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ON SUBCLASSES OF UNIVALENT FUNCTIONS 
WITH NEGATIVE COEFFICIENTS. IV

M. K. AOUF, A. SHAMANDY and M. F. YASSEN

1. Introduction

Let S denote the class of functions of the form

oo
(1-1) _f(z) = z + £ab

n=2
which are analytic and univalent in 난le unit disc U — {z \ \z\ < 1).

Let T be the subclass of S consisting of functions of 난le form

8

(1.2) 了(z) = z 如2严(如 N 0).

n—2

A function f(z) € T is said to be in the 시ass S*(% /?, /z) if and only if 

zf'(z) _ I

(1-3) 3，"？-——厂心
M f(z)+ 1 - (1 + 小

fb흐 some a(0 << 1), 尹(0 < < 1), and for all 2 G Further
f(z) E T is said to be in the class (7*(a, ^0,//) if ans only if G 

S*(a, /3y /z). The classes and (7*(%丿8,“)were studied by

Owa and Aouf [7] and Aouf [1].

We note 난lat:

(i) S*(a,0》l) = S*(a,幻 and C*(a, 1) — C*(aj3) were studied by 

Gupta and Jain [2], Owa [6] and Kumar and Shukla [3].

(ii) S*(a, 1,1) = S*(a) and C*(a, 1,1) = C*(o;) were studied by Silver- 

man [8].

In o호der to show our results, we need the following lemmas given by 

Owa and Auf [7].

Received May 9, 1994 .

219



220 M. K. AOUF, A. SHAMANDY and M. F. YASSEN

LEMMA 1. A function /(z) defined by (1.2) is in the class S*(ay p) 

if and omly if

oo
(1.4) 22 D(n，% 8, “)어，< (14- “)/3(1 - a),

n=2

where

(1.5) D(n, a,们 /z) = (n - 1) + + 1 - (1 + “)a].

The result is sharp.

LEMMA 2. A function f(z) deGned by (1-2) is in the class C*(a, /?, ft) 

if and only if

oo
(1-6) £ nD(n, a, 0, p)an < (1 + ")0(1 — a).

n=2

The result is sharp.

2. Closure Theorems

Let the functions fjz) be defined； for j = 1,2, ••- ,m, by

oo
(2.1) 方⑵=z - £ an^zn (an,j > 0)

n—2

for z EU.

We shell prove the following results for the closure of functions the 

classes S*(a,^,/z).

Theorem 1. Let the functions fj(z)(j = 1,2, - - - ,m) defined by

(2.1) be in the class Then the function h(z) defined by

oo
(2.2) h(z) = z — £ h^n

n=2
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also belongs to the class where

. m
(2.3) bn =

j=i

Proof. Since f，(z) € S*(a, ^,/z), it follows from Lemma 1 that

oo
,a,疗,“)< (1+ 曲3。- a), j = 1,2, • • - , m.

n=2

Therefore

oo oo ] m
£ D(n, a, 0, n)bn = £ P(n, % "”)｛爾:如,丿｝ 

n=2 n=2 j=l
(2-4)

<(1 + g - «).

Hence by Lemma 1, h(z) £ Thus we have 나比 theorem.

By using Lemma 2, we have

THEOREM 2. Let the function f?(z) (j = L2广…,m) defined by

(2.1) be in the class <7*(a,^,/z). Then the function h(z) deiined by

(2.2) also belongs the class under the condition (2.3).

THEOREM 3. Let the functions — 1,2, ••- , m) defined by

(2.1) be in the class 危).Then the function h(z) defined by

m

(2-5) Mz)=£Wj(z) (d｝ > 0)

J=1

is also in the same class where

m
(2.6) £0 = L

j=i



222 M. K. AOUF, A. SHAMANDY and M. F. YASSEN

Proof. According to the definition of h(z\ we can write that

oo m
(2-7) =

n=2 J=1

By means of Lemma 1, we have

oo
(2.8) £ D(n, a,月,/z)anj < (1 + 火)8(1 - a)

n=2

for every j = 1,2, ••- , m. Hence we can observe that

8 m m oo
〉：刀(％ 8)djQ”] =〉% 鶴，£)如，」 
n—2 j—1 j=l n=2

(2-9)
m

< 妇(1 + ")0(1 - a) = (1 + 卩)0(1 - «)

J=1

which implies that K(z) E S*(a,8,/z). Thus we have the theorem.

By using Lemma 2, we have

THEOREM 4. Let the functions f(z) defined by (2.1) be in the class 

C,*(a,但 “)for every j = 1,2, ••• ,m. Then the function h(z) deGned by 

(2.5) is also belongs to the same calss under the condition

(2-6).

THEOREM 5. Let the function fi(z) defined by (2,1) be in the class 

S*(%/3危)and the function J3(z) defined by (2.1) be in the calss 

C*(으用)卩、). 꼬h曲 the function k(z) defined by

n 8
(2.10) k(z) = Z — § ^2(dn,l + an,2)z” 
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is in the calss S*(a“们 产).

Proof. Since j[(z) C S*(c& 鶴“)and f&) G by using

Lemma 1 and 2 we get, respectively,

oo

(2.11) D(n, a, 0, mu)an>1 < (1 4-尹)0(1 - «) 

n=2

and

z9 19\ n/ n x v(1 + "MO 一
(2.12) 〉丿 D(n, % “)S,2 < 2 •

n—2

Therefore, we have

2 8

(213) - D(n, a, (3, 口)(a心 + an,2) < (1 + 心坦 一 «)
n=2

which implies that 机z) G S*(a,0/z), and the proof of Theorem 5 is 

thus completed.

3e Integral Operators

THEOREM 6. Let the function f(z) deGnede by (1.2) be in the class 

S*(a)0危)and let c be a real number such that c > —1. Then the 

function /(z) defined by

(3.1) f(z) =耳""—(財

also belongs to the class S부(a,",*).

Proof. From the representation of F(z), it follows that

8

(3-2) F(z) = z — £：如宀

n~2
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where

(3.3) bn = I으挡]a”.
c + n

Therefore, 

oo^ OO c + ]
£ P(n, a, 0, p,)bn = £ P(n, a, 0, 期厲기如 

n=2 n=2
8

(3.4) < £ D(n, a, 0, /z)a„ < (1 + 卩)8(1 一 a),

n=2

since f(z) g Hence, by Lemma 1, F(z) € S*(%8”).

THEOREM 7. Let c be a real number such that c > —1. If F(z) G 

S*(% 知 jtz), then the function f(z) defined by (3.1) is univalent in \z\ < 

i?*, where

(3句 "惻謂潇쁭若느的 心 2).

The result is sharp.

Proof, Let F(z) = z — a«^n(an 2 0). It follows from (3.1) 

that

8 .
(3-6) =z-£[ 믈勺 ab.

Mc+1

In order to obtain the required result it suffices to show that L尸(z)— 

1| < 1 in |z| V R\

Now |f'(z) — 1| < 1 if

(3-7)
V' n(c + n) ] 
스 z函7r시 히 < 1.
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(3-8)

According to Lemma 1, we have

E°° 时

…+ 如一

Hence (3.7) will be true if

n(c + n)|z|i

(c+1) (1 + ^)/3(1 - a)

or if

(3.9)
D(n,a,/?,/z)(c + l) _느

聞〈成讦顽IF并지 (n -2)-

Therefore f(z) is univalent in \z\ < I군*. Sharpness follows it we take

(3.10) 为) = z一벚严肯邛뜨拝小 (n>2)

THEOREM 8. Let c be areal number such that c > —1. If F(z)= 

z — £；二2 anZn(an >)) belongs to the class S*(a」3、卩than the func

tion f(z) defined by (3.1) is starlike of order a(0 < a < 1) in |2：| < 

where

(3.11)

r",% 却) = inf［［土으］［으卜］ %骂f " F느 (n > 2). 
n n ~ a c + n (1 + /x)p(l — a)

The result is sharp.

Proof. In order to establish the required result it suffices to show 

that

< (1 - cr) in \z\ < r*(cr, a,/z).
j(Z)

Now

I 心) r 厂〉京=23-1)［쓶君頌产-】 
心 1-1 1-e 으顼쁞m 如/-I

V 2為S - 顼으学이히I

- 1」隽財串同히I

< (1 一 이,
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provided

(3.13)
方三/芸］ 이히 

n=2

By using (3.9), the ineqality (3.13) holds if

*2 c + n
(1 財 c+『 히 <(1 + 泗顶(n-2)

or if
团 < ［［上으］仁느］ P何，어刼)_］느* > 2).

Hence, /(z) € S* in \z\ V Sharpness follows if we take

the function F(z) given by

(3-14) 殆)=」摄鷲温"心2).

REMARK. Putting c =卩=1 in Theorem & we get the result of 

Kumar and Shukla [3, Theorem 2].

THEOREM 9. Let the function f(z) be defined by (1.2). If f(z) € 

then the function F(z) defined by (3.1) belongs to S*(a)} 

where

(3.15)
_ (c + 2) + 0((2“ 一 c) + c(l + ”)a]

(c + 2) + 0[(3 + c)fjL + 1 — (1 + /x)a]

The result is sharp. Further, the converse need not be true.

Proof. Let F(z) = z — £芸2 妇2产 € S*(a), where bn is given by 

(3.3), then, by Lemma 1, it holds if and only if

(3.16)

n—2
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Thus we have to find the largest value of a so that the inequality (3.16) 

holds. Now by using (3.8), (3.16) holds if

or 11

(3.17) 壬씊湍쁘心）,
which is eqalivalent to

< (c + n)D(n, % 0,尹)一(c + l)n(l + 〃)8(1 - a) 
° ~ (c + n)D(n, a, 0, 〃)一 (c + 1)(1 + 产)8(1 - a)

(3.18)

=°n, say , (n > 2).

It is easy to verify that an is increasing function of n(n > 2). Therefore 

a = myn>2crn = 02 and, hence

(c + 2) + ^[(2/z — c) + c(l + 产
——-.…一. — , ‘ , —.

(c + 2) + /3[(3 + c)/z + 1 — (1产)a]

To show the sharpness we take the function f (z) given by

(3.19)
f(z\ = z _ (1 + 〃用(1 二잇/

Then

(3.20)
F(z\ = _(1 + MJ二으) 
[)~ (c+ 2)2(2, a, 0”)’

and, therefore

_ (c + 2)0(2, % 0, G — 2(c + 1)(1 + — Q)Z

= (c + 2)2(2, a, 0, Q —(c + 1)(1 + “)0(1 — a)z

= (c + 2) + 0[(叩 一 c) + c(l + fb z =]

~ (c + 2) + 仞(3 + c)〃 + 1 - (1 + 一
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Hence, the result is sharp.

We now show that the converse of the theorem need not be true. To 

this end we consider the function

(3.21) 财=z -食专宀
0 — (7

Lemma 1 guarantees that F^z) € S*(<r). But the corresponding func

tion

(3.22)
f(z\ = z _ (c +3)(1-이 3
八) (c + l)(3 + a)Z

does not belong to since, for this /(z) the coefficient in

equality of Lemma 1 is not satisfied.

COROLLARY 1. Let the function /(z) be defined by (1-2). If f(z} G 

S*(q)(0 < a < 1), then the function F(z) defined by (3.1) belongs to 
the class S*(育§쓰). The result is sharp. The converse need not be 

true.

Remarks.

(1) Putting c = pt = 1 in Theorem 9, we get the result, of Kumar 

and Shukla [3^Theorem l]t

(2) a = 0 and c + 1 in Corollary 1, we get the result of Kumar and 

Shukla [3,Corollary 1].

4. Fractional Integral Operator

We need the following definition of fractional integral operator given 

by Srivastava, Saigo and Owa [9].
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DEFINITION 1. For real numbers p > 0, 6 and tj, the fractional 
integral opwaior 瑁：*해 is defined by

cr—6 f2 f
(4.1) 砍，W =下r / (z - ty^F^a + a 一平i -力(渺

「(b) Jo z

where f(z) is an analytic function in a simple connected region of the 

z-plain containing yhe origin with the order

六 z) = 0(1 히) z —>0,

where

€ > Max(Qj6r)) — 1,

(4.2) 硏収:") = 彖*쁘孝,
where (/z)n is pochhammer symbol deGned by

(4.3)

=r(卩 + n) = J 1 (n = 0)
"” r(/z) [ m + 1) ...(〃 +n-l) (n GV = ({1,2,...}),

and the multiplicity of (z — t)p-1 is removed by requiring loff(z — t) to 

be 호eal when z ~ t > 0.

REMARK. For 8 = —p, we note that

"W =」D】V(z),

where D~pf(z) is the fractional interal of order p of /(z) which was 

introduce by Owa ([4]y[5]).

In order to prove our results for the fractional integral operator, we 

have to recall here the following lemma due to Srivastava, Saigo and 

Owa [9].
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(4.4)

Lemma 3. If p>0 and n > 6 ~-7)- 1, then

rp,6,ri n = P(n+l)P(n-§ + 77 + l) 驴一8
012 — r(n - 6 + l)r(n + P + »7 + lj

With the aid of Lemma 3, we have

Theorem 10. Let p > G, 6 < 2, p + rj > -2, 8 - -q < 2, and 

8(p + r)) < 3p. If /(z) ET is in the class S*(a,0,“)，then

成,z -r(2-^)r(2 + p4-n)

n _ 2(1+ 产)0(1 — q)(2 — S +/)
1 一以20"(2-3)(2 + 小舟(4.5)

and

(4.6)

成,$5<「(2 - 6 + t/)|히I
1 °>z 八키 -P(2-5)r(2 + p + ?7)

厂I 4. 2(1+ 司8(1 — a)(2 _ # +
t D(2,6, p, ^2-6)(2 +p + rjY

for z Io, where

Uq = <
典< 1)

U — {O}(d> 1)

The eqalities in (4.5) and (4.6) are attained by the function

f(z) _ z —(1+珈1 一으) z2

~ D(2,ag).

(4-8)

Proof. By using Lemma 3, we have

卩而 f(八 _ 「(2 _$ + >?) I
齢 人' ) —P(2 — 6)P(2 + /서f)

_ 章' 「3 + 1)「(孔—$ + ?/ + 1) zn-6 

'"스双孔-申叶 + 卩 + ”)”
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Letting

(4-9)

H(z)=4%腭;岩项啲'W(z)

OO

Z - h(n)anzn,

n=2

where

(4.10 ,)
(2 — # + ⑴ n

雄)=(2-^)n_1(2 + p + 77)n_1^ - ©

we can see that h(n) is non-increasing for intergers n > 2, and we have

0 < h(n) < h(2) = 7—弩「6 + 杉
(2 - &)(2 + p + /

Since f(z) E S*(%/3危))Lemma 1 implies that

8 8

D(2, a, 0, 〃)£ 如 V £ D(n, a, 0, /z)an < (1 + mM1 一 «),

n=2 n=2

(4.11)

so that

V' < (1 +G0(1 - a) 
느”- £)(2, a, 0/) '

Therefore, by using (4.11) and (4.12), we have

8

|H(깨시히 — M2)聞2£如

n—2

〉I시 _ 2(] + ”)0(] — 以2 — 6 + ") [시2

~ £)(2, & 0)产)(2 — $)(2 + p + ??)

(4-12)

(4.13)

and

(4.14)

8

旧(圳 기히+ M2)|히2 £ 如

n—2

> \z\ I 2(] + 卩)6(1 _ a)(2 _ 6 + 砂 成2

— Z)(2,6,(5,11)(2 — 6)(2 + /? + ?/)

This completes the proof of Theorem 10.
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Theorem 11. Letp>0,8< 2/+〃 > -2.6-t] < 2, and6(p+??) < 

3p. If /(z) ET is in the 시ass then

(4.15)

成而 “z)l〉「(2 - 3 + 77)1 히 17
1 財 八 이 -r(2-6)r(2 + p + 77)

_fl _ (1 + ")8(1 — a)(2 — + 杉 [见]
1 _ D(2,%3m)(2T)(2 + p +舟 11

and

(4.16)

f( \i V「(2 - 6 +，7)|히' 8
Uo,z 八)1 一「(2 — #)「(2 + /。+ ?7)

厂1 j_ (1 + 产)8(1 - 이(2-盘 + 加 

Z)(2,6,产)(2 — 6)(2 + p + tj)

Uq7 where Uo is defined Theorem 10. The equalities in (4.15)for z €

and (4.16) are attained by the function

(4.17) 归…囁쁫느件

Remarks.

(1) Taking p = —8 = k in Theorem 10 and 11, we get the results 

of Theorem 3 and 4 obtained by Aouf [1], respectively.

(2) Putting /z = 1 in Theorem 10 and 11, we get the corresponding 

results for the classes 0、) and C*(a, j0) studied by Gupta 

and Jain [2].
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