-1}N_i+N_n$ is τ -dense in M. Use the induction hypothesis we have the result.

COROLLARY 6. If $Max_{\tau}(M)$ is finite, then $M/J_{\tau}(M)$ is τ -semisimple τ -artinian, where $J_{\tau}(M)$ is the relative Jacobson radical of M.

Proof. Since $\operatorname{Max}_{\tau}(M)$ is finite, $J_{\tau}(M) = \bigcap_{i=1}^{n} N_{i}$, where N_{i} is τ -critical submodules of M. And the set $\{N_{i}|i=1,2,\cdots,n\}$ forms a τ -coindependent submodules in M, then the relative Chinese Remainder Theorem (Theorem 4) gives an τ -epimorphism $\frac{M}{J_{\tau}(M)} \longrightarrow \bigoplus_{i=1}^{n} \frac{M}{N_{i}}$.

Hence $\frac{M}{J_{\tau}(M)}$ is τ -semisimple and τ -artinian as left R-module.

References

- Albu. T and Năstăsescu. C, Décomposition primaires dans les catégories de Grothendieck commutatives, J. Reine Angew. Math. 280 (1976), 172-196 and 282.
- [2]. Golan J.S., Torsion Theories, Pitman Monographs and surveys in pure and Applied Mathematics 29, Longman Scientific and Technical, Horlow (1986).
- [3]. Porter T., A Relative Jacobson Radical with Applications, Colloquia Mathematica Soc. János Bolyai, 38. Radical Theory, EGER (Hungary) (1982), 445-447.
- [4]. Park Y.S. and Rim S.H., On relative dual Goldie dimensions, preprint (1992).

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA

DEPARTMENT OF MATHEMATICS EDUCATION, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA