ON SUBCLASSES OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS. IV

M. K. AOUF, A. SHAMANDY and M. F. YASSEN

1. Introduction

Let S denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{\mathrm{n}} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the unit disc $U=\{z:|z|<1\}$. Let T be the subclass of S consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{n} \geq 0\right) \tag{1.2}
\end{equation*}
$$

A function $f(z) \in T$ is said to be in the class $S^{*}(\alpha, \beta, \mu)$ if and only if

$$
\begin{equation*}
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}-1}{\mu \frac{z f^{\prime}(z)}{f(z)}+1-(1+\mu) \alpha}\right|<\beta \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leq \beta \leq 1), \mu(0 \leq \mu \leq 1)$, and for all $z \in U$. Further $f(z) \in T$ is said to be in the class $C^{*}(\alpha, \beta, \mu)$ if ans only if $z f^{\prime}(z) \in$ $S^{*}(\alpha, \beta, \mu)$. The classes $S^{*}(\alpha, \beta, \mu)$ and $C^{*}(\alpha, \beta, \mu)$ were studied by Owa and Aouf [7] and Aouf [1].

We note that:
(i) $S^{*}(\alpha, \beta, 1)=S^{*}(\alpha, \beta)$ and $C^{*}(\alpha, \beta, 1)=C^{*}(\alpha, \beta)$ were studied by Gupta and Jain [2], Owa [6] and Kumar and Shukla [3].
(ii) $S^{*}(\alpha, 1,1)=S^{*}(\alpha)$ and $C^{*}(\alpha, 1,1)=C^{*}(\alpha)$ were studied by Silverman [8].

In order to show our results, we need the following lemmas given by Owa and Auf [7].

Lemma 1. A function $f(z)$ defined by (1.2) is in the class $S^{*}(\alpha, \beta, \mu)$ if and omly if

$$
\begin{equation*}
\sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu) a_{n} \leq(1+\mu) \beta(1-\alpha) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
D(n, \alpha, \beta, \mu)=(n-1)+\beta[\mu n+1-(1+\mu) \alpha] . \tag{1.5}
\end{equation*}
$$

The result is sharp.

Lemma 2. A function $f(z)$ defined by (1.2) is in the class $C^{*}(\alpha, \beta, \mu)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} n D(n, \alpha, \beta, \mu) a_{n} \leq(1+\mu) \beta(1-\alpha) . \tag{1.6}
\end{equation*}
$$

The result is sharp.

2. Closure Theorems

Let the functions $f_{,}(z)$ be defined, for $j=1,2, \cdots, m$, by

$$
\begin{equation*}
f_{,}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n} \quad\left(a_{n, j} \geq 0\right) \tag{2.1}
\end{equation*}
$$

for $z \in U$.
We shell prove the following results for the closure of functions the classes $S^{*}(\alpha, \beta, \mu)$.

Theorem 1. Let the functions $f_{f}(z)(j=1,2, \cdots, m)$ defined by (2.1) be in the class $S^{*}(\alpha, \beta, \mu)$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \tag{2.2}
\end{equation*}
$$

also belongs to the class $S^{*}(\alpha, \beta, \mu)$, where

$$
\begin{equation*}
b_{n}=\frac{1}{n} \sum_{j=1}^{m} a_{n, j} \tag{2.3}
\end{equation*}
$$

Proof. Since $f_{j}(z) \in S^{*}(\alpha, \beta, \mu)$, it follows from Lemma 1 that

$$
\sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu) a_{n, 3} \leq(1+\mu) \beta(1-\alpha), j=1,2, \cdots, m .
$$

Therefore

$$
\begin{align*}
& \sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu) b_{n}=\sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu)\left\{\frac{1}{M} \sum_{j=1}^{m} a_{n, j}\right\} \\
& \leq(1+\mu) \beta(1-\alpha) \tag{2.4}
\end{align*}
$$

Hence by Lemma $1, h(z) \in S^{*}(\alpha, \beta, \mu)$. Thus we have the theorem.

By using Lemma 2, we have

THEOREM 2. Let the function $f_{f}(z)(\jmath=1,2, \cdots, m)$ defined by (2.1) be in the class $C^{*}(\alpha, \beta, \mu)$. Then the function $h(z)$ defined by (2.2) also belongs the class $C^{*}(\alpha, \beta, \mu)$ under the condition (2.3).

Theorem 3. Let the functions $f_{J}(z)(j=1,2, \cdots, m)$ defined by (2.1) be in the class $S^{*}(\alpha, \beta, \mu)$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\sum_{j=1}^{m} d_{j} f_{j}(z) \quad\left(d_{j} \geq 0\right) \tag{2.5}
\end{equation*}
$$

is also in the same class $S^{*}(\alpha, \beta, \mu)$, where

$$
\begin{equation*}
\sum_{j=1}^{m} d_{j}=1 \tag{2.6}
\end{equation*}
$$

Proof. According to the definition of $h(z)$, we can write that

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty}\left[\sum_{j=1}^{m} d_{j} a_{n, 3}\right] z^{n} . \tag{2.7}
\end{equation*}
$$

By means of Lemma 1, we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu) a_{n, j} \leq(1+\mu) \beta(1-\alpha) \tag{2.8}
\end{equation*}
$$

for every $j=1,2, \cdots, m$. Hence we can observe that

$$
\sum_{n=2}^{\infty} D(\alpha, \beta, \mu)\left[\sum_{j=1}^{m} d_{j} a_{n, j}\right]=\sum_{j=1}^{m} d_{j}\left[\sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu) a_{n, J}\right]
$$

$$
\begin{equation*}
\leq\left[\sum_{j=1}^{m} d_{j}\right](1+\mu) \beta(1-\alpha)=(1+\mu) \beta(1-\alpha) \tag{2.9}
\end{equation*}
$$

which implies that $h(z) \in S^{*}(\alpha, \beta, \mu)$. Thus we have the theorem.

By using Lemma 2, we have
Theorem 4. Let the functions $f(z)$ defined by (2.1) be in the class $C^{*}(\alpha, \beta, \mu)$ for every $j=1,2, \cdots, m$. Then the function $h(z)$ defined by (2.5) is also belongs to the same calss $C^{*}(\alpha, \beta, \mu)$ under the condition (2.6).

Theorem 5. Let the function $f_{1}(z)$ defined by (2.1) be in the class $S^{*}(\alpha, \beta, \mu)$ and the function $f_{2}(z)$ defined by (2.1) be in the calss $C^{*}(\alpha, \beta, \mu)$. Then the function $k(z)$ defined by

$$
\begin{equation*}
k(z)=z-\frac{2}{3} \sum_{n=2}^{\infty}\left(a_{n, 1}+a_{n, 2}\right) z^{n} \tag{2.10}
\end{equation*}
$$

is in the calss $S^{*}(\alpha, \beta, \mu)$.
Proof. Since $f_{1}(z) \in S^{*}(\alpha, \beta, \mu)$ and $f_{2}(z) \in C^{*}(\alpha, \beta, \mu)$, by using Lemma 1 and 2 we get, respectively,

$$
\begin{equation*}
\sum_{n=2}^{\infty} D(n, \alpha, \beta, m u) a_{n, 1} \leq(1+\mu) \beta(1-\alpha) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu) a_{n, 2} \leq \frac{(1+\mu) \beta(1-\alpha)}{2} . \tag{2.12}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\frac{2}{3} \sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu)\left(a_{n, 1}+a_{n, 2}\right) \leq(1+\mu) \beta(1-\alpha) \tag{2.13}
\end{equation*}
$$

which implies that $k(z) \in S^{*}(\alpha, \beta, \mu)$, and the proof of Theorem 5 is thus completed.

3. Integral Operators

Theorem 6. Let the function $f(z)$ definede by (1.2) be in the class $S^{*}(\alpha, \beta, \mu)$ and let c be a real number such that $c>-1$. Then the function $f(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{3.1}
\end{equation*}
$$

also belongs to the class $S^{*}(\alpha, \beta, \mu)$.
Proof. From the representation of $F(z)$, it follows that

$$
\begin{equation*}
F(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}, \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{n}=\left[\frac{c+1}{c+n}\right] a_{n} \tag{3.3}
\end{equation*}
$$

Therefore,

$$
\sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu) b_{n}=\sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu)\left[\frac{c+1}{c+n}\right] a_{n}
$$

$$
\begin{equation*}
\leq \sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu) a_{n} \leq(1+\mu) \beta(1-\alpha) \tag{3.4}
\end{equation*}
$$

since $f(z) \in S^{*}(\alpha, \beta, \mu)$. Hence, by Lemma $1, F(z) \in S^{*}(\alpha, \beta, \mu)$.
Theorem 7. Let c be a real number such that $c>-1$. If $F(z) \in$ $S^{*}(\alpha, \beta, \mu)$, then the function $f(z)$ defined by (3.1) is univalent in $|z|<$ R^{*}, where

$$
\begin{equation*}
R^{*}=\inf _{n}\left[\frac{D(n, \alpha, \beta, \mu)(c+1)}{n(1+\mu) \beta(1-\alpha)(c+n)}\right]^{\frac{1}{n-1}} \quad(n \geq 2) \tag{3.5}
\end{equation*}
$$

The result is sharp.
Proof. Let $F(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{n} \geq 0\right)$. It follows from (3.1) that

$$
\begin{align*}
f(z)= & \frac{z^{1-c}\left[z^{\mathrm{c}} F(z)\right]^{\prime}}{(c+1)}(c>-1) \\
& =z-\sum_{n=2}^{\infty}\left[\frac{c+n}{c+1}\right] a_{n} z^{n} \tag{3.6}
\end{align*}
$$

In order to obtain the required result it suffices to show that $\mid f^{\prime}(z)-$ $1 \mid<1$ in $|z|<R^{*}$.

Now $\left|f^{\prime}(z)-1\right|<1$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n(c+n)}{(c+1)} a_{n}|z|^{n-1}<1 \tag{3.7}
\end{equation*}
$$

According to Lemma 1, we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{D(n, \alpha, \beta, \mu)}{(1+\mu) \beta(1-\alpha)} a_{n} \leq 1 \tag{3.8}
\end{equation*}
$$

Hence (3.7) will be true if

$$
\frac{n(c+n)|z|^{n-1}}{(c+1)}<\frac{D(n, \alpha, \beta, \mu)}{(1+\mu) \beta(1-\alpha)}
$$

or if

$$
\begin{equation*}
|z|<\left[\frac{D(n, \alpha, \beta, \mu)(c+1)}{n(1+\mu) \beta(1-\alpha)(c+n)}\right]^{\frac{1}{n-1}} \quad(n \geq 2) \tag{3.9}
\end{equation*}
$$

Therefore $f(z)$ is univalent in $|z|<R^{*}$. Sharpness follows it we take

$$
\begin{equation*}
f(z)=z-\frac{(1+\mu) \beta(1-\alpha)(c+n)}{D(n, \alpha, \beta, \mu)(c+1)} z^{n} \quad(n \geq 2) \tag{3.10}
\end{equation*}
$$

THEOREM 8. Let c be areal number such that $c>-1$. If $F(z)=$ $\left.z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{n} \geq\right)\right)$ belongs to the class $S^{*}(\alpha, \beta, \mu)$, than the function $f(z)$ defined by (3.1) is starlike of order $\sigma(0 \leq \sigma<1)$ in $|z|<$ $r^{*}(\sigma, \alpha, \beta, \mu)$, where

$$
\begin{equation*}
r^{*}(\sigma, \alpha, \beta, \mu)=\inf _{n}\left[\left[\frac{1-\sigma}{n-\sigma}\right]\left[\frac{c+1}{c+n}\right] \frac{D(n, \alpha, \beta, \mu)}{(1+\mu) \beta(1-\alpha)}\right]^{\frac{1}{n-1}}(n \geq 2) \tag{3.11}
\end{equation*}
$$

The result is sharp.
Proof. In order to establish the required result it suffices to show that

$$
\left|\frac{z f^{\prime}(z)-1}{f(z)}\right|<(1-\sigma) \text { in }|z|<r^{*}(\sigma, \alpha, \beta, \mu)
$$

Now

$$
\begin{aligned}
\left.\frac{\mid z f^{\prime}(z)}{f(z)}-1 \right\rvert\, & =\left|\frac{-\sum_{n=2}^{\infty}(n-1)\left[\frac{c+n}{c+1}\right] a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty}\left\{\frac{c+n}{c+1}\right] a_{n} z^{n-1}}\right| \\
& \leq \frac{\sum_{n=2}^{\infty}(n-1)\left[\frac{c+n}{c+1} a_{n}|z|^{n-1}\right.}{1-\sum_{n=2}^{\infty}\left[\frac{c+n}{c+1}\right] a_{n}|z|^{n-1}} \\
& <(1-\sigma)
\end{aligned}
$$

provided

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[\frac{n-\sigma}{1-\sigma}\right]\left[\frac{c+n}{c+1}\right] a_{n}|z|^{n-1}<1 \tag{3.13}
\end{equation*}
$$

By using (3.9), the ineqality (3.13) holds if

$$
\left[\frac{n-\sigma}{1-\sigma}\right]\left[\frac{c+n}{c+1}\right]|z|^{n-1}<\frac{D(n, \alpha, \beta, \mu)}{(1+\mu) \beta(1-\alpha)} \quad(n \geq 2)
$$

or if

$$
|z|<\left[\left\{\frac{1-\sigma}{n-\sigma}\right]\left[\frac{c+1}{c+n}\right] \frac{D(n, \alpha, \beta, \mu)}{(1+\mu) \beta(1-\alpha)}\right]^{\frac{1}{n-1}}(n \geq 2)
$$

Hence, $f(z) \in S^{*}$ in $|z|<r^{*}(\sigma, \alpha, \beta, \mu)$. Sharpness follows if we take the function $F(z)$ given by

$$
\begin{equation*}
F(z)=z-\frac{(1+\mu) \beta(1-\alpha)}{D(n, \alpha, \beta, \mu)} z^{n}(n \geq 2) \tag{3.14}
\end{equation*}
$$

Remark. Putting $c=\mu=1$ in Theorem 8, we get the result of Kumar and Shukla [3, Theorem 2].

Theorem 9. Let the function $f(z)$ be defined by (1.2). If $f(z) \in$ $S^{*}(\alpha, \beta, \mu)$, then the function $F(z)$ defined by (3.1) belongs to $S^{*}(\sigma)$, where

$$
\begin{equation*}
\sigma=\frac{(c+2)+\beta[(2 \mu-c)+c(1+\mu) \alpha]}{(c+2)+\beta[(3+c) \mu+1-(1+\mu) \alpha]} \tag{3.15}
\end{equation*}
$$

The result is sharp. Further, the converse need not be true.
Proof. Let $F(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \in S^{*}(\alpha)$, where b_{n} is given by (3.3), then, by Lemma 1, it holds if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[\frac{n-\sigma}{1-\sigma}\right] b_{n} \leq 1 \tag{3.16}
\end{equation*}
$$

Thus we have to find the largest value of σ so that the inequality (3.16) holds. Now by using (3.8), (3.16) holds if

$$
\left[\frac{n-\sigma}{1-\sigma}\right] b_{n} \leq \frac{D(n, \alpha, \beta, \mu)}{(1+\mu) \beta(1-\alpha)} a_{n}(n \geq 2)
$$

or if

$$
\begin{equation*}
\left[\frac{n-\sigma}{1-\sigma}\right]\left[\frac{c+1}{c+n}\right] \leq \frac{D(n, \alpha, \beta, \mu)}{(1+\mu) \beta(1-\alpha)}(n \geq 2) \tag{3.17}
\end{equation*}
$$

which is eqalivalent to

$$
\begin{align*}
\sigma & \leq \frac{(c+n) D(n, \alpha, \beta, \mu)-(c+1) n(1+\mu) \beta(1-\alpha)}{(c+n) D(n, \alpha, \beta, \mu)-(c+1)(1+\mu) \beta(1-\alpha)} \\
& =\sigma_{n}, \quad \text { say },(n \geq 2) . \tag{3.18}
\end{align*}
$$

It is easy to verify that σ_{n} is increasing function of $n(n \geq 2)$. Therefore $\sigma=i n f_{n \geq 2} \sigma_{n}=\sigma_{2}$ and, hence

$$
\sigma=\frac{(c+2)+\beta[(2 \mu-c)+c(1+\mu) \alpha]}{(c+2)+\beta[(3+c) \mu+1-(1 \mu) \alpha]} .
$$

To show the sharpness we take the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{(1+\mu) \beta(1-\alpha)}{D(2, \alpha, \beta, \mu)} z^{2} . \tag{3.19}
\end{equation*}
$$

Then

$$
\begin{equation*}
F(z)=z-\frac{(1+\mu) \beta(1-\alpha)}{(c+2) D(2, \alpha, \beta, \mu)} z^{2} \tag{3.20}
\end{equation*}
$$

and, therefore

$$
\begin{aligned}
\frac{z F^{\prime}(z)}{F(z)}= & \frac{(c+2) D(2, \alpha, \beta, \mu)-2(c+1)(1+\mu) \beta(1-\alpha) z}{(c+2) D(2, \alpha, \beta, \mu)-(c+1)(1+\mu) \beta(1-\alpha) z} \\
& =\frac{(c+2)+\beta[(2 \mu-c)+c(1+\mu) \alpha]}{(c+2)+\beta[(3+c) \mu+1-(1+\mu) \alpha]}, \text { for } z=1 .
\end{aligned}
$$

Hence, the result is sharp.

We now show that the converse of the theorem need not be true. To this end we consider the function

$$
\begin{equation*}
F(z)=z-\left[\frac{1-\sigma}{3-\sigma}\right] z^{3} . \tag{3.21}
\end{equation*}
$$

Lemma 1 guarantees that $F(z) \in S^{*}(\sigma)$. But the corresponding function

$$
\begin{equation*}
f(z)=z-\frac{(c+3)(1-\sigma)}{(c+1)(3+\sigma)} z^{3} \tag{3.22}
\end{equation*}
$$

does not belong to $S^{*}(\alpha, \beta, \mu)$, since, for this $f(z)$ the coefficient inequality of Lemma 1 is not satisfied.

Corollary 1. Let the function $f(z)$ be defined by (1.2). If $f(z) \in$ $S^{*}(\alpha)(0 \leq \alpha<1)$, then the function $F(z)$ defined by (3.1) belongs to the class $S^{*}\left(\frac{2+c \alpha}{c+3-\alpha}\right)$. The result is sharp. The converse need not be true.

Remarks.

(1) Putting $c=\mu=1$ in Theorem 9, we get the result of Kumar and Shukla [3,Theorem 1].
(2) $\alpha=0$ and $c+1$ in Corollary 1, we get the result of Kumar and Shukla [3,Corollary 1].

4. Fractional Integral Operator

We need the following definition of fractional integral operator given by Srivastava, Saigo and Owa [9].

Definition 1. For real numbers $\rho>0, \delta$ and η, the fractional integral operator $I_{0, z}^{p, \delta, \eta}$ is defined by

$$
\begin{equation*}
I_{0, z}^{\rho, \delta, \eta} f(z)=\frac{z^{-\sigma-\delta}}{\Gamma(\sigma)} \int_{0}^{z}(z-t)^{\sigma-1} F\left(\sigma+\delta,-\eta ; \sigma ; 1-\frac{t}{z}\right) f(t) d t \tag{4.1}
\end{equation*}
$$

where $f(z)$ is an analytic function in a simple connected region of the z-plain containing yhe origin with the order

$$
f(z)=O\left(|z|^{\epsilon}\right), z \longrightarrow 0,
$$

where

$$
\begin{equation*}
F(a, b: c: z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n}, \tag{4.2}
\end{equation*}
$$

where $(\mu)_{n}$ is pochhammer symbol defined by
$(\mu)_{n}=\frac{\Gamma(\mu+n)}{\Gamma(\mu)}= \begin{cases}1 & (n=0) \\ \mu(\mu+1) \cdots(\mu+n-1) & (n \in N=(\{1,2, \cdots\}),\end{cases}$
and the multiplicity of $(z-t)^{\rho-1}$ is removed by requiring $\log (z-t)$ to be real when $z-t>0$.

Remark. For $\delta=-\rho$, we note that

$$
I_{0, z}^{\rho,-\rho, \eta} f(z)=D_{z}^{-\rho} f(z)
$$

where $D_{z}^{-\rho} f(z)$ is the fractional interal of order ρ of $f(z)$ which was introduce by Owa ([4],[5]).

In order to prove our results for the fractional integral operator, we have to recall here the following lemma due to Srivastava, Saigo and Owa [9].

Lemma 3. If $\rho>0$ and $n>\delta-\eta-1$, then

$$
\begin{equation*}
I_{0, z}^{\rho, \delta, \eta} z^{n}=\frac{\Gamma(n+1) \Gamma(n-\delta+\eta+1)}{\Gamma(n-\delta+1) \Gamma(n+\rho+\eta+1)} z^{n-\delta} . \tag{4.4}
\end{equation*}
$$

With the aid of Lemma 3, we have

Theorem 10. Let $\rho>0, \delta<2, \rho+\eta>-2, \delta-\eta<2$, and $\delta(\rho+\eta) \leq 3 \rho$. If $f(\dot{z}) \in T$ is in the class $S^{*}(\alpha, \beta, \mu)$, then

$$
\begin{align*}
\left|I_{0, z}^{\rho, \bar{\delta}, \eta} f(z)\right| \geq & \frac{\Gamma(2-\delta+\eta)|z|^{1-\delta}}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)} \\
& \left\{1-\frac{2(1+\mu) \beta(1-\alpha)(2-\delta+\eta)}{D(2, \delta, \beta, \mu)(2-\delta)(2+\rho+\eta)}|z|\right\} \tag{4.5}
\end{align*}
$$

and

$$
\begin{align*}
\left|I_{0, z}^{\rho, \delta, \eta} f(z)\right| \leq & \frac{\Gamma(2-\delta+\eta)|z|^{1-\delta}}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)} \\
& \left\{1+\frac{2(1+\mu) \beta(1-\alpha)(2-\delta+\eta)}{D(2, \delta, \beta, \mu)(2-\delta)(2+\rho+\eta)}|z|\right\} \tag{4.6}
\end{align*}
$$

for $z \in U_{0}$, where

$$
U_{0}=\left\{\begin{array}{r}
U(\delta \leq 1) \\
U-\{0\}(\delta>1)
\end{array}\right.
$$

The eqalities in (4.5) and (4.6) are attained by the function

$$
\begin{equation*}
f(z)=z-\frac{(1+\mu) \beta(1-\alpha)}{D(2, \alpha, \beta, \mu)} z^{2} . \tag{4.7}
\end{equation*}
$$

Proof. By using Lemma 3, we have

$$
\begin{align*}
I_{0, z}^{\rho, \delta, \eta} f(z)= & \frac{\Gamma(2-\delta+\eta)}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)} z^{1-\delta} \\
& -\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(n-\delta+\eta+1)}{\Gamma(n-\delta+1) \Gamma(n+\rho+\eta+1)} a_{n} z^{n-\delta} . \tag{4.8}
\end{align*}
$$

Letting

$$
\begin{align*}
H(z)= & \frac{\Gamma(2-\delta) \Gamma(2+\rho+\eta)}{\Gamma(2-\delta+\eta)} Z^{\delta} I_{0, z}^{\rho, \delta, \eta} f(z) \\
& z-\sum_{n=2}^{\infty} h(n) a_{n} z^{n} \tag{4.9}
\end{align*}
$$

where
$(4.10) \quad h,(z)=\frac{(2-\delta+\eta)_{n-1}(1)_{n}}{(2-\delta)_{n-1}(2+\rho+\eta)_{n-1}}(n \geq 2)$
we can see that $h(n)$ is non-increasing for intergers $n \geq 2$, and we have

$$
\begin{equation*}
0<h(n) \leq h(2)=\frac{2(2-\delta+\eta)}{(2-\delta)(2+\rho+\eta)} \tag{4.11}
\end{equation*}
$$

Since $f(z) \in S^{*}(\alpha, \beta, \mu)$, Lemma 1 implies that

$$
D(2, \alpha, \beta, \mu) \sum_{n=2}^{\infty} a_{n} \leq \sum_{n=2}^{\infty} D(n, \alpha, \beta, \mu) a_{n} \leq(1+\mu) \beta(1-\alpha)
$$

so that

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{(1+\mu) \beta(1-\alpha)}{D(2, \alpha, \beta, \mu)} \tag{4.12}
\end{equation*}
$$

Therefore, by using (4.11) and (4.12), we have

$$
\begin{align*}
|H(z)| & \geq|z|-h(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& \geq|z|-\frac{2(1+\mu) \beta(1-\alpha)(2-\delta+\eta)}{D(2, \delta, \beta, \mu)(2-\delta)(2+\rho+\eta)}|z|^{2} \tag{4.13}
\end{align*}
$$

and

$$
\begin{equation*}
|H(z)| \geq|z|+h(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \tag{4.14}
\end{equation*}
$$

This completes the proof of Theorem 10.

Theorem 11. Let $\rho>0, \delta<2, \rho+\eta>-2, \delta-\eta<2$, and $\delta(\rho+\eta) \leq$ 3 ρ. If $f(z) \in T$ is in the class $C^{*}(\alpha, \beta, \mu)$, then

$$
\begin{align*}
\left|I_{0, z}^{\rho, \delta, \eta} f(z)\right| \geq & \frac{\Gamma(2-\delta+\eta)|z|^{1-\delta}}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)} \\
& \left\{1-\frac{(1+\mu) \beta(1-\alpha)(2-\delta+\eta)}{D(2, \delta, \beta, \mu)(2-\delta)(2+\rho+\eta)}|z|\right\} \tag{4.15}
\end{align*}
$$

and

$$
\begin{aligned}
\left|I_{0, z}^{p, \delta, \eta} f(z)\right| \leq & \frac{\Gamma(2-\delta+\eta)|z|^{1-\delta}}{\Gamma(2-\delta) \Gamma(2+\rho+\eta)} \\
& \left\{1+\frac{(1+\mu) \beta(1-\alpha)(2-\delta+\eta)}{D(2, \delta, \beta, \mu)(2-\delta)(2+\rho+\eta)}|z|\right\}
\end{aligned}
$$

for $z \in U_{0}$, where U_{0} is defined Theorem 10. The equalities in (4.15) and (4.16) are attained by the function

$$
\begin{equation*}
f(z)=z-\frac{(1+\mu) \beta(1-\alpha)}{2 D(2, \alpha, \beta, \mu)} z^{2} . \tag{4.17}
\end{equation*}
$$

Remarks.
(1) Taking $\rho=-\delta=k$ in Theorem 10 and 11, we get the results of Theorem 3 and 4 obtained by Aouf [1], respectively.
(2) Putting $\mu=1$ in Theorem 10 and 11, we get the corresponding results for the classes $S^{*}(\alpha, \beta)$ and $C^{*}(\alpha, \beta)$ studied by Gupta and Jain [2].

References

1. M. K. Aouf, Onsubclasses of univalent functions with negative coefficients.III, Bull. Soc Roy. Sci. Lège 56 (1987), no 5-6, 465-478.
2. V. P. Gaupta and P.K. Jain, Certain calsses of univalent functions with negative coefficients, Bull. Austral. Math. Soc. 14 (1976), 409-416.
3. V. Kumar and S.L.Shukla, On a libera integral operator, Kyungpuk Math. J. 24 (1984), n0.1, 39-43.
4. S. Owa, On the distortion theorems.I, Kyungpook Math.18(1978), 53-59.
5. S. Owa, Some applications of the fractional calculus, Research Notes in Math. 187, pitman, Boston, London and Melbourne, 1985, 164-175.
6. S. Owa, On the classes of univalent functions with negative coefficients, Math. Japon 27 (1982), no.4, 409-416.
7. S. Owa and M.K. Aouf, On subclasses of univalent functions with negatıve coefficients, Pusan Kyongnam Math J. 4 (1988), 57-73.
8. H. Silverman, Univalent functions with negative coefficients, Proc. Amer Math. Soc 51 (1975), 109-116.
9. H.M. Srivastava, M.Saigo and S Owa, A class of distortion theorems involving certam operators of fractional calculus, J. Math. Anal. Appl. 131 (1988), 412-420.

Department of Mathematics
Faculty of Science
University of Mansoura
Mansoura, Egypt

