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ACCRETIVE OPERATORS IN A
PROBABILISITIC NORMED SPACES

K1 Sik Ha*, KI-YEON SHIN* AND YroOL JE CHO**

1. Introduction and Preliminaries

Throughout this paper, the definitions and properities related to
probabilistic normed spaces are followed as in [2]. Let R be the set of
all real numbers. A mapping F : R — [0,1] is called a distribution
function on R if it is nondecreasing and left continuous with inf F' =0
and sup F' = 1. We denote by L the set of all distribution functions on
R.

A mapping A : [0,1] x [0,1] — [0,1] is saic to be a triangle norm
(briefly, a T-norm) if
(1) A(0,0) =0 and A(a,1) = a for every « € [0,1],
(2) Ala,b) = A(b,a) for every a,b € [0, 1],
(3) Ala,b) > Alc,d) for every a,b,c,d € [0,1] with a > ¢ and
b>d,
(4) A(A(a,b),c) = Ala, A(b,c)) for every a,b,c € [0,1].

Let X be a real linear space and F: X — L. For z € X, we denote
F(z) by F;. A triplet (X, F,A) is called a probabilistic normed space
(briefly, a PN-space) if

(1) Fp(0) =0 for every z € X,

(2) F, = H if and only if £ = 0, where H € L with H(¢) = 1 for
every t > 0, and H(t) = 0 for every t < 0,

(3) F,.(t) = Fy(t/|r]) for every z € X, r € R with r # 0, and
teR,

(4) Fryy(s+t) > A(F(s), Fy(t)) for every z,y € X and 5,1 € R.
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Let € X, ¢ >0 and A € (0,1). Then an (e, A)-neighborhood of z,
denoted by N_(e, A), is defined by N (e, \) = {y € X ; Fr_y(e) >1-A}.
The family {N.(e,\)|z € X,e >0, € (0,1)} of neighborhood induces
a topology on X satisfying the first axiom of the countablity and a
Hausdorff topology on X with a continuous 7-norm A.

Let (X,F,A) be a PN-space with a continuous T-norm A. A se-
quence {z,} in X is said to be convergent to x € X if every € > 0 and
A € (0,1), there exists a positive integer N such that Fy_, () > 1— A
for every n > N. We denote z,, — z or lim,_o 2, = z. A sequence
{zn} is said to be a Cauchy sequence if for every e > 0 and A € (0, 1),
there exists a positive integer N such that F,__, (¢) > 1 — \ for ev-
ery n,m 2> N. A PN-space with a continuous T-norm A is said to be
complete if every Cauchy sequence in X is convergent to some point in

JY.

For a PN-space (X, F, A) with a continuous T-normn A, if z,, — z in
X then lim_ _ _F, (t)= F,(t) forevery t € R.

The concept of an accretive operator in a PN-space was introduced
by Zhang-Chen ([3]). One may refer to Barbu ([1]} for an accretive
operator in a Banach space.

Let (X,F,A) be a PN-space and 4 : X — 2% an operator with
domain D(A) = {r € X|Az # 0} and range R(A) = U{dz|z €
D(A)}. We may identify A with its graph. A is said so be accretive in
X if every [ry,y1], [22,y2] € A, 7 >0, and t € R,

Fu —Ig(t) 2 le-—zz+‘r(y1—y2)(t)

and A is said to be m-accretive in X if 4 is accretive in X and R(J +
rA) = X for every r > 0, equivalently, by [3], A is accretive in X and
R(I +rA) = X for some r > 0.

In section 2, we are concerned with properities of accretive operators
and their resolvents in a PN-space. Section 3 contains some results of
convergence of resolvents of accretive operators in a PN-space.
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2. Properities of Accretive Operators

Let (X, F,A) be a PN-space and A be accretive in X. We put J, =
(I+rA)"'and A, = %('I—J,) for every r > 0. Then D(J,) = R(I+rA),
R(J,) = D(A) and D(A,) = D(J,) for every r > 0.

First, we consider the properities of J,.

LEMMA 1. Let A be accretive in X. Then J, is single-valued and

FJ,.I——er(t) 2 Fz—y(t)

for every z,y € D(J,.),r >0 andt € R.

Proof. Let z,y € D(J,;), > 0 and t € R. Suppose y;,y2 € JrT.
Since A is accretive in X,

Fy—y, 2 Fy\*y2+r(%(1—y1)-—%(1—'112))(”
= Fy(t) = H(t).

Hence Fy, _,,(t) = H(t) and thus y; = y. There exists [z1,y1],
[z2,y2] € A such that z = 21 +ry; and y = 24 ry2 and thus J,z = 21,
Jry = . Since A is accretive in X,

Fer—er(t) = FI1—Z2(t) > FI1—12+7’(y1—y2)(t) = FI—y(t)'

PROPOSITION 2. Let A be accretive in X.
(1) Suppose A(a,a) > a for every a € [0,1]. Then

F‘}T(J,,"I——I)(t) .>_. FJ,r-z“)

forevery z € D(J,), r >0, t e Randn=1,2,---.

(2) Iz + E-Jpz € D(J;) and Jpz = Jo(J2 + B> Jpx) for every
r € D(Jp),p>0andr >0

(3) Fro-u4(t) 2 F#(Z_er)_#(y_hx)lt) for every z € D(J,),
ye D(J,),ppr>0andteR.
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Proof. (1) Let = € D(J;), r > 0, t € Rand n = 1,2,---. By

assumptlon and Lemma 1,

Fyime_g)(t) = Fynzo(nt)
ZA(FJ —apteeg (B Fpnar (= 1)t))
2 A(;FJT"I-—J,"‘Iz(')’A(FJ,""lx—J,"’2z(t)’ """ ,
A Frrp g, o(t) Fpper(t)) - )
2 AE g e—2(1), A(Frpe—e(t)y o A(Frpea(t), Frema(t))) )
2 Fjoo—o().

(2) Let z € D(Jp), p> 0 and r > 0. There exists [21,y1] € A4 such that
T =21+ pyr.

Z;p + E——TJPI =x1+ry; € D(J,;) and
P

p
‘]r(fr + ‘Ii_—_ijpz) =Jo(z1+ry;) =27 = Jpx.
p p
(3) Let x € D(J,), y € D(J,), p,r >0 and t € R. Putting ¢ = I];-—f-—:

by (2),

1+ 2470 € D(J,) and —a:—l— —er = D(J,),
P p
Jpz = J, +—~——Jx
» (p > ) = (er p+
Ty =J, -—JT —i +-——Jr :
y=J,4 “y+ y) = ( g y)
By Lemma 1,

Fre=0,4(t) = Fro( it 2 dya)=dy (B vt 55 T (1)
2 For e hy) -2 y=sp2) (B):

Next we consider the properties of A,.
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PROPOSITION 3. Let A be accretive in X.

(1) Suppose A(a,a) > a for every a € [0,i]. Then

EArI_‘AT:‘/(t) 2 F2(z—y)(t)

for every x,y € D(J,),r >0 and t € R.
(2) Ayr € AJ,z for every v € D(J,) and Fa, () > Supyear Fy(t)
for every x € D(AYUD(J,), r >0 and T > 0.

Proof. (1) Let z,y € D(J,), r > 0 and ¢t € R. Then by Lemma 1,

Fy ron,4(t)= Fl(x y)—L(Jz g (1)

) t.
> A(Fy ,_y)(—),FJ, )
>A(F2(:t y)( ) F"’(c y(t)

Z F%(I——y)(_ )

(2) Let = € D(J,), = > 0. By definition, 4,z € AJ,z. Let =z €
D(A)nD(J,), r >0and t > 0. Suppose [r,y] € A. By Lemma 1,

F‘A,-I(t) - th—.]r:r(rt) - FJ,(r+rr/)—Jr£(Tt)
2 F1+ry_‘1(7‘t) = Fy(tk).
Thus Fa,,(t) > supyea, Fy(1).
We are going to consider the maximum accretivity.

DEFINITION 4. Let A, B : X — 2% be operators. B is said to be an
extension of A if D(A) C D(B) and Ax C Bx for every ¢ € D(A). We
denote it by A C B.

DEFINITION 5. A is said to be maximal accretive operator in X if

A 1s an accretive operator of X and for every accretive operator B of
X with AC B, A =B.
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PROPOSITION 6. If A is an m-accretive operator in X, then A is an
maximal accretive operator of X .

Proof. Let B be accretive in X with A C B. Let »r > 0 and t € R.
Let [z,y] € B. Since A is m-accretive in X, x +ry € R(I +rA). There
exists [z1,y1] € A such that x+ry = z; + ry;. Since B is accretive and
[z1,71] € B,

Fro (1) 2 Foz 4ry—y)(t) = Fo(t) = H(t).

Hence r = z; and thus y = y;. Therefore [z,y] € 4, that is, B C A
and thus A = B. Consequently, A is maximal accretive in X.

PROPOSITION 7. Let A be accretive in X and let [u,v] € X x X.
Then A is maximal accretive in X if and only if

Fz~u(t) > Fz—u+r(y—zr)(t)

for every [r,y] € A, r > 0 and t € R implies [u,v] € A.

Proof. Let A be maximal accretive in X. Put A = AU [u,v]. Then
A is accretive in X and A C A. Since A is maximal accretive in X,
A = A. Hence [u,v] € A. Conversely, let B be accretive in X with
A C B. Let [u,v] € B. Since B is accretive in X, for every [z,y] € 4,
r>0andteR,

Fx—zu(t> > Fz—u-f—r(y—v)(t)'

By assumption, [u,v] € A and thus B C 4. Hence A = B. Therefore
A is maximal accretive in X.

PROPOSITION 8. Let A be accretive in X. Then there exists a max-
imal accretive operator containing A.

Proof. Let B = {B : accretive in X |A C B}. Then (B,C) is a
partially ordered set. Let 7 be a totally ordered set with 7 C B. It
1s easy to show that 7 has an upper bound. By Zorn’s lemma, there
exists a maximal element in B. This is a maximal accretive operator of
X containing A.

Now we consider the closeedness of accretive opera-ors.
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PROPOSITION 9. Let A be accretive in X. Then the closure A of A
is also accretive in X.

Proof. Let [z1,y1], [x2,y2] € A. Then there exists [Z1n,Y1n)s (T2 Y2n]
€ A such that 1, — 1, Ton — T2, Y1n — y1 and y2, — y2. Let r >0
and t € R. Since A is accretive,

FIln“IQn(t) > Frln—I2n+T(y1n"y2n)(t)'

As n — oo, we have
FIL—Iz(t) 2 Frl—xz—%r(yl—yw,)(t)-

Hence A is accretive in X.

PROPOSITION 10. Let X be complete and A be continuous. Let A
be accretive in X. If A is closed, then R(I+rA) is also closed for every
r > 0.

Proof. Let z, € R(I+rA) with z, » z € X. Then {2,} is a Cauchy
sequence in X. There exists [z,,yn] € A such that z,, + ry, = 2, and
thus J,z, = ,. By Lemma 1, for every t € R

Fr,, —-rm(t) = FJrzn—J,zm(t) Z I"z,,—zm(t)'
Hence

_l.i_n_l Fxn_zm(t) Z .I_I.E an"‘zm(t) = F()(t) = 1

n,m-—00 n,m—oo

for every t > 0. Thus lim, m—oo Fr,—z,.(t) = & for every t > 0. There-
fore {z,} is a Cauchy sequence in X. There exists z € X such that
T, — x and thus y, = %(zn —ZIp) — %(z --z). Since A is closed,

[v,4(z—z)] € A. Hence z € +rAz C R(I+rA). Therefore R(I+rA)

1s closed.
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PROPOSITION 11. Let A be maximal accretive in X. Then A is
closed.

Proof. Let [n,yn] € A and zp, = u, Yy, = v. Let r > 0 and ¢t € R.
Since A is accretive, for every [z,y] € A4,

Fr—xn(t) 2 Fz—x"+r(y—yn)(t)'

Asn — oo,
Fz—u(t) Z Fz-u-{-r(y—v)(t)'

Since A is maximal accretive, by Proposition 7, [u,v] = A. Hence A is
closed.

COROLLARY 12. (1) Let A be m-accretive in X. Then A is closed.
(2) Let A be maximal accretive in X. Then Az is closed subset of X

for every z € A.

PROPOSITION 13. Let X be complete and A accretive in X. Let C
be a closed convex subset of X andp >r > 0. If R(I +rA) D C and
J.C c C then R(I +pA) D C and J,C C C.

Proof. Let + € C and p > r > 0. Define S : C — C by Sz =
Jr(%z + ?fp—fz) for every z € C. Let t € R. By Lemma 1, for every

1,22 € Cw
Fsui—s0(t) = Fy zopzra g g erzztan(t)

2 F%l(ll*zz)(t)'

Since 0 < £+ < 1, by [2], there exists z € C uniquely such that Sz = z.
It follows that = € z + pAz C R(I + pA). Thus R(I + pA) O C and
J,C cCC.

3. Convergence of Resolvents of Accretive Operators

Let (X, F,A) be a PN-space and J, be the resolvent of an accretive
operator A in X for every r > 0.
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PROPOSITION 14. Let A be accretive in X and A be continuous.
Then

Iix(1)'1+ Jrz =z for every € Nysoi2(J,) N D(A).
Proof. Let x € Ny50D(J;) N D(A) and t € R. By (2) of Proposition
3,as r — 0+,

t Lt
FJrT-I(t):FAWI(_)Z sup Fy(—)—’l
r yEAzx r
for every t > 0. Thus lim, .o+ Fj ;—.(t) =  for every t > 0. Hence

lim, .oy Jrz = z.

PROPOSITION 15. Let A be accretive in X and let A be continuous
with A(a,a) > a for every a € [0,1]. Then

im Fj,/.(t)= lim Fs .(t) = sup Fy(t)
r—00 reoo yER(A)

for every x € Ny5oD(J;) and t € R.

Proof. Let z € N;59D(J;) and t € R. Put d; = sup,epa) Fy(t). By
(2) of Proposition 3, Fa, ,(t) < supyep(a) Fy't) = di. Thus lim, oo
Fy .(t) < dy. Let o € (0,1). By definition of dy¢, for every ¢ > 0,
dot — € < Fyy(at) for some [z9,y0] € A. By (1) of Proposition 3,

FArI(t) = FATI“J47‘IO+A7'$O((1 - Cg)t + O/t)
2 A(FA,I—APIO((]- - (l)t“‘, FA,.zo(at))
> A(F3 (s po) (1= a)t), Fa, o (at))

Thus for every t > 0,

lim Fa,o(t) 2 lim A(Fz(,_p)((1— a)t), Fa,zo(at))

T OC rT—00

2 A( .l_ll_n. Fz(t—.ro)((l - O‘)t,)a l}.l_n__ FArIo(at))

T—0C r—oc

- A(lv I_I_E FArIo(at)) = hﬁ FAr-’to(at)

Litamde o] 7T —rOQ

> sup Fy(at) > Fy(at) > doy — €.
yEAzg
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Since € is arbitrary, as € — 0+, lm__ Fy 1(t) > do¢. Since limg—j—

dor = dg, lim Fy4,.(t) > dy. Therefore lim, oo Fa,.(t) = dy. The

—_——T 00

second equality holds.
Next we consider the first equality. Let « € (0,1). From

F.],-I/T(f) = FA,I—%(t) > A(Fflrx(at)aF%((l - Cl/‘)t))
we have for every t > 0,

im Fj ;/0(t) > Lm A(Fg, . (at), Fz((1 - a)))

T30 T == OO
> A(lim Fju ;(at), im Fz((1 - a)t))
= A( li_ril. FATI((Xt)’ 1) = li_m FArI(at)'

Asa — 1—, lim _ _Fj./(t) 2 lim _ _ Fa .(t). Similarly, im __
FArI(t) 2 li_m,._ﬁoc FJ,z/r(t)~ Hence li__rll_r_,oo FJrz/r(t) = liﬂr_,oo Fa, .
(t). The proof is completed.
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