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ON A CONSTRUCTION OF A
CARTESIAN CLOSED CATEGORY IX{L)

HyanG 1L YI

1. Introduction

The language L under consideration is called type-theoretic because
its syntax is based on Russell’s simple theory of types. L will contain
both constants and variables in every syntactic category, and it will al-
low quantification over variables of any category. Thus, L will have not
only variables ranging over individuals which is characteristic of first-
order languages, and variables ranging over predicates too, as does a
second-order language, but variables ranging over every category de-
fined in the type theory. Thus the language is known as a higher order
language. We recall the concept of categories in L.

1. The category of terms of L will be designated by the symbol e.

2. The category of formulas of L will be designated by the symbol
t.

3. The category of one-place predicates of L will be designated by
the symbol < e,1 >.

4. The category of two-place predicates of L will be designated by
<e, < et >>.

Now we can give the formal definitions of the syntax and semantics
of L.

2. Syntax of L

(1) The set of types of L is defined recursivly as the following:{2]
(a) e is a type.
(b) t is a type.
(c) It a and b are any types, then < a,b > is a type.
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(d) Nothing else is a type.

(2) The basic expressions of L consist of non-logical constans and
variables:
(a) For each type a, the set of non-logical constants of type a,
denoted C'on,, contains constants C,, ., for each natural number n.
(b) For each type a, the set of variables of type a, denoted Var,,
contains variables V, , for each natural number n.

(3) Syntactic rules of L.
The set of meaningful expressions of type a, denoted “ME,”, for
any type a is defined recursively as follows :
(a) For each type a, every variable and every non-logical constant
of type a is a member of ME,.
(b) For any types @ and b, if B € ME<, 4> and @ € ME,, then
Bla) € ME,.
(c) - (g) If ¢ and 9 are in M E,, then so are each of the following
el [eavl, [ovyl, [ —¢) I¢ - 9]
(h) If ¢ € ME,; and u is a variable (of any type), then Yu¢ € ME;.
(i) If ¢ € ME; and u is a variable (of any type), then 3u¢ € ME;,

3. Semantics of L

A model for L is then an ordered pair < A,F > such that A is
the domain of individuals or entities and F is a function assigning a
denotation to each non-logical constant of L of type a from the set D,.

An assignment of values {o variables (variable assignmeni) g is a
function assigning to each variable to ¥, , a denotation from the set
D,, for each type a and natural number n.

The denotation of an expression of L relative to a model M and
vartable assignment g is defined recursively as follows :

(1) (2) ¥ o is a non-logical constant, then Ja]¢ = F(a).
(b) If a is a variable, then Jo}™¥ = g{a).

(2) ¥ a € ME<, 3> and B € ME,, then o 3)]M? = o] M:9([51M9).
(3)~(7) If 4 and ¢ are in ME,, then [-¢]*7, [sAv]M9, [o6V]M9,

[¢ — #1¥9 and [¢ & ¢}M9 are as specified for the first-order pred-
icate. If ¢ is an expression of category M E;, then [-~¢}¥¢ = 1 iff
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[8}¥¢ = 0 ; otherwise, [~¢]M¢ = 0. Similarly for [¢ A 9], [o V
"/’Ba |[¢ i d’ﬂ’ and ﬁq& A 'ﬂ

(8) f ¢ € ME; and u is in Var,, then [Vug}*9 = 1 iff for all ¢ in
D, [¢}M9u = 1.

(9) ¥ ¢ € ME, and u is in Var,, then [3us}™¥ = 1 iff for some e in
D, f[¢]Mu = 1.

The semantic value of an expression does not depend on variables
that are not free in the expression. So we add the following definition.

The denotation of an expression of L relative to a model M is defined
as follows :

(1) For any expression ¢ in ME,, [¢§ = 1iff [¢]*9 = 1 for every
value assignment g.

(1) For any expression ¢ in ME,, [¢]* = 0iff {¢]¥+¢ = 0 for every
value assignment g.

4. A type model D of a language L

Let us construct a type model D of a higher-order type-theoretic
language L. Let E be a singleton of type e. Starting from Dy =
{t} a chain of approximations of a type model D is built by defining
D.+1 = E+ < D, D, > where 4+ represents disjoint sum and <
D,,D, > is the space of all continuous mappings from D, to D,
and embedding each Dy, in D, ;1 by a suitable projection pair (25, pn)
of D, on Dypyq where i, 1 D — Duyt, pn ¢ Dayy — D, with
the properties p,0i, = 1dp,, ta0pn C tdp,,,. A standard way of
building D is by using Scott’s inverse limit construction([4] {5]). The
inverse limit of this chain can be defined as a set

D= {<d™ >, | d'™ = p(d"t)).

Each D, can be embedded in D by a projection pair { tpeo, Poon )-
If d € D,, we identify d with theo(d) € D. There we can assume
DyC Dy C---CD, C---CD. Let dy, stand for ipeo © Pon{d). It



190

holds dy, = tnoo © Poon(d) C d. Also if d € Dy, then we have d,, =d .
Now we may take the type model D of L into account of the equational
form D= E4+ <D, D >.

Defining a partial ordering < on Dy, by d < f if and only if d(a) S
f(a) for all e € D, the set of all continuous functions from D, to
Dy, 1s a complete partial ordered set (c.p.o.s) and the disjoint sum of
E+ < Dy, Dy > 1s a complete one, too.

Scott({7}]) obtained D by other construction as, for example, the one
based on his information systems. The existence of continuous projec-
tions (—), : D — D needs us some suitable properties of mappings
(—)n as Scott’s approach did. Moreover notice that the inverse limit
construction can be carried on is the category c.p.o.. Especially we do
not need to assume that D is a domain in the usual sense.

5. A cartesian closed category by types (L)

The complete partial ordered set D of recursive and polymorphic
types for the language L gives rise to a category I(L). The objects
are the partial equivalence relations (p.e.r.) [af of @ € T°. An arrow
fa] — [B] is a transformation system from a p.e.r. fof to a p.e.r. {8].
We may think of the objects of (L) as type structures of sentences
or knowledges and of the arrows as new representations of types or
linguistic transformations.

We may regard an object [a] in D{L) as a representative tree struc-
ture of types based on type t. The arrow f : fa} — [8] of D(L) are
triples {fal, | fl,18}), where |f] is an element of product {a] x [8]. We
may think of f as denoting a relation between the sets [a] and [83].
Equality between relations f, g : fa] =3 [#] is defined thus :

f- =g means |f] = |g|.
The identity 1f : o ~ [o] is defined by

o) = { < a,d' >€ [af x fa}la = a'}.

Composition of relations f : fa] x [#] and ¢ : [B] x [7] is defined by
l9f1 = {< a,¢ >€ fa] x Prllmera(< a,b >€ |fIA < by >€ lg)}-
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It is easily seen that D{ L) is a category.

A cartesian closed category is a category D with finite products
(hence having a terminal object) such that, for each object A of D,
the functor (—=) x A : D — D has a right adjoint, denoted by (—)4 :
D — . This means that, for all objects A, B and C of D, there is an

1somorphism

Homp(A x B,C)S Homp(A, C?)

and moreover, this isomorphism is natural in A, B and C.
Theorem 5.1. D(L) forms a cartesian closed category.

Proof.  The terminal object 1 of D(L) is defined by 1 = {*},
while producis are defined by

[e] x [B} ={<a,b>|ac[a]Anbe[p]}.
The arrows Opq) : o] — 1, a4 : {o] x [8] — {o] and

H'[a],[ﬁ] : faf x [B] — [B] arc defined thus :
01ag] = ol x {x} = {< a,* >€ [a] x 1] € [a]},
Miay o1l = {<< @b >,a>€ (fad x [B]) x [e]] a € [af Abe 5},
Mo go1] = {<< a,0 >,a >€ ([o] x [A]) x [B]} a €fa] Abe[A]}
Moreover, if f : [r] — [o] and ¢ : fr] — {5,
we define < f,¢ >: [v] — [af x [5] by

| < fig > 1={< e, <ab>>€ [v] x ([o] X [BD] < ¢,a >€ |flA <
¢, b>€ |g]}.

Now we define

811 = {pefa] x [Bllp : o] — (81}

We also define 6[}9],{0] : ﬁﬁ]["'l X ﬂan — [[ﬁ]] by

legariaal = {<< pya >, >€ (([a] x [8]) x {a]) x {Bllp : [of —
BIA < a,b>€pl.
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Moreover, if & : {af x {8] = [v] then &* : {a] x [7]!*} is obtained.
Thus

P ={<ap>cla x([Blx[Dlac o] Ap: (8] - 1] AVE € 6]
Je € fy)(<< a,b >,c >€ |h|A < b,c >€ p)}

Let us consider a valuation on an designated object 2 to objects of
D{L). A valuation is a function V : @ — € where a € [a]. Let us take
= {1/(n +1)|n = 0,1,2,--- }. We say fo] is well-typed whenever,
for every a € [a], a is degenerated to type ¢ under the operations of
iterative formulations 8(a). This means that, for every a € [af, there
exists a number n such that f”(a) € Dg. On the other case we have
an irreducible type faf’ for which the formulation operation can not
be applicable no longer, i.e., [a) € D, for some n # 0. We call this
number n the irreducible degree of [o]. Now let us assign the valuation
as follows :
for every a € fa},
(i) V(a) = 1 whenever jo] is well-typed,
(1ii)) V(a) = 1/(n + 1) whenever the irreducible degree of [a] is n.

The valuation is extended to a function V : {a] — Q by the rules
for all {o] in D(L) :

) V(~ fal) = 1 - V({ol)

(i) V(o] A [8)) = min(V/(fal), V(D)
(i) V(lal v [8]) = max(V ({e]), V(IAD)
(iv) V(I — 1) = V(~ [e] v [8])

(v) V{([Vea)) = inf,(V(d,)), where d, € [Vpa]
(vi) V{([Jpa]) = sup,(V(d.)), where d, € [3pa]
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