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ON SUBCLASSES OF UNIVALENT FUNCTIONS
WITH NEGATIVE COEFFICIENTS. IV

M. K. AGUF, A. SHAMANDY anp M. F. YASSEN

1. Introduction

Let S denote the class of functions of the form

(1.1) flz)=z+ Zanz"’

n=2

which are analytic and univalent in the unit disc U = {z : jz| < 1}.
Let T' be the subclass of S consisting of functions of the form

(1.2) fz) =2~ anz"(an > 0).
n=2
A function f(z) € T is said to be in the class S*(«, f, 1) if and only if
49
(13) — <8

Eey 1=+ pa

for some a(0 < B < 1), p(0 < p < 1), and for all z € U. Further
f(2) € T is said to be in the class C*(«a, B, ) if ans only if zf'(2) €
S*(e, B,1t). The classes S*(e, 8, 1) and C*(a, 8, ) were studied by
Owa and Aouf [7] and Aouf [1].
We note that:
(1) 5*(e,B,1) = §*(a, B) and CXa, B,1) = C*(a, B) were studied by
Gupta and Jain {2}, Owa {6] and Kumar and Shukla {3].
(i) 5*(e,1,1) = S*(a) and C*(a,1,1) = C*(a) were studied by Silver-
man [8].

In order to show our results, we need the following lemmas given by
Owa and Auf [7].
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LEMMA 1. A function f(z) defined by (1.2} is in the class S*(a, 8, 1)
if and omly if

(14) Y D(n,a, 8, w)an < (14 wB(1~a),
n=2

where

(1.5) D(n,a,8,p) = (n — 1)+ Blpn + 1 — (1 + p)al.

The result is sharp.

LEMMA 2. A function f(z) defined by (1.2} isin the class C*(a, B, p)
if and only if

(1.6) Y nD(n,a,B,p)an < (1 + p)B1 ~ a).
n=2

The result is sharp.

2. Closure Theorems

Let the functions f,(z) be defined, for j = 1,2,--- ,m, by

(2.1) H(z)=2- i an 2" (@n,; 2 0)

n=2

forz € U.

We shell prove the following results for the closure of functions the
classes S*(e, 5, ).

THEOREM 1. Let the functions f,(z)(j = 1,2,--- ,m) defined by
(2.1) be in the class S*(a, 8, ). Then the function h(z) defined by

(2.2) Mzy=2- z bp2"

n=2
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also belongs to the class S*(a, 8, 1), where
1 m

(2-3) bn = "; Zlan‘}.
J:

Proof. Since f,(z) € S*(a, B, 1), it follows from Lemma 1 that

> D(n,0, 8, m)an, S (14 )bl -a), j=1,2,--- ,m.

n=2

Therefore

fo o]

ZD(n,Q,ﬁ,ﬂ)bn = ZD(naaaﬁ,P){I} Zaﬂ,f}

n=2 n==2 =1

(2.4)
< {1+ )81 - a)

Hence by Lemma 1, h(z) € S*(a, 8, 12). Thus we have the theorem.

By using Lemma 2, we have

THEOREM 2. Let the function f,(z) ( = 1,2,--- ,m) defined by
(2.1) be in the class C*(«, B, ). Then the function h{z) defined by
(2.2) also belongs the class C*(«, 8, 1) under the condition (2.3).

THEOREM 3. Let the functions f,(z){(j = 1,2,--- ,m) defined by
(2.1) be in the class S*(a, B8, 1t). Then the function h(z) defined by

(2.5) h(z) = ZdeJ(z) (d, = 0)
=1

is also in the same class S*(a, 8, 1), where

(2.6) \Zj d; =1,
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Proof. According to the definition of h(z), we can write that
(2.7) h(z) =z — Z[Zd Gn 2"
n=2 j=1

By means of Lemma 1, we have

(2.8) > D(n,e, 8, pYan,; < (14 p)B(1 —a)
n==2
for every j =1,2,--- ,m. Hence we can observe that
z Da, ﬂ,ﬁ)lzd an,y| = Zd [Z D(n,a, B, pt)an,,;)
n=2 n=2
(2.9)

<13 d5J(1+ WA — &) = (L4 1AL — )

1=1

which implies that h(z) € $*(a, 8, #). Thus we have the theorem.

By using Lemma 2, we have

THEOREM 4. Let the functions f(z) defined by (2.1} be in the class
C*a, B, pu) forevery j =1,2,--- ,m. Then the function h(z) defined by
(2.5) is also belongs to the same calss C*(a, B, 1) under the condition

(2.6).

THEOREM 5. Let the function fi(z) defined by (2.1) be in the class
S*(a, B, ) and the function fa(z) defined by (2.1) be in the calss

C*(e, B, ). Then the function k(z) defined by

(2.10) k(z) =2~ :‘32- Z(an,] +an2)z"

n=2
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1s in the calss S*{(a, 8, u).

Proof. Since fi(z) € 8*(a, B, 1) and f(2) € C*(a, B, ), by using
Lemima 1 and 2 we get, respectively,

(2.11) > D(n,a,Bymu)ans < (1+p)B(l—a)
n=2
and
- (1+ B —a)
(212) nz::zD(n) a, ﬁa ﬂ)anﬂ < 9 .

Therefore, we have
2 (o o}
(213) 3" Dln,a,B)(ana +ang) < (1+mH(1 )
n=2
which implies that k(z) € S*(«, 8, 1), and the proof of Theorem 5 is
thus completed.

3. Integral Operators

THEOREM 6. Let the function f(z) definede by (1.2) be in the class
S*(a, B,p) and let ¢ be a real number such that ¢ > —1. Then the
function f(z) defined by

(3.1) F(z) = SH1 / "o fe)t

zc

also belongs to the class S*(a, B, p).

Proof. From the representation of F(z), it follows that

(32) F(z) =2~ baz",

n=2
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where
(3.9) by =[S an
Therefore,

ib(n,a,ﬁ,u)b E_ZZD(n B, B
34) < iD(n,a,ﬂ,Man < (14 pB(1 - a),

since f(z) € S*(a, 8, u). Hence, by Lemma 1, F(z) € §*(e, 8, ).

THEOREM 7. Let ¢ be a real number such that ¢ > —1. If F(z2) €
S*(a, B, 1), then the function f(z) defined by (3.1) is univalent in |z| <

R*, where

Di(n, o, B, w)(c + 1)
B9 R =m0 - oYt n

The result is sharp.

Proof. Let F(2) = 2 — 3 v, anz™(an > 0). It follows from (3.1)
that

=T (2,

21 —c[ch(z)]f

f(Z)x (C+1) (C>—1)
> c+n n
(3.6) =z-nz=2[c+1]anz .

In order to obtain the required result it suffices to show that |f'(z) —
1/ < 1in |z] < R".
Now |f'(z) — 1| < 1if

(3.7) Z ”((;:1';) A" < 1

n=2



On Subclasses of Univalent Functions 225

According to Lemma 1, we have

oo

D(n, o, B, 1)
&8 L i+ wp - 5

Hence (3.7) will be true if
meAmle" _ Din,auf, )
(c+1) (L4 p)B(l - o)

or if
Din,a B (e +1) - 1
Therefore f(z) is univalent in |2] < R*. Sharpness follows it we take
_ ., (+pB(l-a)ctn) ,
(3.10) (2)== Dinia, Bale £ 1) 2" (n>2)

THEOREM 8. Let ¢ be areal number such that ¢ > —1. If F(z) =
z— 30 anz"(ay >)) be}ong.s to the class S*(a, f, ), than the func-
tion f(z) defined by (3.1) is starlike of order (0 < ¢ < 1) in |z| <

r*(o,a, B, 1), where

(3.11)
—o..c+1l, D(n,a,pB,p)

r*(o, @, ﬂ,u)—mfn =G +Mﬁ(l_a)]ri—l(nzz).

The result is sharp.

Proof. In order to establish the required result it suffices to show

that ,
12 )(‘2)* < (@ =0) in 2] < (o, B, p).
Now
2(2) . [_E:;z("_l){cﬂ}anz -
f(2) 1D IS [ [ i
Fln— DiEHenl
T 1= 300 S a2
<(1-oa)
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provided

(3.13) Z[ — c+1]anlz|"-’ <1

n=2

By using (3.9), the ineqality (3.13) holds if

n—o. c+n. -1 D(n,o,8,p)
2RI < sl (n22)

or if
1-o0.,.c+1, D(n,a,Bpn)

< I s

Hence, f(z) € $* in |2] < r*(0,0, B, ). Sharpness follows if we take
the function F(z) given by

J=T(n > 2).

_,. Q+ws-o) ,
(3.14) F() =2 = Sp ot (n 2 2).

REMARK. Putting ¢ = p = 1 in Theorem 8, we get the result of
Kumar and Shukla [3, Theorem 2J.

THEOREM 9. Let the function f(z) be defined by (1.2). K f(z) €
S*(a, 8, 1t), then the function F(z) defined by (3.1) belongs to S*(o),

where

(3.15) . (c+2)+Bl2p —c)+o(l+ p)o]
' (c+2)+ BB+ p+1—(1+ pa]

The result is sharp. Further, the converse need not be true.

Proof. Let F(z) = z — ¥ o, baz® € S*(a), where b, is given by
(3.3), then, by Lemma 1, it holds if and only if

(3.16)

n=2
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Thus we have to find the largest value of ¢ so that the inequality (3.16)
holds. Now by using (3.8), (3.16) holds if

n—o D(n,a,ﬁ,,u)

TP < T3 B -2 %
orif
611 SIS s 2 2)

which is eqalivalent to

- < (¢ + n)D(n,a, B, 1) — (¢ + Dn(1 + p)B(1 — a)
= {(e+n)D(n,a,f,p) — (c+ 1)1 + 1)B(1 — a)

(3.18)
= o, say,(n>2).

It is easy to verify that oy, is increasing function of n(n > 2). Therefore
0 = infa>20, = 02 and, hence

_ (e +2)+ 026 — ¢) +c(1 + p)a]
(e+2)+ BB+ ) +1— (Lp)a]

To show the sharpness we take the function f(z) given by

_ . (4uB(l-oa) ,
(3.19) H2) = 2= g a2
Then

(c+2)D(2, a8 p)

and, therefore

2F'(z) _(c+2)D(2,0,8,p) — 2(c + 1)(1 + p)B(1 — &)z

F(z)  (c+2)D(2,e,8,p) — (c+1)(1 + p1)B(1 —a)z
_ (e+2) +8l2u — c) + (1 + p)a]

T e+2)+ BB+ +1—(1+p)e’

for z = 1.
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Hence, the result is sharp.

We now show that the converse of the theorem need not be true. To
this end we consider the function

l-¢
3—-0c

(3.21) Fzy=2-]

12°.

Lemma 1 guarantees that F(z) € 5*(c). But the corresponding func-
tion

_ (C+3)(1—‘7)23
(c+1)3+0)

(3.22) f(z) =z

does not belong to S*(«, 3, 1), since, for this f(z) the coefficient in-
equality of Lemma 1 is not satisfied.

COROLLARY 1. Let the function f(z) be defined by (1.2). If f(z) €
S$*(a)(0 £ a < 1), then the function F(z) defined by (3.1) belongs to
the class S*(c—z_i%). The result is sharp. The converse need not be
true.

REMARKS.

(1) Putting ¢ = p = 1 in Theorem 9, we get the result of Kumar
and Shukla {3, Theorem 1].

(2) « =0 and c+1 in Corollary 1, we get the result of Kumar and
Shulda [3,Corollary 1].

4. Fractional Integral Operator

We need the following definition of fractional integral operator given
by Srivastava, Saigo and Owa [9].
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DEFINITION 1. For real numbers p > 0, § and 7, the fractional
integral operator Ig”f’" is defined by

z—-a—&

(4.1) Ig”f’"f(z) = (o) /oz(z —tY 1 F(o + 6, —n; 031 — ;)f(t)dt

where f(z) is an analytic function in a simple connected region of the
z-plain containing yhe origin with the order

f(z) =0(|z[), 2 — 0,

where

€ > Maz(0,6n) — 1,

e z) = 3 .(E}.n_.(_.b_).ﬁzn
(4.2) F(a,b:c:z) nzgo ORI

where (1), is pochhammer symbol defined by
(4.3)
o= B _ (1 (n =)
) ppt+1)(p+n-1) (neN=({L2-}),

and the multiplicity of (z — )~ is removed by requiring log{z —t) to
be real when z —t > 0.

REMARK. For § = —p, we note that
Ip- " f(z) = D * f(2),
where D7 ? f(z) is the fractional interal of order p of f(2) which was
introduce by Owa ([{4],{5]).

In order to prove our results for the fractional integral operator, we

have to recall here the following lemma due to Srivastava, Saigo and
Owa [9].
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LEMMA 3. fp>0andn>§—n—1, then

F(n+1)I‘(n—6+q+1) -8
. Iz = n=8,
(44) 0.2 % I‘(n-6+l)[‘(n+p+q+1)z

With the aid of Lemma 3, we have

THEOREM 10. Let p > 0, § < 2, p+n > -2, § -0 < 2, and
§(p+ 1) <3p. If f(2) € T is in the class $*(«, B, ), then

G T2 —6+n)z'*
5" f N 2 50 =T @ + p )
(4.5) S O R R

and
I(2—6+n)z['~°
Ipv'ssﬂ <
I G,z f(z)l —r(2—6)r(2+p+17)

2(1 + WL — o)~ +m)
(5) TN N R CESEe L

for z € Uy, where

U5 <1)
Uy =
U-{0}(6>1)
The eqalities in (4.5) and (4.6) are attained by the function
_ . (1+wB(l-a),
®1 &)= G e

Proof. By using Lemma 3, we have

8.1 _ D2-6+9) 1—6
L") =v5 —or@t o v0)°

(4.8) mipl‘(n+1)I‘(n—6+q+1) ans.

=8+ Dl(n+p+ntl) =



On Subclasses of Univalent Functions 231

Letting
R
(4.9) z— i h(n)an 2",
where -
(410 ) M) = o (B8 u) IS 2)

B (2- 8}n-1(2+ o+ N)n—
we can see that h(n) is non—incre_asing for intergers n > 2, and we have
2(2—-6+1)
(2-8)2+p+n)
Since f(z) € S*(a, 8, 1}, Lemma 1 implies that

(4.11) 0< h(n) < h(2) =

D(2,,8,1) Y an < Y D(n,0,8,p)on < (1+p)B(1 — a),

n=2 n=2
so that
S (1+p)B(1 —a)
412) 2 S g
Therefore, by using (4.11) and {4.12), we have
[H(2)| 2 |2} = B@)|zf* Y an
n=2
A1+ p)B(l —a)(2=8+7) | o
(4.13) SR TEN N N T Es
and
[H(2)| 2 |2l + h(2)|zf* ) an
n=2
(414) > |z|+ 2(14‘#)5(1—0’)(2—61”1)

z|?
D@68, -6+ p+m)
This completes the proof of Theorem 10.
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THEOREM 11. Let p > 0,86 < 2,p+n > —2,6—n < 2, and §(p+1) <
3p. If f(2) € T is in the class C*{a, 8, ), then

T(2 -6+ 7))z ~*
L2-6I(2+p+1)
(1+p)B(Q-a)2-6+1)

157 f(2) >

(415) U= DE68m@-0@+s+m
and
. (2 = § + )|z~
2" N <56 573 10 57
(4.16) (14 ERBL-CZ84n) ),

D(2,6,8,p)(2~6)(2+p +7)

for z € Uy, where Uy is defined Theorem 10. The equalities in (4.15)
and (4.16) are attained by the function

(L4 p)B( - a)zz
2D(2’ a’ ﬁ’l“) '

(4.17) f(z) =2

REMARKS.

(1) Taking p = —§ = k in Theorem 10 and 11, we get the results
of Theorem 3 and 4 obtained by Aouf 1], respectively.

(2) Putting u = 1 in Theorem 10 and 11, we get the corresponding
results for the classes S*(a, #) and C*(a, ) studied by Gupta
and Jain [2].
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