A NOTE ON OVERRINGS OF POLYNOMIAL RINGS

Chul Ju Hwang

Throughtout this paper, R will denote a commutative ring with identity. Let $\mathcal{F}(R)$ denote the set of all fractional ideals of R. The v operation on R is defined as the function $F \rightarrow F_{v}$ of $\mathcal{F}(R)$ into $\mathcal{F}(R)$. The v-operation satisfies the properties such as (1) $(I J)_{v}=\left(I_{v} J\right)_{v}(2)$ $\left(\sum I_{\alpha}\right)_{v}=\left(\sum\left(I_{\alpha}\right)_{v}\right)_{v}(3) \cap\left(I_{\alpha}\right)_{v}=\left(\cap\left(I_{\alpha}\right)_{v}\right)_{v}(4)(r I)_{v}=r\left(I_{v}\right)$ for I, $J, I_{\alpha} \in \mathcal{F}(R)$ and a regular element r of R. When the v-operation is endlich arithmetisch brauchbar, R is called a v-ring and the ring R^{v} defined by the set $\left\{f / g \mid f, g \in R[X], g\right.$ is regular, $\left.\left(A_{f}\right)_{v} \subseteq\left(A_{g}\right)_{v}\right\}$ is called the Kronecker funtion ring of R. If the set of finite type v ideals of R forms a group under the v-multiplication, R is called a Prüfer v-multiplication ring (abbr. PVMR). In [1, Theorem 3], Arnold and Brewer proved that the following statements are equivalent for a v-domain R : (1) R is a Prüfer v-multiplication domain (2) R^{v} is a quotient ring of $R[X]$ (3) Each valuation overring of R^{v} is of the form $(R[X])_{(P[X])}$ where R_{P} is a valuation overring of $R(4) R^{v}$ is a flat $R[X]$-module. In proving the implication (2) \Rightarrow (1), they developed : [1, Lemma 1] Let R be an integral domain. If Q is a prime ideal of $R[X]$ such that $(R[X]) Q$ is a valuation ring and if $(Q \cap R) R[X] \subset Q$, then $Q \cap R=(0)$. Huckaba and Papick extended this result to additively regular rings with property A $[2$, Lemma 22.4$]$ and could prove that Arnold and Brewer's result holds for this class of rings $[2$, Theorem $22.5]$. We will give a proof of Huckaba and Papick's result which avoids the use of [2, Lemma 22.4] and which is valid even for larger class of Marot rings than the class of additively regular rings. For undefined terms and notations, the readers are referred to [2].

Theorem (confer [2, Theorem 22.5]). Let R be a Marot v-ring with property A. Then the following conditions are equivalent :
(1) R is a $P V M R$.
(2) $R[X]_{\left(U_{2}\right)}$ is a Bezout ring.
(3) Each regular prime ideal of $R[X]_{\left(\mathcal{U}_{2}\right)}$ is extended from a prime ideal of R.
(4) $R^{v}=R[X]_{\left(u_{2}\right)}$.
(5) R^{v} is a flat $R[X]$-module.
(6) Each valuation overring of R^{v} is of the form $R[X]_{(P[X])}$, where $R_{(P)}$ is a valuation ring.
(7) $R[X]_{\left(u_{2}\right)}$ is a Prüfer ring.

Proof. The proof for the equivalence of (1) and (4) in [2] is still valid under the new condition.
$(1) \Rightarrow(3)$. Suppose R is a PVMR. Recently Kang [3] proved that every regular prime ideal of $R[X]_{N_{v}}$ is extended from R where $N_{v}=$ $\left\{f \mid f \in R[X], A_{f}\right.$ is regular, and $\left.\left(A_{f}\right)_{v}=R\right\}$. In view of [2, Theorem 19.1], $\left(\mathcal{U}_{2}\right)=N_{v}$ since R has property A.
$(3) \Rightarrow(2)$. Apply [2, Theorem 21.2].
(2) \Rightarrow (7). It is clear.
$(7) \Rightarrow(5)$. By [4, Theorem 10.20$]$ and [4, Exercise $11(\mathrm{a})(4)$ on page $248], R^{v}$ is a $R[X]_{\left(U_{2}\right)}$-flat. Since $R[X]_{\left(u_{2}\right)}$ is clearly $R[X]$-flat, R^{v} is $R[X]$-flat.
$(5) \Rightarrow$ (4). For each regular maximal ideal M of $R[X]_{\left(\mathcal{U}_{2}\right)}, M R^{v} \subseteq$ R^{v}. By [4, Exercise 11 on page 248], $R^{v} \subseteq\left[R[X]_{\left(u_{2}\right)}\right]_{(M)}$. So $R^{v} \subseteq$ $\cap_{M}\left(R[X]_{\left(u_{2}\right)}\right)_{(M)}=R[X]_{\left(u_{2}\right)}\left[2\right.$, Theorem 6.1]. Hence $R^{v}=R[X]_{\left(u_{2}\right)}$.
(6) $\Rightarrow(5)$. See the proof in $[2$, Theorem 22.5].
$(1) \Rightarrow(6)$. Suppose that R is a PVMR. By the equivalence of (1), (2) and (4), R^{v} is a Prüfer ring. By [4, Exercise 12 on page 248], each proper valuation overring of R^{v} is of the form $R_{(Q)}^{v}$, where Q is a reguiar prime ideal of R^{v}. By the equivalence of (1), (3) and (4), $R^{v}=R[X]_{\left(U_{2}\right)}$ and Q is extended from R, say $Q=P[X]$ for a regular prime ideal P of R. Hence $R_{(Q)}^{v}=R_{(P[X])}^{v}$ and it is easy to see that $R_{(P)}=R[X]_{(Q)} \cap T(R)$. Since both R and $R[X]$ are Marot rings and $R[X]_{(Q)}$ is a valuation ring, the equivalence of (1) and (4) in [2, Theorem 7.7] forces $R[X]_{(Q)} \cap T(R)$ to be a valuation ring. Therefore $R_{(P)}$ is a valuation ring.

References

[^0]3. B.G. Kang, When are the prime ideals of $R[X\}_{T}$ extended from R ?, preprint
4. M. Larsen and P. McCarthy,, Multiplicatıve Theory of Ideals, Academic Press, New York and London, 1971

Department of Mathematics
Pusan Women's University
Pusan, 616-060, Korea

[^0]: 1 J.T Arnold and J.W. Brewer, Kronecker function rings and fat $D[X]$-modules, Proc. Amer. Math Soc. 27 (1971), 483-485.
 2. J.A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, 1988.

