SOME BOUNDS FOR ASSIGNMENTS

GWANG YEON LEE

1. Introduction

Let $A = [a_{ij}]$ be an $m \times n$ matrix over any commutative ring, $m \leq n$. The permanent of A, written Per (A) or simply Per A, is defined by

(1.1)
$$\operatorname{Per} A = \sum_{\sigma} a_{1\sigma(1)} \cdots a_{m\sigma(m)}$$

where the summation extends over all one-to-one functions from $\{1, \dots, m\}$ to $\{1, \dots, n\}$. The special case m = n is of particular important. We denote the permanent of a square matrix A by per A instead of Per A.

R. A. Brualdi, D. J. Hartfiel and S. G. Hwang [3] introduced a class of function generalizing the permanent function and which, like the permanent, are combinatorially significant as counting functions.

Let $R = (r_1, \dots, r_m)$ and $S = (s_1, \dots s_n)$ be positive integral vectors satisfying $r_1 + \dots + r_m = s_1 + \dots + s_n$, and let $\mathcal{U}(R, S)$ denote the class of all $m \times n$ matrices $A = [a_{ij}]$ of 0's and 1's such that

(1.2)
$$\sum_{k=1}^{n} a_{ik} = r_i, \quad \sum_{k=1}^{m} a_{kj} = s_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n.$$

Thus R is the row sum vector and S is the column sum vector of every matrix in $\mathcal{U}(R,S)$. We assume thoughout that $\mathcal{U}(R,S) \neq \phi$. We refer to matrices in $\mathcal{U}(R,S)$ as (R,S)-assignments or as assignments when R and S are fixed in the discussion.

Received October 14, 1992. Revised February 8, 1993.

Gwang Yeon Lee

Let $X = [x_{ij}]$ be an $m \times n$ matrix. We define the *support* of $A = [a_{ij}]$ to be the set $supp(A) = \{(i,j) : a_{ij} \neq 0\}$ The (R,S) - assignment function $P_{R,S}(\cdot)$ is now defined by

(1.3)
$$P_{R,S}(X) = \sum_{A \in \mathcal{U}(R,S)} \prod_{(i,j) \in \text{supp}(A)} x_{ij}.$$

In case X is a (0,1)-matrix, then

(1.4)
$$P_{R,S}(X) = |\{A \in \mathcal{U}(R,S) : A \le X\}|,$$

where $A \leq X$ means that no entry of A exceeds the corresponding entry of X. Thus $P_{R,S}(X)$ counts the number of matrices of $\mathcal{U}(R,S)$ which are less than or equal to X.

Now let $\overline{\mathcal{U}(R,S)}$ denote the convex hull of the (R,S)-assignments considered as points in a mn-dimensional real space. Because each assignment has all entries equal to 0 or 1, it follows readily that the assignments are precisely the vertices(extreme points) of $\overline{\mathcal{U}(R,S)}$. Brualdi, Hartfiel and Hwang [3] proved that $\overline{\mathcal{U}(R,S)}$ is a convex polytope.

For integers k, n, $1 \le k \le n$, let $V_{k,n}$ denote the set of all $n \times 1$ (0,1)-matrices whose entries have sum k. For real n-vectors, i.e., real $n \times 1$ matrices \mathbf{x} and \mathbf{y} we say that \mathbf{x} is majorized by \mathbf{y} (or \mathbf{y} majorizes \mathbf{x}), written as $\mathbf{x} \prec \mathbf{y}$ if

(1.5)
$$\max\{\mathbf{v}^T\mathbf{x}: \mathbf{v} \in V_{k,n}\} \le \max\{\mathbf{v}^T\mathbf{y}: \mathbf{v} \in V_{k,n}\}$$

for all $k = 1, \dots, n$ and equality holds in (1.5) when k = n. \mathbf{x} is said to be *submajorized* by \mathbf{y} , written as $\mathbf{x} \prec_w \mathbf{y}$, if (1.5) holds for all $k = 1, \dots, n$. It is well known that if \mathbf{x} is majorized by \mathbf{y} then, for all convex function φ , $(\varphi(x_1), \dots, \varphi(x_n))^T$ is submajorized by $(\varphi(y_1), \dots, \varphi(y_n))^T$.

2. The Bounds for $P_{R,S}(\cdot)$ in $\overline{\mathcal{U}(R,S)}$

LEMMA 2.1 [5]. Let $R = (r_1, \dots r_n)$ be a positive integral n-vectors. Then, for any $A \in \overline{\mathcal{U}(R)}$,

(2.1)
$$per A \leq \prod_{i=1}^{n} (r_i!)^{\frac{1}{r_i}}.$$

Let $R = (r_1, \dots, r_m)$ and $S = (s_1, \dots, s_n)$ be positive integral vectors and let $X = [x_{ij}]$ be an $m \times n$ matrix. Let X_{is_i} be the $m \times s_i$ matrix each of whose columns equals to column i of X, $i = 1, \dots, n$. Let t be $\sum_{i=1}^{m} r_i = \sum_{j=1}^{n} s_j$. Let Y be the $m \times (mn - t)$ matrix given by

$$(2.2) Y = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_m \end{bmatrix},$$

where Y_i , $i = 1, \dots m$, are matrices which *i*th row entries are all 1 otherwise 0. That is,

$$Y_i = \begin{bmatrix} 0 & \cdots & 0 \\ & \vdots & \\ 1 & \cdots & 1 \\ & \vdots & \\ 0 & \cdots & 0 \end{bmatrix}_{m \times (n-\tau_i)}.$$

Finally, let Z be the $mn \times mn$ matrix defined by

(2.3)
$$Z = \begin{bmatrix} X_{1s_1} & & & Y \\ & X_{2s_2} & & 0 & Y \\ & 0 & & \ddots & \vdots \\ & & & X_{ns_n} & Y \end{bmatrix}.$$

LEMMA 2.2 [3]. Let R, S and Z be as given in the preceding statements. Then

(2.4)
$$P_{R,S}(X) = \frac{\operatorname{per} Z}{\prod_{i=1}^{m} (n-r_i)! \prod_{j=1}^{n} s_j!}.$$

Theorem 2.1. Let $u = |\mathcal{U}(R, S)|$. Then, for any $X \in \overline{\mathcal{U}(R, S)}$, (2.5)

$$\left(\frac{1}{u}\right)^{t-1} \le P_{R,S}(X) \le \min \left\{ \frac{(n!)^{m-\frac{t}{n}}}{\prod_{i=1}^{m} (n-r_i)!}, \frac{(m!)^{n-\frac{t}{m}}}{\prod_{j=1}^{n} (m-s_j)!} \right\}.$$

Proof. If $X \in \overline{\mathcal{U}(R,S)}$, then $X = \lambda_1 A_1 + \cdots + \lambda_u A_u$ where $\sum_{i=1}^u \lambda_i = 1, 0 \le \lambda_i \le 1$, and each $A_i \in \mathcal{U}(R,S)$, $i = 1, \dots u$. Thus

$$\begin{split} \mathbf{P}_{R,S}(X) &= \mathbf{P}_{R,S}(\lambda_1 A_1 + \dots + \lambda_u A_u) \\ &= \sum_{A_i \in \mathcal{U}(R,S)} \prod_{(k,l) \in \operatorname{supp}(A_i)} x_{kl} \\ &\geq \lambda_1^t + \lambda_2^t + \dots + \lambda_u^t. \end{split}$$

Let $\varphi(x) = x^t$. Then $\varphi(x)$ is an increasing convex function on [0,1]. Without loss of generality, we may assume $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_u$. Since $(\frac{1}{u}, \cdots, \frac{1}{u}) \prec (\lambda_1, \cdots, \lambda_u), ((\frac{1}{u})^t, \cdots, (\frac{1}{u})^t) \prec_w (\lambda_1^t, \cdots, \lambda_u^t)$. Therefore,

$$P_{R,S}(X) \ge \lambda_1^t + \dots + \lambda_u^t$$

$$\ge \left(\frac{1}{u}\right)^t + \dots + \left(\frac{1}{u}\right)^t$$

$$= \left(\frac{1}{u}\right)^{t-1}.$$
(2.6)

Next, we prove the upper bound for $P_{R,S}(X)$, $X \in \overline{\mathcal{U}(R,S)}$. By (2.1) and (2.4),

$$P_{R,S}(X) \le \frac{\prod_{i=1}^{mn} (z_i!)^{\frac{1}{z_i}}}{\prod_{i=1}^{m} (n-r_i)! \prod_{i=1}^{n} s_i!},$$

where z_i is the sum of all entries in the *i*th column of Z, $i = 1, \dots, mn$. Then

$$(z_i)^{\frac{1}{s_i}} = \begin{cases} (s_1)!^{\frac{1}{s_1}}, & i = 1, \cdots, s_1; \\ (s_2!)^{\frac{1}{s_2}}, & i = s_1 + 1, \cdots, s_1 + s_2; \\ \vdots \\ (s_n!)^{\frac{1}{s_n}}, & i = t - s_n + 1, \cdots, t; \\ (n!)^{\frac{1}{n}}, & i = t + 1, \cdots, mn. \end{cases}$$

Thus, we have

$$P_{R,S}(X) \leq \frac{1}{\prod_{i=1}^{m} (n-r_i)! \prod_{j=1}^{n} s_j!} \{(s_1!)^{\frac{1}{s_1}}\}^{s_1} \cdots \{(s_n!)^{\frac{1}{s_n}}\}^{s_n} \{(n!)^{\frac{1}{n}}\}^{mn-t} \\
(2.7) = \frac{(n!)^{m-\frac{t}{n}}}{\prod_{i=1}^{m} (n-r_i)!}.$$

Similarly, we can obtain that

(2.8)
$$P_{R,S}(X) \le \frac{(m!)^{n-\frac{t}{m}}}{\prod_{j=1}^{n} (m-s_j)!},$$

and, by (2.6), (2.7) and (2.8), the proof is completed.

Let $A = [a_{ij}]$ be an $m \times n$ real matrix with row vectors $\alpha_1, \alpha_2, \cdots, \alpha_m$. We say A is contractible on column(resp. row) k if column (resp. row) k contains exactly two nonzero entries. Suppose A is contractible on column k with $a_{ik} \neq 0 \neq a_{jk}$ and $i \neq j$. Then the $(m-1) \times (n-1)$ matrix $A_{ij:k}$ obtained from A by replacing row i with $a_{jk}\alpha_i + a_{ik}\alpha_j$ and deleting row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible on row k with $a_{ki} \neq 0 \neq a_{kj}$ and $i \neq j$, then the matrix $A_{k:ij} = [A_{ij:k}]^T$ is called the contraction of A on row k relative to column i and j. We say that A can be contracted to a matrix B if either B = A or there exist matrices A_0, A_1, \cdots, A_t ($t \geq 1$) such that $A_0 = A$, $A_t = B$ and A_r is a contraction of A_{r-1} for $r = 1, \cdots, t$.

LEMMA 2.3 [1]. Let A be a nonnegative real matrix of order n > 1 and let B be a contraction of A. Then

$$(2.9) per A = per B.$$

LEMMA 2.4 [3]. Let $R = (1, \dots, 1)$ be the m-tuple of 1's, and let $S = (s_1, s_2, \dots, s_n)$ where the s_j are positive integers with $s_1 + \dots + s_n = m$. Let $X = [x_{ij}]$ be an $m \times n$ real matrix. For each $j = 1, \dots, m$, let X_j be the matrix $(\frac{1}{s_i})X_{j,s_j}$ where X_{j,s_j} is the $m \times s_j$ matrix each

of whose columns equals column j of X. Finally, let $\widetilde{X} = [X_1, \dots, X_n]$. Then

(2.10)
$$P_{R,S}(X) = \left(\prod_{k=1}^{n} \frac{s_k^{s_k}}{s_k!}\right) \operatorname{per} \widetilde{X}.$$

LEMMA 2.5. Let $R = kE_n$ where k is an positive integer $(k \le n)$. Let $X = [x_{ij}]$ be an $m \times n$ real matrix. Then

$$(2.11) P_{R,S}(X) = P_{R,S}(PX),$$

where P is any $m \times m$ permutation matrix.

Proof. For each $A \in \mathcal{U}(R,S)$, $PA \in \mathcal{U}(R,S)$ for any $m \times m$ permutation matrix P.

$$\begin{split} \mathbf{P}_{R,S}(X) &= \sum_{A \in \mathcal{U}(R,S)} \prod_{(i,j) \in \mathrm{supp}(A)} x_{ij} \\ &= \sum_{PA \in \mathcal{U}(R,S)} \prod_{(i',j) \in \mathrm{supp}(PA)} x_{i'j} \\ &= \mathbf{P}_{R,S}(PX). \end{split}$$

THEOREM 2.2. Let $R = (1, \dots, 1)$ be the m-tuple of 1's, and let $S = (s_1, s_2, \dots, s_n)$ where the s_j are positive integers with $s_1 + \dots + s_n = m$. Let $X = [x_{ij}]$ be an $m \times n$ nonnegative real matrix which is contractible on the column k. Let Y be the $(m-1) \times (n-1)$ matrix which is a contraction of X. Then

$$(2.12) P_{R,S}(X) \ge P_{R',S'}(Y),$$

where $R' = (1, \dots, 1)$ is the (m-1)-tuple of 1's and $S' = S(\cdot | k)$ with equality if and only if $s_k = 1$.

Proof. Without loss of generality, we may assume that $x_{1k} \neq 0 \neq x_{2k}$ and $x_{ik} = 0, i = 3, 4, \dots, m$.

Some bounds for assignments

Case 1. Suppose $s_k = 1$. Since, by (2.9), per $\widetilde{X} = \operatorname{per} \widetilde{X}'$ where \widetilde{X}' is the contraction on column $s_1 + \cdots + s_{k-1} + 1$ of \widetilde{X} , by (2.10),

(2.13)
$$P_{R,S}(X) = \left(\prod_{j=1}^{n} \frac{s_{j}^{s_{j}}}{s_{j}!}\right) \operatorname{per} \widetilde{X}$$

$$= \left(\prod_{j=1}^{k-1} \frac{s_{j}^{s_{j}}}{s_{j}!} \prod_{j=k+1}^{n} \frac{s_{j}^{s_{j}}}{s_{j}!}\right) \operatorname{per} \widetilde{X}'.$$

Let $\widetilde{Y} = [Y_1, \dots, Y_{n-1}]$ where Y_i is defined the same way as X_i , is, then $\widetilde{X}' = \widetilde{Y}$. Therefore,

$$\begin{split} \mathbf{P}_{R,S}(X) &= \left(\prod_{j=1}^{k-1} \frac{s_j^{s_j}}{s_j!} \prod_{j=k+1}^n \frac{s_j^{s_j}}{s_j!} \right) \mathrm{per} \ \widetilde{Y} \\ &= \mathbf{P}_{R',S'}(\widetilde{Y}). \end{split}$$

Case 2. Suppose $s_k = 2$. Let $s_1 + \cdots + \varepsilon_{k-1} = \sigma_{k-1}$. Then

$$\begin{split} \mathbf{P}_{R,S}(X) &= \left(\prod_{j=1}^n \frac{s_j^{s_j}}{s_j!}\right) \operatorname{per} \widetilde{X} \\ &= \left(\prod_{j=1}^n \frac{s_j^{s_j}}{s_j!}\right) \frac{x_{1k} x_{2k}}{2} \operatorname{per} \widetilde{X}(1, 2 \; \sigma_{k-1} + 1, \sigma_{k-1} + 2) \\ &> 0. \end{split}$$

But $P_{R',S'}(Y) = 0$ because $s_1 + \cdots + s_{k-1} + s_{k+1} + \cdots + s_n \neq m-1$. Case 3. Suppose $s_k \geq 3$. Then $P_{R,S}(X) = 0$ and $P_{R',S'}(Y) = 0$ because $\sigma_{k-1} + s_{k+1} + \cdots + s_n \neq m-1$, which completes the proof.

3. The Number of k-factors of Complete Bipartite Graph

Let G be a graph, and let $K_{n,n}$ be a complete bipartite graph. A factor of G is a spanning subgraph of G which is not totally disconnected. For a positive integer k, a k-factor in a regular factor of degree k.

Let Λ_n^k denote the set of *n*-square (0,1)-matrices with k 1's in each row and each column. If $R = S = kE_n$, where E_n is the *n*-vectors of 1's, then $\mathcal{U}(R,S) = \Lambda_n^k$.

LEMMA 3.1 [6]. $A \in \Lambda_n^k$, then

(3.1)
$$A = \sum_{j=1}^{k} P_j,$$

where the P_j 's are permutation matrices.

Let J be the $n \times n$ matrix all of whose entries are 1. Let $D_n = J - I_n$, where I_n is the identity matrix of order n. The D_n is called the derangement matrix. Let $d_n := \text{per } D_n$, then d_n is the number of the derangements of n elements and

(3.2)
$$d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

THEOREM 3.1. The number of 2-factors of $K_{n,n}$ is

$$\frac{n!d_n}{2}.$$

Proof. Since the number of 2-factors of $K_{n,n}$ equals to $|\mathcal{U}(R,S)|$ with $R = S = 2E_n$. By (3.1), for any $A \in \mathcal{U}(R,S)$, $A = P_1 + P_2$ where P_1 and P_2 are permutation matrices which do not overlap. First we can fix P_1 among n! permutation matrices. Without loss of generality, we may assume that P_1 is the identity matrix I_n . Then, the number of possible choices of P_2 equals the permanent value of the derangement matrix D_n .

And then, we also can fix P_2 and choose P_1 , i.e., we have the same process for a fixed P_1 . Therefore,

$$|\mathcal{U}(R,S)| = \frac{n!d_n}{2}.$$

 $R=(r_1,\cdots,r_m)$ and $S=(s_1,\cdots,s_n)$ are positive integral vectors. If $R'=nE_m-R$ and $S'=mE_n-S$, then $|\mathcal{U}(R,S)|=|\mathcal{U}(R',S')|$ because there is a bijection φ from $\mathcal{U}(R,S)$ to $\mathcal{U}(R',S')$.

Let

(3.4)
$$J_{R,S} = \frac{1}{|\mathcal{U}(R,S)|} \sum_{A \in \mathcal{U}(R,S)} A.$$

The vertices of $\overline{\mathcal{U}(R,S)}$ are precisely the matrices in $\mathcal{U}(R,S)$ and hence $J_{R,S}$ is the barycenter of $\overline{\mathcal{U}(R,S)}$.

COROLLARY 3.2. If $R = S = (n-2)E_n$, then

$$\lim_{n \to \infty} P_{R,S}(J_{R,S}) = \infty.$$

Proof. Since $R = S = 2E_n$ and $R' = S' = (n-2)E_n$, $|\mathcal{U}(R,S)| = |\mathcal{U}(R',S')|$ and

$$P_{R,S}(J_{R,S}) = \frac{n!d_n}{2} \left(\frac{n-2}{n}\right)^{n(n-2)}.$$

But $\lim_{n\to\infty} n!(n-2/n)^{n(n-2)} = \infty$. The proof is completed.

In [4], Gibson gave a disproof for the case k = n - 1 of Brualdi's conjecture [3]. The equation (3.5) gives another disproof for the conjecture.

Let γ be an integer with $0 \le \gamma \le n^2$. Let $\mathcal{V}(n,\gamma)$ be the set of all (0,1)-matrices of order n with exactly γ 0's.

LEMMA 3.2 [2]. Let A be a matrix in $V(n,\gamma)$, where $\gamma \leq n^2 - n$. Let σ be the number of 1's in A so that $\sigma = n^2 - \gamma$. Then

(3.6)
$$per A \leq (r!)^{(nr+n-\sigma)/r} (r+1)!^{(\sigma-nr)/(r+1)},$$

where $r = \left[\frac{\sigma}{n}\right]$.

THEOREM 3.3. Let $R=(r_1,\cdots,r_n)$ and $S=(s_1,\cdots,s_n)$ be positive integral vectors such that $\sum_{i=1}^n r_i = \sum_{j=1}^n s_j$.

(3.7)
$$|\mathcal{U}(R,S)| \le \frac{(n!)^n}{\prod_{i=1}^n [(n-r_i)!s_i!]}.$$

In particular, the equality hold for $R = S = nE_n$.

Proof. Let
$$\sum_{i=1}^{n} r_i = \sum_{j=1}^{n} s_j = t$$
.

$$\begin{split} |\mathcal{U}(R,S)| &= \mathbf{P}_{R,S}(J) \\ &= |\{A \in \mathcal{U}(R,S) : A \leq J\}| \\ &= \frac{\text{per } Z}{\prod_{i=1}^{n} [(n-r_i)!s_i!]}, \end{split}$$

where J is the $n \times n$ matrix all of whose entries are 1, and Z is the $n^2 \times n^2$ matrix as defined as same as (2.3). That is

$$Z = \begin{bmatrix} J_{1s_1} & & & Y \\ & \ddots & 0 & \vdots \\ & 0 & J_{ns_n} & Y \end{bmatrix},$$

where J_{is_i} is a $n \times s_i$ matrix all of whose entries are 1. Since $\sigma(Z) = n^3$, $\gamma \le n^4 - n^2$ and r = n, by (3.6),

per
$$Z \leq (n!)^n$$
.

Thus, the proof is completed.

W. D. Wei [7] said that if $R = S = kE_n$ then

$$\frac{n!^k}{k!^n} \le |\mathcal{U}(R, S)|.$$

Some bounds for assignments

COROLLARY 3.4. Let $R = S = kE_n$, $1 \le k \le n$. Then the bounds for the number of k-factors of $K_{n,n}$ is

$$\frac{n!^k}{k!^n} \le |\mathcal{U}(R,S)| \le \binom{n}{k}^n$$

with equality if and only if k = n.

ACKNOWLEDGEMENTS. The author wish to thank the referee for a thorough and careful reading of the original draft.

References

- 1. R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices I Applications of the Permanent Function, J. Comb. Theory A22(1977), 194-230.
- R. A. Brualdi, J. L. Goldwasser and T. S. Micheal, Maximum Permanents of Matrices of Zeros and Ones, J. Comb. Theory A47(1988), 207-245.
- 3. R. A. Brualdi, D. J. Hartfiel and S. G. Hwang, On Assignment Functions, Lin. Multilin. Alg. 19(1986), 203-219.
- 4. P. M. Gibson, Disproof of a Conjecture on Assignment Functions, Lin. Multilin. Alg. 21(1987), 87-89.
- 5. S. G. Hwang, Maximum Permanents on Certain Classes of Nonnegative Marices, Lin. Alg. and Its Appl. 132(1990), 103-113.
- 6. H. Minc, Permanents, Encyclopedia of Math. and Its Appl. vol.6, Addison-We sley, New York.
- 7. W. D. Wei, The class $\mathcal{U}(R,S)$ of (0,1)-matrices, Discrete Math. 39(1982), 301-305.

DEPARTMENT OF MATHEMATICS, HANSEO UNIVERSITY, SEOSAN, CHUNG-NAM 352-820, KOREA