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SOME BOUNDS FOR ASSIGNMENTS

GwaNG YEON LEE

1. Introduction

Let A = [a;;] be an m x n matrix over any commutative ring, m < n.
The permanent of A, written Per (A) or simply Per A, is defined by

(11) Per A = Zalg(l)"'ama(nl)

where the summation extends over all one-to-cne functions from {1, - -,
m} to {1,--- ,n}. The special case m = n ic of particular important.
We denote the permanent of a square matrix 4 by per A instead of Per
A

R. A. Brualdi, D. J. Hartfiel and S. G. Hwang [3] introduced a class
of function generalizing the permanent function and which, like the
permanent, are combinatorially significant as counting functions.

Let R= (ry. - ,rm)and S = (s1,---s,) be positive integral vectors
satisfying vy + - -+ r;m = 51+ +5,, and let Y( R, S) denote the class
of all m x n matrices A = [a;;] of 0's and 1’s such that

n m

(1.2) Za,—k:m, Zakf:sj’ e=1,---,m, 3 =1, ,n.

k=1 k=1

Thus R is the row sum vector and S is the column sum vector of every
matrix in U(R,S). We assume thoughout that U(R,S) # ¢. We refer
to matrices in U(R, S) as (R, S)-assignments or as assignments when
R and S are fixed in the discussion.
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Let X = [z,;] be an m x n matrix. We define the support of
A = [a;;] to be the set supp(A) = {(¢,5) : a;; # 0} The (R,S) -

assignment function Pg g(-) is now defined by

(1.3) Prs(X) = Z H Ty5.

AEU(R,S) (1,7)Esupp(A)
In case X is a (0, 1)-matrix, then

(1.4) Prs(X)=|{4A€U(R,S): A< X}

L)

where A < X means that no entry of A exceeds the corresponding entry
of X. Thus Pg s(X) counts the number of matrices of (R, S) which
are less than or equal to X.

Now let U(R,S) denote the convex hull of the (R, 5)-assignments
considered as points in a mn-dimensional real space. Because each as-
signment has all entries equal to 0 or 1, it follows readily that the assign-
ments are precisely the vertices(extreme points) of U(R,S). Brualdi,
Hartfiel and Hwang [3] proved that U(R,S) is a convex polytope.

For integers k, n, 1 < k < n, let Vi, denote the set of all n x 1
(0,1)-matrices whose entries have sum k. For real n-vectors, i.e., real
n x 1 matrices x and y we say that x is majorized by y {or y majorizes
x), written as x < y if

(1.5) max{vix:ve Vi,} <max{viy:veV,}

for all £ = 1,---,n and equality. holds in (1.5) when £ = n. x
is said to be submajorized by y, written as X <, y, if (1.5) holds
for all & = 1,---.n. It is well known that if x is majorized by y
then, for all convex function ¢, (w(z1). -+ ,9(2,))T is submajorized

by (@(y1), - olyn))T.
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2. The Bounds for Py s(-) in U(R, S)

LEMMA 2.1 [5]. Let R = (ry,---ry,) be a positive integral n-vectors.
Then, for any A € U(R),

T
. L
(2.1) per 4 < [J(r:h)7.
1=1
Let R=(r,, - .rm)and § = (51, ,8,) be positive integral vec-
tors and let X = [r,;] be an m x n matrix. Let X;,, be the m x s;
matrix each of whose columns equals to column ¢ of X, 7 = 1,--- ,n.

Let t be Y00 r, = Z;-lzl s;. Let ¥ be the m > (mn — t) matrix given
by

(2.2) Y=[V, Y, - Yn.l.

where Y,, i = 1,.--m, are matrices which ith row entries are all 1
otherwise 0. That 1s,

0 --- 0
Yi= |1 1
0 --- 0

mx{n-—1,)

Finally, let Z be the mn x mn matrix defined »y

X1 Y

Xy, 0 Y

(2.3) - )
0 . :

Xns, Y

LEMMA 2.2 [3]. Let R, S and Z be as given in the preceding state-
ments. Then

per Z

(2.4) Prs(X)= Hm (n— )" H’? 1 th'
= e bly=170
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THEOREM 2.1. Let u = [U(R,S)|. Then, for any X € U(R, S),
(2.5)

1 t—1 _ (nhy™ == ()"~
(u) SPR,S(X)Smm{H:’_‘__I(n-—m)!’ H7=1(m‘3j)! ‘

Proof. If X € U(R,S), then X = \{A; + -+ A, A, where > | A
=1,0<A; €1, and each A; e U(R,S), 1 =1,- - u. Thus
Prs(X)=Prs(AAr + -+ A Ay)
ST |
Ai€U(R,S) (k,D)Esupp(A))
> A AL 4 AL

Let ¢(z) = z'. Then ¢(z) is an increasing convex function on [0, 1].

Without loss of generality, we may assume A; > Ay > -+ > A,. Since
(%3 v%) = (/\17"' a/\u)a ((_11;)1" s(}lz)t) ~<w (/\ia ﬂ/\:;) There-
fore,

Prs(X)> AL+ + AL
1
> (s
(7 U
(2.6) = 2y,

u

Next, we prove the upper bound for P s(X), X € U(R,S). By (2.1)
and (2.4),

1
| J RN
Pgrs(X) < = ,
[ (n—r)! H?:l 55!
where z; is the sum of all entries in the ith columnof Z, 2 =1,--- ,mn.
Then )
’(S])!Tf’ izls"'asl;

A .
(32!)'23 1=381+1,-+,81 + s2;

(Sn!)ﬁ’ i=t*3n+1,"',7;

(n!)%, t=t+1,---,mn.
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Thus, we have

1 1 1 1
Pp (X ‘ DYoL [(s,1)F 1 {(n])E}mnt
Rr,s( ) < Hzl(n — T,‘)!H?Zl Sj!{(sl ) } {(9 ) } {(n ) }

(nhym==

N H:n:l(n — )

Similarly, we can obtain that

N
o
=1

p—

[

(m!)"_fn‘

H;;l(m' - Sj:‘-!’

and, by (2.6), (2.7) and (2.8), the proof is completed.

Let A = [a;;] be an m xn real matrix with row vectors a1, a2, , @m-
We say A is contractible on column(resp. row) k if column (resp. row)
k contains exactly two nonzero entries. Suppoe A is contractible on
column k with a;; # 0 # a;x and ¢ # j. Then the (m —1) x (n — 1)
matrix A,j.x obtained from A by replacing row ¢ with ajro; + aikq;
and deleting row j and column k is called the contraction of A on
column k relative to rows 7 and j. If A is contractible on row k with
axi # 0 # ax; and ¢ # j, then the matrix Agq; = [Aix)T is called
the contraction of A on row k relative to column ¢ and j. We say that
A can be contracted to a matrix B if either B = A or there exist ma-
trices Ag, Ay, -+ ,A; (t > 1) such that A9 = 4, A, = B and A, is a
contraction of 4, forr=1,--- ,t.

(2.8) Pprs(X) <

LEMMA 2.3 {1]. Let A be a nonnegative real matrix of order n > 1
and let B be a contraction of A. Then

(2.9) per A = per B.

LEMMA 2.4 [3]. Let R=(1,---,1) be the m-tuple of l's, and
let S = (sy,82,-- , $n) where the s; are positive integers with s;+-- -+
sn = m. Let X = [z;;] be an m x n real matrix. For eachj=1,---,m,
let X; be the matrix (Sl—j)Xj,s,- where X, is the m X s; matrix each
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of whose columns equals column j of X.Finally, let X = (X1, Xa)
Then

- = sk >
(2.10) Prs(X) = (H ——k—’> per X.

Si.
k=1 "k

LEMMA 2.5. Let R = kE, where k is an positive integer (k < n).
Let X = [z;] be an m x n real matrix. Then

(2.11) Prs(X) = Pgrs(PX),

where P is any m x m permutation matrix.

Proof. For each A € U(R,S), PA € U(R, S) for any m x m permu-

tation matrix P.

Prs(X)= ) H Tig

A€U(R,S) (i,5)€supp(A)
DO | Y
PAeU(R,S) (1.j)€supp(PA)

= PR’S(PX).

THEOREM 2.2. Let R =(1,---,1) be the m-tuple of 1's, and let § =
(81,82, "+ ,8n) where the s; are positive integers with sy +---+8, = m.
Let X = [r;;] be an m x n nonnegative real matrix which is contractible
on the column k. Let Y be the (m — 1) x (n — 1) 1natrix which is a
contraction of X. Then

(2.12) Prs(X) > Pr s(Y),

where R' = (1,--- ,1) is the (m — 1)-tuple of 1's and S’ = S(-|k) with
equality if and only if s} = 1.

Proof. Without loss of generality, we may assume that r1z # 0 5 zq;
and z,, =0, i = 3,4, - ,m.
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Case 1. Suppose s; = 1. Since, by (2.9). per X = per X' where
X' is the contraction on column s; + -+ + sg-1 + 1 of X, by (2.10),

k1]
] o~
Prs(X) = H —L ) per X

= S5.

N\

k—1 9 m 9
9 — °j "3 )Z'/
(2.13) = ' - | per X,
S]'. . Sj.
=1 j=k-+1

Let ¥ = (Y7, - ,Y,_1] where Y] is defined the same way as X,. is,
then X' =Y. Therefore,

Pro(X) H H i per?

11‘ ]k+l

=Pps(Y).
Case 2. Suppose s = 2. Let 57+ - + k-1 = Tk—1- Then

8j
85 ~
— | per X

1 ."].

—

Prs(X) =

il

J

L R -
H_]T f1—}62{&?6”)((12Uk—l~i—1-,<71c-1+2)

= 0.

But P (Y) = 0 because s; + -+ $g—1 + sk+1 + - +.sn#m~—1.
Case 3. Suppose sx 2> 3. Then Prs(X)=0and Pp o(Y)=0

because og_;1 + Sk+1 + -+ 8, # m — 1, which completes the proof
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3.The Number of k-factors of Complete Bipartite Graph

Let G be a graph , and let K, , be a complete bipartite graph. A
factor of G is a spanning subgraph of G which is not totally discon-
nected. For a positive integer k, a k-factor ia a regular factor of degree
k.

Let A¥ denote the set of n-square (0,1)-matrices with £ 1's in each
row and each column. If R = § = kE,, where E,, is the n-vectors of

Us, then U(R, S) = A%,
LEMMA 3.1 [6]. 4 € A%, then

(3.1) A=3"p,

s=1
where the P;’s are permutation matrices.

Let J be the n x n matrix all of whose entries are 1. Let D, =
J — I, where I, is the identity matrix of order n. The D,, is called the
derangement matriz. Let d, := per D,,, then d,, is the number of the
derangements of n elements and

" k
(3.2) d, :n!Zg—:l—)—.

THEOREM 3.1. The number of 2-factors of K, , is

nld,
2

(3.3)

Proof. Since the number of 2-factors of K, ,, equals to [U(R, S)| with
R =S =2E, By (3.1), for any A € U(R,S), A = P. + P, where P,
and P are permutation matrices which do not overlap. First we can fix
Py among n! permutation matrices. Without loss of generality, we may
assume that Pj is the identity matrix I,,. Then, the number of possible

choices of P, equals the permanent value of the derangement matrix
D,.
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And then. we also can fix P, and choose Pj, i.e., we have the same
process for a fixed P;. Therefore,

n'd,
U(R,S)| = 5
R=(ry, - ,rm)and S = (s, -+ ,8,) are pasitive integral vectors.

If R = nE, — R and §' = mE, — S, then U(R,S)| = [U(R',S')|
because there is a bijection » from U(R, S) to U(R',S’).
Let

1
3.4 Jpog= ———— A.
(3.4) RS = RS Aeg(; .

The vertices of (R, S) are precisely the matrices in U(R, §) and hence
Jr s is the barycenter of U(R, S).

COROLLARY 3.2. f R= S = (n — 2)E,, then

(35) lim PR,S(JR,S,) = Q.

mn—oc

Proof. Since R = § = 2E, and R' = §' = (n — 2)E,. U(R,S)| =
lU(R',S")| and

n

&

nld, {n—2 Un=2)
Prs(Jrs) = — ( ) :

But limy_oo nl(n — 2/n)™"™2 = o0, The proof is completed.

In [4], Gibson gave a disproof for the case k = n — 1 of Brualdi’s
conjecture [3]. The equation (3.5) gives another disproof for the con-
jecture.

Let v be an integer with 0 < v < n%. Let V(n,v) be the set of all
(0,1)-matrices of order n with exactly v 0’s.
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LEMMA 3.2 [2]. Let A be a matrix in V(n,v), where v < n? — n.
Let o be the number of 1’s in A so that ¢ = n? — . Then
(3.6) per A < (r!)(nr+n—a)/r(7, + 1)!(a—nr)/(r-§ l)~

where r = [%] .

THEOREM 3.3. Let R = (ry,- - ,r,) and S = (81, -+ ,8,) be posi-

tive integral vectors such that 3 0_ ri = 3 0_; ;.
(nH)"
T [(n—ra)tsil]
In particular, the equality hold for R = S = nE,,.
Proof. Let 3.0 ;i = Y18 =t
U(R,S)| =Pr,s(J)
=|{A €U(R,S): AL J}
_ per Z
[Tisi[(n = ra)lsil]’

where J 1s the n x n matrix all of whose entries are 1, and Z is the
n? x n? matrix as defined as same as (2.3). That is

i, Y
2= o0
0 Ju Y

(3.7) U(R,S)| <

where J;,, is a n x s; matrix all of whose entries are 1. Since 0(Z) = n?®,

v <n*—n?and r = n, by (3.6),
per Z < (nh)™
Thus, the proof is completed.
W. D. Wei [7] said that if R = 5 = kE,, then

nlk

o S U(R, ).
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COROLLARY 3.4. Let R= S5 = kE,, 1 <k <n. Then the bounds

for the number of k-factors of K, , 1s

,nlk

e < s < ;)

with equality if and only if k = n.
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