ON A CONSTRUCTION OF A CARTESIAN CLOSED CATEGORY $\mathbb{D}(L)$

HYANG IL YI

1. Introduction

The language L under consideration is called type-theoretic because its syntax is based on Russell's simple theory of types. L will contain both constants and variables in every syntactic category, and it will allow quantification over variables of any category. Thus, L will have not only variables ranging over individuals which is characteristic of first-order languages, and variables ranging over predicates too, as does a second-order language, but variables ranging over every category defined in the type theory. Thus the language is known as a higher order language. We recall the concept of categories in L.

- 1. The category of terms of L will be designated by the symbol e.
- 2. The category of *formulas* of L will be designated by the symbol t.
- 3. The category of one-place predicates of L will be designated by the symbol $\langle e, t \rangle$.
- 4. The category of two-place predicates of L will be designated by $\langle e, \langle e, t \rangle \rangle$.

Now we can give the formal definitions of the syntax and semantics of L.

2. Syntax of L

- (1) The set of types of L is defined recursively as the following:[2]
 - (a) e is a type.
 - (b) t is a type.
 - (c) It a and b are any types, then $\langle a, b \rangle$ is a type.

Received May 2,1994.

- (d) Nothing else is a type.
- (2) The basic expressions of L consist of non-logical constans and variables:
- (a) For each type a, the set of non-logical constants of type a, denoted Con_a , contains constants $C_{n,a}$ for each natural number n.
- (b) For each type a, the set of variables of type a, denoted Var_a , contains variables $V_{n,a}$ for each natural number n.
 - (3) Syntactic rules of L.

The set of meaningful expressions of type a, denoted " ME_a ", for any type a is defined recursively as follows:

- (a) For each type a, every variable and every non-logical constant of type a is a member of ME_a .
- (b) For any types a and b, if $\beta \in ME_{\langle a,b\rangle}$ and $\alpha \in ME_a$, then $\beta(\alpha) \in ME_b$.
- (c) (g) If ϕ and ψ are in ME_1 , then so are each of the following : $\llbracket \neg \phi \rrbracket$, $\llbracket \phi \land \psi \rrbracket$, $\llbracket \phi \lor \psi \rrbracket$, $\llbracket \phi \to \psi \rrbracket$, $\llbracket \phi \leftrightarrow \psi \rrbracket$.
 - (h) If $\phi \in ME_t$ and u is a variable (of any type), then $\forall u \phi \in ME_t$.
 - (i) If $\phi \in ME_t$ and u is a variable (of any type), then $\exists u \phi \in ME_t$.

3. Semantics of L

A model for L is then an ordered pair $\langle A, F \rangle$ such that A is the domain of individuals or entities and F is a function assigning a denotation to each non-logical constant of L of type a from the set D_a .

An assignment of values to variables (variable assignment) g is a function assigning to each variable to $V_{n,a}$ a denotation from the set D_a , for each type a and natural number n.

The denotation of an expression of L relative to a model M and variable assignment g is defined recursively as follows:

- (1) (a) If α is a non-logical constant, then $[\![\alpha]\!]^{M,g} = F(\alpha)$.
 - (b) If α is a variable, then $[\alpha]^{M,g} = g(\alpha)$.
- (2) If $\alpha \in ME_{\langle a,b \rangle}$ and $\beta \in ME_a$, then $[\alpha(\beta)]^{M,g} = [\alpha]^{M,g} ([\beta]^{M,g})$.
- (3)-(7) If ϕ and ψ are in ME_t , then $\llbracket \neg \phi \rrbracket^{M,g}$, $\llbracket \phi \wedge \psi \rrbracket^{M,g}$, $\llbracket \phi \vee \psi \rrbracket^{M,g}$, $\llbracket \phi \rightarrow \psi \rrbracket^{M,g}$ and $\llbracket \phi \leftrightarrow \psi \rrbracket^{M,g}$ are as specified for the first-order predicate. If ϕ is an expression of category ME_t , then $\llbracket \neg \phi \rrbracket^{M,g} = 1$ iff

 $\llbracket \phi
bracket^{M,g} = 0$; otherwise, $\llbracket \neg \phi
bracket^{M,g} = 0$. Similarly for $\llbracket \phi \wedge \psi
bracket$, $\llbracket \phi \rightarrow \psi
bracket$, and $\llbracket \phi \leftrightarrow \psi
bracket$.

- (8) If $\phi \in ME_t$ and u is in Var_a , then $[\![\forall u\phi]\!]^{M,g} = 1$ iff for all e in D_a $[\![\phi]\!]^{M,g}u = 1$.
- (9) If $\phi \in ME_t$ and u is in Var_a , then $[\exists u\phi]^{M,g} = 1$ iff for some e in D_a $[\![\phi]\!]^{M,g}u = 1$.

The semantic value of an expression does not depend on variables that are not free in the expression. So we add the following definition.

The denotation of an expression of L relative to a model M is defined as follows:

- (1) For any expression ϕ in ME_t , $[\![\phi]\!]^M = 1$ iff $[\![\phi]\!]^{M,g} = 1$ for every value assignment g.
- (1) For any expression ϕ in ME_t , $[\![\phi]\!]^M = 0$ iff $[\![\phi]\!]^{M,g} = 0$ for every value assignment g.

4. A type model D of a language L

Let us construct a type model D of a higher-order type-theoretic language L. Let E be a singleton of type e. Starting from $D_0 = \{t\}$ a chain of approximations of a type model D is built by defining $D_{n+1} = E + < D_n, D_n >$ where + represents disjoint sum and $< D_n, D_n >$ is the space of all continuous mappings from D_n to D_n , and embedding each D_n in D_{n+1} by a suitable projection pair (i_n, p_n) of D_n on D_{n+1} where $i_n : D_n \to D_{n+1}, p_n : D_{n+1} \to D_n$ with the properties $p_n \circ i_n = id_{D_n}, i_n \circ p_n \subseteq id_{D_{n+1}}$. A standard way of building D is by using Scott's inverse limit construction([4] [5]). The inverse limit of this chain can be defined as a set

$$D = \{ \langle d^{(n)} \rangle_{n \in \omega} \mid d^{(n)} = p_n(d^{(n+1)}) \}.$$

Each D_n can be embedded in D by a projection pair $(i_{n\infty}, p_{\infty n})$. If $d \in D_n$, we identify d with $i_{n\infty}(d) \in D$. There we can assume $D_0 \subseteq D_1 \subseteq \cdots \subseteq D_n \subseteq \cdots \subseteq D$. Let d_n stand for $i_{n\infty} \circ p_{\infty n}(d)$. It

holds $d_n = i_{n\infty} \circ p_{\infty n}(d) \subseteq d$. Also if $d \in D_n$, then we have $d_n = d$. Now we may take the type model D of L into account of the equational form $D = E + \langle D, D \rangle$.

Defining a partial ordering \leq on D_n by $d \leq f$ if and only if $d(a) \leq f(a)$ for all $a \in D_n$, the set of all continuous functions from D_n to D_n is a complete partial ordered set (c.p.o.s) and the disjoint sum of $E+\langle D_n, D_n \rangle$ is a complete one, too.

Scott([7]) obtained D by other construction as, for example, the one based on his information systems. The existence of continuous projections $(-)_n : D \to D$ needs us some suitable properties of mappings $(-)_n$ as Scott's approach did. Moreover notice that the inverse limit construction can be carried on is the category c.p.o.. Especially we do not need to assume that D is a domain in the usual sense.

5. A cartesian closed category by types $\mathbb{D}(L)$

The complete partial ordered set D of recursive and polymorphic types for the language L gives rise to a category $\mathbb{D}(L)$. The objects are the partial equivalence relations (p.e.r.) $[\![\alpha]\!]$ of $\alpha \in T^0$. An arrow $[\![\alpha]\!] \to [\![\beta]\!]$ is a transformation system from a p.e.r. $[\![\alpha]\!]$ to a p.e.r. $[\![\beta]\!]$. We may think of the objects of $\mathbb{D}(L)$ as type structures of sentences or knowledges and of the arrows as new representations of types or linguistic transformations.

We may regard an object $[\![\alpha]\!]$ in $\mathbb{D}(L)$ as a representative tree structure of types based on type t. The arrow $f: [\![\alpha]\!] \to [\![\beta]\!]$ of $\mathbb{D}(L)$ are triples $([\![\alpha]\!], |f|, [\![\beta]\!])$, where |f| is an element of product $[\![\alpha]\!] \times [\![\beta]\!]$. We may think of f as denoting a relation between the sets $[\![\alpha]\!]$ and $[\![\beta]\!]$. Equality between relations $f, g: [\![\alpha]\!] \rightrightarrows [\![\beta]\!]$ is defined thus:

$$f \cdot = g$$
 means $|f| = |g|$.

The identity $1_{[\alpha]} : [\![\alpha]\!] \to [\![\alpha]\!]$ is defined by

$$1_{[\alpha]} = \{ \langle a, a' \rangle \in [\![\alpha]\!] \times [\![\alpha]\!] | a = a' \}.$$

Composition of relations $f : [\alpha] \times [\beta]$ and $g : [\beta] \times [\gamma]$ is defined by $|gf| = \{ \langle a, c \rangle \in [\alpha] \times [\gamma] |_{\exists b \in [\beta]} (\langle a, b \rangle \in |f| \land \langle b, c \rangle \in |g|) \}.$

It is easily seen that $\mathbb{D}(L)$ is a category.

A cartesian closed category is a category $\mathbb D$ with finite products (hence having a terminal object) such that, for each object A of $\mathbb D$, the functor $(-) \times A : \mathbb D \to \mathbb D$ has a right adjoint, denoted by $(-)^A : \mathbb D \to \mathbb D$. This means that, for all objects A, B and C of $\mathbb D$, there is an isomorphism

$$Hom_{\mathbb{D}}(A \times B, C) \stackrel{\sim}{\to} Hom_{\mathbb{D}}(A, C^B)$$

and moreover, this isomorphism is natural in A, B and C.

Theorem 5.1. $\mathbb{D}(L)$ forms a cartesian closed category.

Proof. The terminal object 1 of $\mathbb{D}(L)$ is defined by $1 = \{*\}$, while products are defined by

$$\llbracket \alpha \rrbracket \times \llbracket \beta \rrbracket \equiv \{ < a, b > | a \in \llbracket \alpha \rrbracket \land b \in \llbracket \beta \rrbracket \}.$$

The arrows $0_{\llbracket\alpha\rrbracket}: \llbracket\alpha\rrbracket \to 1, \Pi_{\llbracket\alpha\rrbracket, \llbracket\beta\rrbracket}: \llbracket\alpha\rrbracket \times \llbracket\beta\rrbracket \to \llbracket\alpha\rrbracket$ and

$$\begin{split} &\Pi'_{\left[\alpha\right],\left[\beta\right]}:\left[\!\left[\alpha\right]\!\right]\times\left[\!\left[\beta\right]\!\right]\rightarrow\left[\!\left[\beta\right]\!\right] \text{ are defined thus}:\\ &|0_{\left[\alpha\right]}|\equiv\left[\!\left[\alpha\right]\!\right]\times\left\{*\right\}\equiv\left\{<a,*>\in\left[\!\left[\alpha\right]\!\right]\times1|a\in\left[\!\left[\alpha\right]\!\right]\right\},\\ &|\Pi_{\left[\alpha\right],\left[\beta\right]}|\equiv\left\{<<a,b>,a>\in\left(\left[\!\left[\alpha\right]\!\right]\times\left[\!\left[\beta\right]\!\right]\right)\times\left[\!\left[\alpha\right]\!\right]\mid a\in\left[\!\left[\alpha\right]\!\right]\;\wedge b\in\left[\!\left[\beta\right]\!\right]\right\},\\ &|\Pi'_{\left[\alpha\right],\left[\beta\right]}|\equiv\left\{<<a,b>,a>\in\left(\left[\!\left[\alpha\right]\!\right]\times\left[\!\left[\beta\right]\!\right]\right)\times\left[\!\left[\beta\right]\!\right]\mid a\in\left[\!\left[\alpha\right]\!\right]\;\wedge b\in\left[\!\left[\beta\right]\!\right]\right\}. \end{split}$$

Moreover, if $f: \llbracket r \rrbracket \to \llbracket \alpha \rrbracket$ and $g: \llbracket r \rrbracket \to \llbracket \beta \rrbracket$, we define $< f, g >: \llbracket \gamma \rrbracket \to \llbracket \alpha \rrbracket \times \llbracket \beta \rrbracket$ by $|< f, g > | \equiv \{< c, < a, b >> \in \llbracket \gamma \rrbracket \times (\llbracket \alpha \rrbracket \times \llbracket \beta \rrbracket) | < c, a > \in |f| \land < c, b > \in |g| \}.$

Now we define

$$\llbracket \beta \rrbracket^{\llbracket \alpha \rrbracket} \equiv \{ \rho \in \llbracket \alpha \rrbracket \times \llbracket \beta \rrbracket | \rho : \llbracket \alpha \rrbracket \rightarrow \llbracket \beta \rrbracket \}.$$

Moreover, if $h: [\alpha] \times [\beta] \to [\gamma]$ then $h^*: [\alpha] \times [\gamma]^{[\beta]}$ is obtained. Thus

$$|h^*| \equiv \{ \langle a, \rho \rangle \in [\alpha] \times ([\beta] \times [\gamma]) | a \in [\alpha] \land \rho : [\beta] \to [\gamma] \land \forall b \in [\beta]$$
$$\exists c \in [\gamma] (\langle \langle a, b \rangle, c \rangle \in |h| \land \langle b, c \rangle \in \rho) \}$$

Let us consider a valuation on an designated object Ω to objects of $\mathbb{D}(L)$. A valuation is a function $V: a \to \Omega$ where $a \in [\alpha]$. Let us take $\Omega = \{1/(n+1)|n=0,1,2,\cdots\}$. We say $[\alpha]$ is well-typed whenever, for every $a \in [\alpha]$, a is degenerated to type t under the operations of iterative formulations $\beta(\alpha)$. This means that, for every $a \in [\alpha]$, there exists a number n such that $\beta^n(a) \in D_0$. On the other case we have an irreducible type $[\alpha]'$ for which the formulation operation can not be applicable no longer, i.e., $[\alpha]' \in D_n$ for some $n \neq 0$. We call this number n the irreducible degree of $[\alpha]$. Now let us assign the valuation as follows:

for every $a \in [\alpha]$,

- (i) V(a) = 1 whenever $[\alpha]$ is well-typed,
- (ii) V(a) = 1/(n+1) whenever the irreducible degree of $[\alpha]$ is n.

The valuation is extended to a function $V : [\![\alpha]\!] \to \Omega$ by the rules for all $[\![\alpha]\!]$ in $\mathbb{D}(L)$:

- (i) $V(\sim [\![\alpha]\!]) = 1 V([\![\alpha]\!])$
- (ii) $V(\llbracket \alpha \rrbracket \land \llbracket \beta \rrbracket) = \min(V(\llbracket \alpha \rrbracket), V(\llbracket \beta \rrbracket))$
- $(iii) \ V(\llbracket \alpha \rrbracket \vee \llbracket \beta \rrbracket) = \max(V(\llbracket \alpha \rrbracket), V(\llbracket \beta \rrbracket))$
- (iv) $V(\llbracket \alpha \to \beta \rrbracket) = V(\sim \llbracket \alpha \rrbracket \vee \llbracket \beta \rrbracket)$
- (v) $V(\llbracket \forall \varphi \alpha \rrbracket) = \inf_{i} (V(d_i))$, where $d_i \in \llbracket \forall \varphi \alpha \rrbracket$
- (vi) $V(\llbracket \exists \varphi \alpha \rrbracket) = \sup_{i} (V(d_i))$, where $d_i \in \llbracket \exists \varphi \alpha \rrbracket$

References

- J. Barwise et al., Topoi, The Categorical Analysis of Logic, SLFM, Vol. 98, North-Holland, 1984.
- 2. J. Lambek, P.J. Scott, Introduction to Higher order Categorical Logic, Cambridge Univ., 1986.
- J. Lambek, From Types to Sets, Advances in Math. 36 (1980), 113-164.

- 4. G. Plotkin, The Category of Complete Partial Orders, Foundations of Aritificial Intelligence and Computer Science, Pisa, 1990.
- 5. D. Scott, Toposes Algebraic Geometry and Logic, Lecture Notes in Mathematics 274, Springer-Verlag (1972), 97-136.
- 6. D. Scott, Data Types as Lattices, SIAM J. Comput. 5 (1976), 522-587.
- D. Scott, Domains for Denotational Semantics, Proc. of ICALP 82, Lecture Notes in Computer Science 140, Springer-Verlag (1982), 577-613.
- 8. G.E. Strecker, Abstract and Concrete Categories, John wily & Sons, Inc., 1990.
- 9. H. Volger, Logical Categories, Semantical Categories and Topoi, In Lawvere et al. (1985), 87-100.

DEPARTMENT OF APPLIED MATHEMATICS NATIONAL FISHERIES UNIVERSITY OF PUSAN PUSAN, 608-737, KOREA