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ON THE ADJOINT LINEAR SYSTEM

DONG-KWAN SHIN

§ 0. Introduction.

Throughout this paper, we are working on the complex number field
C.

The aim of this paper is to explain the spplications of Theorem
2 in §1. In the surface theory, the adjoint linear system has played
important roles and many tools have been developed to understand
it. In the cases of higher dimensional varieties, we don’t have any
useful tools so far. Theorem 2 implies that it is enough to compute the
dimension of the adjoint linear system to check the birationality. We
can compute, somehow, the dimension of the adjoint linear system. For
example, we can get an information about h°'X,Ox(Kx + D)) from
Euler characteristic of |K x + D| and some vanishing theorems.

We are going to show the applications of Theorem 2 to smooth three-
folds and smooth fourfold, specially, of general type with a nef canonical
divisor, smooth Fano variety, and Calabi-Yau manifold. Our main re-
sults are Theorem A and Theorem B. Most of birationality problems
in Theorem A and Theorem B have been studied. (See Ando [1] and
Matsuki [4] for the detail matters.) But Theorem 2 gives short and easy
proofs in the cases of dimension 3 and improves the previously known
results in the cases of dimension 4.

§ 1. Main

Let X be a smooth projective variety. We denote a linear equivalence
by ~. Denote by Div(X) a free abelian group generated by the divisors
on X. Denote the canonical divisor of X by K x. Then we say that D €
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Div(X) is nefif D-C > 0 for any curve C on X, anc bigif (D, X) =
dim X, where x(D, X) is the Kodaira dimension of D on X. For D €
Div(X), @|p) denotes the rational map associated with the complete
linear system |[D| if h°(X,Ox (D)) # 0. Let’s denote h°(X,Ox(nD))
by pn(D).

THEOREM 1. (Kawamata-Viehweg vanishing Theorem) Let X be a
nonsingular projective variety and D € Div(X). If 1 is nef and big,
then H'(X,Ox(Kx + D)) =0 for all i > 0.

For a proof, see Kawamata [3].

LEMMA 1. Let X be a smooth projective threefold, and D € Div(X).
Then we have the following:

(1) x(Ox(D))=D*/6 — Kx -D?/4 + D-(K% +)/12 + x(Ox),
where ¢; is the second Chern class of X. Moreover x( Ox) =
—cy- K /2.

(2) Kx -D? is even.

Proof. (1) is the Riemann-Roch Theorem.
(2) comes from the following:

X(Ox(D))+ x(Ox(-D)) = —Kx - D*/2+2x(Ox) € Z. O

LEMMA 2. Let X be a smooth threefold with a canonical divisor
Rx. Let D € Div(X).

_ n(n—1)(2n - 1)

(1) When Kx is nef and big, pn(Kx) 1o

(1-2n)x(Ox) forn>2.
1:(2 1
(2) When —Kx is ample, po(—Kx) = n(n + 1; s )(“Kg()
+(2n+1) forn > 1.

(3) When Kx ~ 0, and D is nef and big, pn(D) =
forn > 1.

K3 +

n®D® nD-e,
+
6 12
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Proof. Suppose that L € Div(X) is nef and big.

x(Ox(Kx + L)) = R%(X,0Ox(Kx +1L))—h'(X,0x(Kx + L))
+ RY(X,Ox(Kx + L)) - R*(X,O0x(Kx + L)).

Since L is nef and big, R{(X,Ox(Kx + L)) = 0 for : > 0 by Theorem
1. Thus

x(Ox(Kx + L)) = h°(X,0x(Kx + L)).
For (1), take L = (n — 1)K x.

pa(Kx) :hG(X, Ox(Kx +(n-1)Kx))
=x(Ox(Kx +(n —1)Ax)).

Then our claim follows from (1) of Lemma 1.

For (2), take L = (n+ 1)(—Kx).
x(Ox) = h%(X,0x) — h'(X,0x) + h*(X,0x)—-hr*(X,0x).

For i > 0, hY(X,0x) = k34 X,0x(Kx)) = 0 since —A'x is ample.
So x(Ox) = RY%X,0x)=1.

pu(Kx) =h°(X,Ox(Kx + (n+ 1)(—Kx)))
_X(OX(I\X+(71+1 I\/\) )

And apply (1) of Lemma 1.
For (3), take L = nD. Since Kx ~ 0, x(Ox) = —c2- Kx/24 = 0.
We will get our claim from (1) of Lemma 1. ]

LEMMA 3. Let X be a smooth threefold with a canonical divisor
Kx. Let D € Div(X).

(1) When Kx is nef and big, pno(Kx) > 4 forn > 2.
(2) When —Kx is ample, pp(—Kx) >4 forn > 1.
(3) When Kx ~ 0, and D is nef and big, pn(D) > 2 forn > 2.
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Proof. Let L € Div(X). If Kx and L both are nef, then L - (3¢cq —
¢?) > 0 by the pseudo-effectivity of 3¢, — c? (See Miyaoka [5].)

For (1), take L = Kx. It follows that x(Ox) < 0 from (1) of Lemma
1. Since K is a positive even integer, and x(Ox) < 0,

n(n—1)(2n - 1)

5 +(2n-1)>14 for n > 2.

pn(I{X) Z
For (2), —K% is a positive even integer since —A x is ample.

n(n+1)(2n+ 1)
6

For (3), take L = nD. Since Kx ~ 0, and D is nef, we have D-¢cy > 0.
Thus,

pn(—Kx) > +(2n+1)>4 for n > 1.

3 n3
pn(D)Zné)

Hence p,(D) > 2forn >2. 0O

Zg— forn > 2.

THEOREM 2. Let X be a smooth projective threefold and let D be
a nef and big divisor on X. Assume that h°(X, Ox(mD)) > 2 for some
positive integer m. Then Q| x x +np) is birational for a positive integer
n 2 m + 4 such that h%(X,Ox((n — m)D)) > 1.

For a proof, see Shin [6].

THEOREM A. Let X be a smooth projective threefold with a canon-
ical divisor Kx and let D be a nef and big divisor on X .
(1) When Kx is nef and big, @k x| is birational for n > 7. (cf.
See Matsuki [4].)
(2) When —Kx is ample, ®|_nkx| is birational for n > 4.
(3) When Ky ~ 0, @/, p| is birational for n > 6.

Proof. We are going to apply Theorem 2 to each case. So, first of
all, we have to choose the number “m” in the Theorem 2 as small as
we can.

For (1), take rmn = 2. For an integer n > 7, Pnkyx| = Plrx+(n-1)Kx|
andn—12>m+4. k°(X,0x((n—1)—m)Kx)) > 4 by Lemma 3 since
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n—1—m > 2. Hence Theorem 2 implies that ®|,g | is birational for
n>"7.

For (2), take m = 1. For an integer n > 4, by similar way, we can
show that n satisfies all the conditions in Theorem 2. Hence &, 1, is
birational for n > 4.

For (3), take m = 2. Since Kx ~ 0, @y 4np| = Ppnp|. For
an integer n > 6, n satisfies all the conditions in Theorem 2. Hence
D@k y | 1s birational for n > 6. [

REMARK. In the case (3) of the Theorem A, a little modification of
the proof of Theorem 2 can improve our result to n > 5.
LEMMA 4. Let X be a smooth projective fourfold and let L € Div(X).

. 1 , )
(1) X(Ox(L)) = gL —2Kx - L* + (KX +¢3) - L — ey Kx - L+

24x(Ox)]. .
2) WhenL = nKx,po(Kx)= =K% [n?tn—1)?+an(n—1)+b] for
247 X
K2
n > 2, where a = CZI,{}‘X and b = 24x(Ox)/K%. Moreover,
(G

X
a>1/3.

o 1 .

(3) WhenL = —nKx, po(—HKx) = ﬂ[n2<‘n+1)21\§{ +n{n+1)ey-
K% +24x(Ox)] forn > 0. )

(4) When Kx ~ 0 and L = nD, p,(D) = ﬁ[n‘*D‘* + n2cy - D* +
24x(Ox)] forn > 1. B

Proof. (1) is from Riemann-Roch theorem. a > 1/3 by Miyaoka [5].
(2), (3) and (4) come from (1) and Kawamata-Viehweg theo-
rem. [

LEMMA 5. Let X be a smooth fourfold of general type with K x nef.

(1) pu(Kx)>2forn >3 and p,(Kx) > 3 forn > 4.
(2) dimPppy(X)>2forn > 4.
(3) pa(Kx) — pn-a(Kx)>2forn>3.
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Proof. For (1), since po(Kx) > 0, we have 2a + b > —4. Thus

Pa(Kx) > Ii‘{n n—1)241/3(n~2)(n+1) -4} ‘or n > 2. Hence
pn(Kx) > 2for n >3 and p,(Kx) > 3 for n > 4.
(2) comes from the fact that
dim@lnh'xl(X) >rif hO(X, Ox(nf\’x)) > an\'}’( + 7.
(See T. Ando [1].)
For (3),

Pn(Kx) = pa—s(Kx)

4
:—54&{16713 — 120n” + 360n — 400 + a(8n -- 20)}

-4
21‘—;‘-{16713 — 120n® + 1088n/3 — 1220/3}
>2 for n > 6.
When n =5, ps(Kx) — pg > 2 regardless of p,.
When n =4, ps(Kx)—12>2by (2).
When n =3, p3(Kx) — h%(X,Ox(-Kx)) > 2,
since A%(X, Ox(~Kx)) = 0.
Therefore p,(Nx) — pn-y(Kx)>2forn >3 0O

LEMMA 6. Let X be a smooth fourfold with —K x ample.
(1) pp(—RKx) >3 forn > 4.
(2) dim®_4p,|(X) > 2.
(3) pu(Kx) —pns(Kx)> 3 forn>4.
Proof. po(—~Kx) = x(Ox(—nKx)) and x(Ox) = 1 since —Kx is
ample.
For (1), pi(—HKx) > 0 implies that Z}-[éllx‘}( +2¢2- K%]+1>0.
Thus ¢; - K% > —2K% —12.

pn(=Kx) > %[nQ(n +1)°K% +n(n+1)(—2K% —12)] + 1

1
= 57" (n+D(r*4+n-2)K% —12] + 1

> 3 for n > 4.
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For (2), from (1), pa(—Kx) > 21—4n(n +D)[(n?+n-2)K% —12]+1
for n > 4.

{in(n + D[(n*+n-2)K% —12] + 1} — {nK% + 1}

= {(n® + 2% — = 26)K% —12(n+ 1] > 0 for n > 4,

Hence dim®|_4x, ((X) > 2.

1
For (3), pp(Kx) — pn-a(Kx) > —Z[(IGn — 72n% 4+ 152n — 120)K'%
96n + 144] > 2forn > 4. O

REMARK. When K% = 1, ¢z - K% should be of the form 12k + 10,
where k is an integer. Hence p,(—Kx) > 3 for n > 3 except the case
(K%, c2- K%)= (1,-14).

LEMMA 7. Let X be a smooth projective fourfold with Kx ~ 0 and
D be nef and big.

(1) pn(D) >3 forn > 3.
(2) dim®p(X) > 2.
(3) pn(D) —pn—ua(D)>2forn > 3.

D* D?
Proof. py(D) > 0,s0 x(Ox) > ———+2%Z—-—— Since ¢, - D? > 0 by
Miyaoka. [5], we have

, 1
pa(D) > 24[ n*D* + ncy - D* — D* — ¢y - D?]
> nz;lD“fornZl.

So (1), (2) and (3) come from similar arguments in the Lemma 5. [
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THEOREM B. Let X be a smooth projective fourfold with a canon-
ical divisor Kx and let D €Div(X) be nef and big.
(1) When Ky is nef and big, then |k x| 1S birational for n > 11.
(2) When —K x is ample, then ®|_nky| is birational for n > 11.
(3) When D is nef and big, then ®|,p) Is birational for n > 11.

Proof. (1) Resolve the base locus of @14k | - Then we have a mor-
phism f: X' — X such that

(i) [4f"Kx| = [Ss| + F

(i1) |S4] is base-point free,
where |S,| is the moving part of [4f*A x| and F is the fixed part of
|4f*K x|. Then a general member of |S,|, say Sy, is a smooth threefold

since dim® 4, )(X) > 2 and |54 is base-ponit free.
Consider the following exact sequence:

0— Ox(Kx +(n—5)f"Kx)— Ox/(Kx + Si+(n—5)f"Kx)
— Os,(Ks, +(n - 5)R) = 0,
where R = f*Kx\s,. Hence if (I’|K54+(n——5)R| is birational, then so is
Q@ |nky|- To apply Theorem 2, we need to compute h%(S4,0s,((n —
5)R}).

Consider the following exact sequence: for a positive integer k,
0— OX/(kf*I\’X - 54) - OX/(kf*I\",\') - 054(}61{) — 0.
So

h%(S4,05,(3R)) 2h° (X', 0x/(3f*Kx)) — (X', Ox (3f*Kx — S1))
>2.

And h°(S4, Os,(kR)) > 1 for k > 3 because of (1) in Lemma 5.

If we take m = 3 in the Theorem 2, ®| ks, +(n—5)R| 18 birational for
n>11.

Proofs of (2) and (3) are very similar to (1). [
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