THE MULTIPLE HURWITZ ZETA FUNCTION

Tae Young Seo ${ }^{*}$, Junesang Choi**, Jin Sook Kang*, Bo Myoung Ok*

1. Introduction

Recently the theory of multiple gamma functions, which were first introduced by Barnes [WB2], [WB3], [WB4], [WB5] and others about 1900, has been revived according to the study of determinants of Laplacians [HP1], [HP2], [O], [PS], [IV], [AV]. Vignéras [FV] gives us Weierstrass canonical product forms for multiple gamma functions by using a result of Dufresnoy and Pisot [JD]. Barnes [WB5] introduces these functions through n-ple Hurwitz zeta functions. We give detailed computation for the analytic continuation of the n-ple Hurwitz zeta functions $\zeta_{n}(s, a)$ which is important for us to give Barnes' approach for multiple gamma functions. We can also express some special values of n-ple Hurwitz zeta functions as n-ple Bernoulli polynomials.

2. The Analytic Continuation for the n-ple Hurwitz zeta Function

In this section we give an analytic continuation for $\zeta_{n}(s, a)$ by the contour integral representation. First we introduce Eisenstein's theorem [RF] which gives a criterion for the convergence of a n-ple series.

Theorem 2.1. (Eisenstein's Theorem)

$$
\sum_{m_{2}=-\infty}^{\infty} \sum_{m_{2}=-\infty}^{\infty} \cdots \sum_{m_{n}=-\infty}^{\infty}{ }^{\prime}\left(m_{1}^{2}+m_{2}^{2}+\cdots+m_{n}^{2}\right)^{-\mu}
$$

174 Tae Young Seo*, Junesang Choi**, Jin Sook Kang*, Bo Myoung Ok*
converges if $\mu>\frac{n}{2}$, where ' denotes that we exclude the case $m_{1}=$ $m_{2}=\ldots=m_{n}=0$.

Let $s=\sigma+i t$, where $\sigma, t \in \mathrm{R}$. The n-ple Hurwitz zeta function $\zeta_{n}(s, a)$ is initially defined for $\sigma>n, a>0$ by the series

$$
\zeta_{n}(s, a)=\sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty}\left(a+k_{1}+k_{2}+\cdots+k_{n}\right)^{-s}
$$

THEOREM 2.2. The series for $\zeta_{n}(s, a)$ converges absolutely for $\sigma>$ n. The convergence is uniform in every half-plane $\sigma \geq n+\delta, \delta>$ 0 , so $\zeta_{n}(s, a)$ is an analytic function of s in the half-plane $\sigma>n$.

Proof. Note that, for $\sigma>0$,

$$
\begin{aligned}
& \sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty}\left(k_{1}+k_{2}+\cdots+k_{n}\right)^{-\sigma} \\
& =\sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty}\left[\left(k_{1}+k_{2}+\cdots+k_{n}\right)^{2}\right]^{-\frac{\sigma}{2}} \\
& \leq \sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty}\left(k_{1}^{2}+k_{2}^{2}+\cdots+k_{n}^{2}\right)^{-\frac{\sigma}{2}}
\end{aligned}
$$

in which the last series is convergent for $\sigma>n$ by Eisenstein's theorem. Thus all statements in Theorem 2.2 follow from the inequalities

$$
\begin{aligned}
& \sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty}\left|\left(a+k_{1}+k_{2}+\cdots+k_{n}\right)^{-s}\right| \\
= & \sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty}\left(a+k_{1}+k_{2}+\cdots+k_{n}\right)^{-\sigma} \\
\leq & \sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty}\left(a+k_{1}+k_{2}+\cdots+k_{n}\right)^{-n-\delta} .
\end{aligned}
$$

ThEOREM 2.3. For $\sigma>n$ we have the integral representation

$$
\Gamma(s) \zeta_{n}(s, a)=\int_{0}^{\infty} \frac{x^{s-1} e^{-a x}}{\left(1-e^{-x}\right)^{n}} d x
$$

Proof. Note that, for $\sigma>0$,

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

First we keep s real, $s>1$, and then extend the result to complex s by analytic continuation. In the integral for $\Gamma(s)$ we make the change of the variable $x=\left(a+k_{1}+k_{2}+\cdots+k_{n}\right) t$, where $k_{1}=0,1,2, \ldots, 1 \leq$ $\imath \leq n$, to obtain

$$
\Gamma(s)=\left(a+k_{1}+k_{2}+\cdots+k_{n}\right)^{s} \int_{0}^{\infty} e^{-\left(a+k_{1}+k_{2}+\cdots+k_{n}\right) t} t^{s-1} d t
$$

or

$$
\left(a+k_{1}+k_{2}+\cdots+k_{n}\right)^{-s} \Gamma(s)=\int_{0}^{\infty} e^{-\left(k_{1}+k_{2}+\cdots+k_{n}\right) t} e^{-a t} t^{s-1} d t
$$

Summing over all $k_{2} \geq 0,1 \leq \imath \leq n$, we find

$$
\zeta_{n}(s, a) \Gamma(s)=\sum_{k_{1}, k_{2},}^{\infty} \int_{, k_{n}=0}^{\infty} e^{-\left(k_{1}+k_{2}++k_{n}\right) t} e^{-a t} t^{s-1} d t
$$

the series on the right being convergent if $s>n$.
Now we wish to interchange the sum and integral. The simplest way to justify this is to regard the integrand as a Lebesgue integral. Since the integrand is nonnegative, Levi's convergence theorem (Theorem 10.25 in [TM]) tells us that the series

$$
\sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty} \int_{0}^{\infty} e^{-\left(k_{1}+k_{2}++k_{n}\right) t} e^{-a t} t^{s-1} d t
$$

converges almost everywhere to a sum function which is Lebesgueintegrable on $[0,+\infty)$ and that

$$
\begin{aligned}
& \zeta_{n}(s, a) \Gamma(s) \\
& =\sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty} \int_{0}^{\infty} e^{-\left(k_{1}+k_{2}+\cdot+k_{n}\right) t} e^{-a t} t^{s-1} d t \\
& =\int_{0}^{\infty} \sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty} e^{-\left(k_{1}+k_{2}+\cdots+k_{n}\right) t} e^{-a t} t^{s-1} d t
\end{aligned}
$$

But if $t>0$ we have $0<e^{-t}<1$ and hence

$$
\sum_{k=0}^{\infty} e^{-k t}=\frac{1}{1-e^{-t}}
$$

the series being a geometric series. Therefore we have

$$
\sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty} e^{-\left(k_{1}+k_{2}+\cdots+k_{n}\right) t} e^{-a t} t^{s-1}=\frac{e^{-a t} t^{s-1}}{\left(1-e^{-t}\right)^{n}}
$$

almost everywhere on $[0,+\infty)$, in fact everywhere except at 0 , so

$$
\begin{aligned}
& \zeta_{n}(s, a) \Gamma(s) \\
& =\int_{0}^{\infty} \sum_{k_{1}, k_{2}, \cdot, k_{n}=0}^{\infty} e^{-\left(k_{1}+k_{2}+\cdots+k_{n}\right) t} e^{-a t} t^{s-1} d t \\
& =\int_{0}^{\infty} \frac{e^{-a t} t^{s-1}}{\left(1-e^{-t}\right)^{n}} d t
\end{aligned}
$$

This proves (2.1) for real $s>n$. To extend it all complex $s=\sigma+i t$ with $\sigma>n$ we note that both members in the left side of (2.1) are analytic for $\sigma>n$. To show that the right member is analytic we assume $n+\delta \leq \sigma \leq c$, where $c>n$ and $\delta>0$ and write

$$
\begin{aligned}
\int_{0}^{\infty}\left|\frac{e^{-a t} t^{s-1}}{\left(1-e^{-t}\right)^{n}}\right| d t & =\int_{0}^{\infty} \frac{e^{-a t} t^{\sigma-1}}{\left(1-e^{-t}\right)^{n}} d t \\
& =\left(\int_{0}^{1}+\int_{1}^{\infty}\right) \frac{e^{-s t} t^{\sigma-1}}{\left(1-e^{-t}\right)^{n}} d t .
\end{aligned}
$$

If $0 \leq t \leq 1$ we have $t^{\sigma-n} \leq t^{\delta}$, and if $t \geq 1$ we have $t^{\sigma-n} \leq t^{c-n}$. Also since $e^{t}-1 \geq t$ for $t \geq 0$ we have

$$
\begin{aligned}
& \int_{0}^{1} \frac{e^{-a t} t^{\sigma-1}}{\left(1-e^{-t}\right)^{n}} d t \\
& \leq \int_{0}^{1} \frac{e^{(n-a) t} t^{\delta+n-1}}{\left(e^{t}-1\right)^{n}} d t \\
& \leq \begin{cases}e^{(n-a)} \int_{0}^{1} t^{\delta-1} d t=\frac{e^{(n-\alpha)}}{\delta} & \text { if } 0<a \leq n, \\
\int_{0}^{1} t^{\delta-1} d t=\frac{1}{\delta} & \text { if } a>n .\end{cases}
\end{aligned}
$$

and

$$
\int_{1}^{\infty} \frac{e^{-a t} t^{\sigma-1}}{\left(1-e^{-t}\right)^{n}} \leq \int_{0}^{\infty} \frac{e^{-a t} t^{c-1}}{\left(1-e^{-t}\right)^{n}} d t=\Gamma(c) \zeta_{n}(c, a)
$$

This shows that the integral in (2.1) converges uniformly in every strip $n+\delta \leq \sigma \leq c$, where $\delta>0$, and therefore represents an analytic function in every such strip, hence also in the half-plane $\sigma>n$. Therefore, by analytic continuation, (2.1) holds for all s with $\sigma>n$.

To extend $\zeta_{n}(s, a)$ beyond the line $\sigma=n$ we derive another representation in terms of a contour integral. The contour C is a loop around the positive real axis, as shown in Fig.

Fig.
The loop is composed of three parts C_{1}, C_{2}, C_{3}, where C_{2} is a positively oriented circle of radius $c<2 \pi$ about the origin, and C_{1}, C_{3} are the upper and lower edges of a cut in the z-plane along the positive real axis, traversed as shown in Fig. This means that we use the parametrizations $-z=r e^{-\pi z}$ on C_{1} and $-z=r e^{\pi z}$ on C_{3}, where r varies from c to $+\infty$.

Theorem 2.4. If $a>0$, the function defined by the contour integral

$$
I_{n}(s, a)=-\frac{1}{2 \pi i} \int_{C} \frac{(-z)^{s-1} e^{-a z}}{\left(1-e^{-z}\right)^{n}} d z
$$

is an entire function of s. Moreover, we have

$$
\zeta_{n}(s, a)=\Gamma(1-s) I_{n}\left(s_{,} a\right) \text { if } \sigma>n .
$$

Proof. Here $(-z)^{s}$ means $r^{s} e^{-\pi ı s}$ on C_{1} and $r^{s} e^{\pi i s}$ on C_{3}. We consider an arbitrary compact disk $|s| \leq M$ and prove that the integrals along C_{1} and C_{3} converge uniformly on every such disk. Since the integrand is an entire function of s this will prove that $I_{n}(s, a)$ is entire. Along C_{1} we have, for $r \geq 1$,

$$
\left|(-z)^{s-1}\right|=r^{\sigma-1}\left|e^{-\pi z(\sigma-1+z t)}\right|=r^{\sigma-1} e^{\pi t} \leq r^{M-1} e^{\pi M}
$$

since $|s| \leq M$. Similarly, along C_{3} we have, for $r \geq 1$,

$$
\left|(-z)^{s-1}\right|=r^{\sigma-1}\left|e^{\pi t(\sigma-1+i t)}\right|=r^{\sigma-1} e^{-\pi t} \leq r^{M-1} e^{\pi M} .
$$

Hence on either C_{1} or C_{3} we have, for $r \geq 1$,

$$
\left|\frac{(-z)^{s-1} e^{-a z}}{\left(1-e^{-z}\right)^{n}}\right| \leq \frac{r^{M-1} e^{\pi M} e^{-a r}}{\left(1-e^{-r}\right)^{n}}=\frac{r^{M-1} e^{\pi M} e^{(n-a) r}}{\left(e^{r}-1\right)^{n}}
$$

But $\int_{c}^{\infty} r^{M-1} e^{-a r} d r$ converges if $c>0$ this shows that the integrals along C_{1} and C_{3} converge uniformly on every compact disk $|s| \leq M$, and hence $I_{n}(s, a)$ is an entire function of s.

To prove (2.2) we write

$$
-2 \pi i I_{n}(s, a)=\left(\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}\right)(-z)^{s-1} g(-z) d z
$$

where $g(-z)=e^{-a z} /\left(1-e^{-z}\right)^{n}$. On C_{1} and C_{3} we have $g(-z)=g(-r)$, and on C_{2} we write $-z=c e^{2 \theta}$ where θ varies from 2π to 0 . This gives

$$
\begin{aligned}
-2 \pi i I_{n}(s, a)= & \int_{\infty}^{c} r^{s-1} e^{-\pi z(s-1)} g(-r) d r \\
& -i \int_{2 \pi}^{0} c^{s-1} e^{(s-1) z \theta} c e^{\imath \theta} g\left(c e^{\imath \theta}\right) d \theta \\
& +\int_{c}^{\infty} r^{s-1} e^{\pi z(s-1)} g(-r) d r \\
= & -2 i \sin (\pi s) \int_{c}^{\infty} r^{s-1} g(-r) d r \\
& -i c^{s} \int_{2 \pi}^{0} e^{\imath s \theta} g\left(c e^{\imath \theta}\right) d \theta
\end{aligned}
$$

Dividing by $-2 i$, we get

$$
\pi I_{n}(s, a)=\sin (\pi s) I_{1}(s, c)+I_{2}(s, c)
$$

where

$$
\begin{aligned}
& I_{1}(s, c)=\int_{c}^{\infty} r^{s-1} g(-r) d r \\
& I_{2}(s, c)=\frac{c^{s}}{2} \int_{2 \pi}^{0} e^{s s \theta} g\left(c e^{2 \theta}\right) d \theta
\end{aligned}
$$

Now let $c \rightarrow 0$. We can find

$$
\lim _{c \rightarrow 0} I_{1}(s, c)=\int_{0}^{\infty} \frac{r^{s-1} e^{-a r}}{\left(1-e^{-r}\right)^{n}} d r=\Gamma(s) \zeta_{n}(s, a)
$$

if $\sigma>n$. We will show next that $\lim _{c \rightarrow 0} I_{2}(s, c)=0$. To do this note that $g(-z)$ is analytic in $|z|<2 \pi$ except for a pole of order n at $z=0$. Therefore $z^{n} g(-z)$ is analytic everywhere inside $|z|<2 \pi$ and hence is bounded there, say $|g(-z)| \leq A /|z|^{n}$, where $|z|=c<2 \pi$ and A is a constant. Therefore we have

$$
\left|I_{2}(s, c)\right| \leq \frac{c^{\sigma}}{2} \int_{0}^{2 \pi} e^{-t \theta} \frac{A}{c^{n}} d \theta \leq \pi A e^{2 \pi|t|} e^{\sigma-n}
$$

If $\sigma>n$ and $c \rightarrow 0$ we can find $I_{2}(s, c) \rightarrow 0$ hence

$$
\pi I_{n}(s, a)=\sin (\pi s) \Gamma(s) \zeta_{n}(s, a) .
$$

Since $\Gamma(s) \Gamma(1-s)=\pi / \sin \pi s$ this proves (2.2).
In the equation $\zeta_{n}(s, a)=\Gamma(1-s) I_{n}(s, a)$, valid for $\sigma>n$, the function $I_{n}(s, a)$ and $\Gamma(1-s)$ are meaningful for every complex s. Therefore we can use this equation to define $\zeta_{n}(s, a)$ for $\sigma \leq n$.

Definition 2.5. If $\sigma \leq n$ we define $\zeta_{n}(s, a)$ by the equation

$$
\zeta_{n}(s, a)=\Gamma(1-s) I_{n}(s, a) .
$$

This equation provides the analytic continuation of $\zeta_{n}(s, a)$ in the entire s-plane.

Theorem 2.6. The function $\zeta_{n}(s, a)$ so defined is analytic for all s except for simple poles at $s=l, 1 \leq l \leq n$, with their residues

$$
\frac{1}{(n-l)!(l-1)!} \lim _{z \rightarrow 0} \frac{d^{n-l}}{d z^{n-l}} \frac{z^{n} e^{-a z}}{\left(1-e^{-z}\right)^{n}} .
$$

In particular, when $s=n$, its residue is $1 /(n-1)$!.
Proof. Since $I_{n}(s, a)$ is entire, the only possible singularities of $\zeta_{n}(s, a)$ are the poles of $\Gamma(1-s)$. Since $1 / \Gamma(1-s)$ has simple zeros at $s=1,2,3, \cdots, \Gamma(1-s)$ has simple poles at $s=1,2,3, \cdots$. But Theorem 2.4 shows that $\zeta_{n}(s, a)$ is analytic at $s=n+1, n+2, \cdots$, so $s=1,2,3, \cdots, n$ are the only poles of $\zeta_{n}(s, a)$.

Now we show that there are poles at $s=l, 1 \leq l \leq n$, with their residues

$$
\frac{1}{(n-l)!(l-1)!} \lim _{z \rightarrow 0} \frac{d^{n-1}}{d z^{n-1}} \frac{z^{n} e^{-a z}}{\left(1-e^{-z}\right)^{n}} .
$$

If s is any integer, say $s=l$, the integrand in the contour integral for $I_{n}(s, a)$ takes the same values on C_{1} as on C_{3} and hence the integral along C_{1} and C_{3} cancel, leaving

$$
\begin{aligned}
I_{n}(l, a) & =-\frac{1}{2 \pi i} \int_{C_{z}} \frac{(-z)^{l-1} e^{-a z}}{\left(1-e^{-z}\right)^{n}} d z \\
& =-\operatorname{Res}_{2}=0 \frac{(-z)^{l-1} e^{-a z}}{\left(1-e^{-m z}\right)^{n}} .
\end{aligned}
$$

We can show that $(-z)^{l-1} e^{-a z} /\left(1-e^{-z}\right)^{n}$ has a pole of order $n+1-l$ at $z=0,1 \leq l \leq n$. Therefore we have

$$
I_{n}(l, a)=\frac{(-1)^{l}}{(n-l)!} \lim _{z \rightarrow 0} \frac{d^{n-l}}{d z^{n-l}} \frac{z^{n} e^{-a z}}{\left(1-e^{-z}\right)^{n}}
$$

To find the residue of $\zeta_{n}(s, a)$ at $s=l, 1 \leq l \leq n$, we compute the limit

$$
\begin{aligned}
\lim _{s \rightarrow l}(s-l) \zeta_{n}(s, a) & =\lim _{s \rightarrow l}(s-l) \Gamma(1-s) I_{n}(s, a) \\
& =I_{n}(l, a) \lim _{s \rightarrow l}(s-l) \Gamma(1-s) \\
& =I_{n}(l, a) \lim _{s \rightarrow l}(s-l) \frac{\pi}{\Gamma(s) \sin \pi s} \\
& =\frac{\pi I_{n}(l, a)}{\Gamma(l)} \lim _{s \rightarrow l} \frac{s-l}{\sin \pi s} \\
& =\frac{I_{n}(l, a)}{\Gamma(l)} \frac{1}{\cos (\pi l)} \\
& =\frac{I_{n}(l, a)}{(-1)^{l}(l-1)!} \\
& =\frac{1}{(n-l)!(l-1)!} \lim _{z \rightarrow 0} \frac{d^{n-l}}{d z^{n-1}} \frac{z^{n} e^{-a z}}{\left(1-e^{-z}\right)^{n}}
\end{aligned}
$$

In particular, the residue of $\zeta_{n}(s, a)$ at $s=n$ is $1 /(n-1)$!.

The generalized zeta function (or Hurwitz zeta function) $\zeta(s, a)$ is defind for $\sigma>1, a>0$ by the series

$$
\zeta(s, a)=\sum_{k=0}^{\infty}(a+k)^{-s}
$$

In particular, when $a=1, \zeta(s, 1)=\sum_{k=1}^{\infty} k^{-s}$ is usually called the Riemann zeta function, denoted by $\zeta(s)$ [TW]. Corollary 2.7 follows easily from Theorem 2.6.

COROLlary 2.7. $\zeta(s, a)$ can be continued analytically to the entire s-plane except for a simple pole only at $s=1$ with its residue 1 .

3. Some Special Values of $\zeta_{\boldsymbol{n}}(s, a)$

Now the value of $\zeta_{n}(-l, a)$ can be calculated explicitly if l is a nonnegative integer. Taking $s=-l$ in the relation $\zeta_{n}(s, a)=\Gamma(1-$ $s) I_{n}(s, a)$ we can find

$$
\zeta_{n}(-l, a)=\Gamma(1+l) I_{n}(-l, a)=l!I_{n}(-l, a) .
$$

We also have

$$
\begin{aligned}
I_{n}(-l, a) & =-\frac{1}{2 \pi i} \int_{C_{2}} \frac{(-z)^{-l-1} e^{-a z}}{\left(1-e^{-z}\right)^{n}} d z \\
& =-\operatorname{Res}_{z=0} \frac{(-z)^{-l-1} e^{-a z}}{\left(1-e^{-z}\right)^{n}}
\end{aligned}
$$

The calculation of this residue leads to an interesting class of functions known as Bernoulli polynomials.

Definition 3.1. [HB]. For any complex z we define the functions $B_{l}(x)$ by the equation

$$
\frac{z e^{x z}}{e^{z}-1}=\sum_{l=0}^{\infty} \frac{B_{l}(x)}{l!} z^{l}, \text { where }|z|<2 \pi
$$

The functions $B_{l}(x)$ are called l-th Bernoulli polynomials and the numbers $B_{l}(0)$ are called Bernoulli numbers and are denoted by B_{l}. Thus ,

$$
\frac{z}{e^{z}-1}=\sum_{l=0}^{\infty} \frac{B_{l}}{l!} z^{l}, \text { where }|z|<2 \pi
$$

The Bernoulli polynomials and numbers of order n are defined respectively by, for any complex number x,

$$
\begin{aligned}
& \frac{z^{n} e^{x z}}{\left(e^{z}-1\right)^{n}}=\sum_{l=0}^{\infty} B_{l}^{(n)}(x) \frac{z^{l}}{l!}, \text { where }|z|<2 \pi \\
& \frac{z^{n}}{\left(e^{z}-1\right)^{n}}=\sum_{l=0}^{\infty} B_{l}^{(n)} \frac{z^{l}}{l!}, \text { where }|z|<2 \pi
\end{aligned}
$$

Note that $B_{l}^{(1)}(x)=B_{l}(x), B_{l}^{(1)}(0)=B_{l}$ and $B_{l}^{(n)}(0)=B_{l}^{(n)}$.
There are lots of formulas involved in Bernoulli polynomials. Here we give some of them:

$$
B_{l}^{(n)}(x)=\sum_{k=0}^{l}\binom{l}{k} B_{k}^{(n)} x^{l-k}
$$

The Bernoulli polynomials satisfy the addition formula

$$
B_{l}^{(n)}(x+y)=\sum_{k=0}^{l}\binom{n}{k} B_{k}^{(n)}(x) y^{l-k} .
$$

THEOREM 3.2. The Bernoulli polynomials $B_{l}^{(n)}(x)$ satisfy the equation

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} B_{l}^{(n)}(x+k)=\frac{l!}{(l-n)!} x^{l-n} \text { if } l \geq n
$$

In particular, when $n=1, B_{l}(x+1)-B_{l}(x)=l x^{l-1}$ if $l \geq 1$.

Proof. We have

$$
\begin{aligned}
& \sum_{l=0}^{\infty} \frac{\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} B_{l}^{(n)}(x+k)}{l!} z^{l} \\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{z^{n}}{\left(e^{z}-1\right)^{n}} e^{(x+k) z} \\
& =\left[\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} e^{k z}\right] \frac{z^{n} e^{x z}}{\left(e^{z}-1\right)^{n}} \\
& =\frac{\left(e^{z}-1\right)^{n}}{\left(e^{z}-1\right)^{n}} z^{n} e^{x z} \\
& =\sum_{m=0}^{\infty} \frac{x^{m}}{m!} z^{n+m} \\
& =\sum_{l=n}^{\infty} \frac{x^{l-n}}{(l-n)!} z^{l}
\end{aligned}
$$

For $l \geq n$, equating the coefficients of z^{l}, the theorem follows.
THEOREM 3.3. $B_{l}^{(n)}(n-x)=(-1)^{l} B_{l}^{(n)}(x)$ for every integer $l \geq 0$.
Proof. For $|z|<2 \pi$, we have

$$
\frac{z e^{(n-x) x}}{\left(e^{z}-1\right)^{n}}=\sum_{l=0}^{\infty} \frac{B_{l}^{(n)}(n-x)}{l!} z^{l}
$$

Replacing z by $-z$, we have

$$
\frac{(-z)^{n} e^{(x-n) z}}{\left(e^{-z}-1\right)^{n}}=\sum_{l=0}^{\infty} \frac{B_{l}^{(n)}(n-x)}{l!}(-z)^{l}
$$

On the other hand

$$
\frac{(-z)^{n} e^{(x-n) z}}{\left(e^{-z}-1\right)^{n}}=\frac{z^{n} e^{x z}}{\left(e^{z}-1\right)^{n}}=\sum_{t=0}^{\infty} \frac{B_{i}^{(n)}(x)}{l!} z^{l}
$$

Equating coefficients of z^{l}, we obtain the desired results.

Theorem 3.4. For every integer $l \geq 0$, we have

$$
\zeta_{n}(-l, a)=(-1)^{l} \frac{l!}{(n+l)!} B_{n+l}^{(n)}(n-a) .
$$

Proof. As noted earlier, we have $\zeta_{n}(-l, a)=l!I_{n}(-l, a)$. Now

$$
\begin{aligned}
I_{n}(-l, a) & =-\operatorname{Res}_{z=0} \frac{(-z)^{-l-1} e^{-a z}}{\left(1-e^{-x}\right)^{n}} \\
& =(-1)^{l} \operatorname{Res} s_{z=0} z^{-l-1} \frac{e^{(n-a) s}}{\left(e^{z}-1\right)^{n}} \\
& =(-1)^{l} \operatorname{Res} s_{z=0} z^{-n-l-1} \frac{z^{n} e^{(n-a) z}}{\left(e^{z}-1\right)^{n}} \\
& =(-1)^{l} \operatorname{Res}_{z=0} z^{-n-l-1} \sum_{k=0}^{\infty} B_{k}^{(n)}(n-a) \frac{z^{k}}{k!} \\
& =(-1)^{l} \frac{B_{n+l}^{(n)}(n-a)}{(n+l)!},
\end{aligned}
$$

from which we obtain (3.4).
From Theorems 3.3 and 3.4 we have the following.
Crollary 3.5. For every integer $l \geq 0$ we have

$$
\zeta_{\mathrm{n}}(-l, a)=(-1)^{n} \frac{l!}{(n+l)!} B_{n+l}^{(n)}(a) .
$$

In particular, $\zeta(-l, a)=-B_{l+1}(a) /(l+1)$.

References

7. J. Meng and X. L Xin, Characterizations of atoms in BCI-algebras, Math Japon. 37 (1992), 359-361.
8. T M. Apostol, Mathematical Analyszs(2nd edr.), Addison-Wesly publishing Company, 1974
9. E. W. Barnes, The Theory of the G-function, Quart J. Math. 31 (1899), 264-314.
10. E. W. Barnes, Genesss of the Double Gamma Function, Proc. Lon. Math. Soc. 31 (1900), 358-381.
11. E.W. Barnes, The Theory of the Double Gamma Functıon, Philo. Trans. Roy. Soc.(A) 19 (1901), 265-388.
12. E. W Barnes, On the Theory of the Multaple Gamma Function, Philo. Trans. Roy. Soc.(A), XIX (1904).
13. H. Bateman, Higher Transcendental Functions Vol. 1, McGraw-Hill Book Cornpany, Inc., 1953.
14. J. Dufresnoy, C. Pisot, Sur la Relation Fonctsonnelle $f(x+1)-f(x)=\psi(x)$, Bulletin de la Société Mathématique de Belgique 15 (1963), 259-270.
15. A. R. Forsyth, Theory of Functzon of a Complex Varzable, Cambrige University press, 1900.
16. E. D'Hoker, D. H. Phong, On Determinant of Laplactans on Riemann Surface, Comm. Math. Phys. 104 (1986), 537-545.
17. E. D'Hoker, D. H. Phong, Functional Determinants on Mandelstam Dagrams, Comm. Math. Phys. 110 (1987), 113-120.
18. B. Osgood, R. Phillips, P. Sarnak, Extremals of Determınants of Laplacians, J. Func. Anal 80 (1988), 148-211.
19. P. Sarnak, Determmants of Laplaczans, Comm. Math. Phys. 110 (1987), 113-- 120.
20. T. Shintani, A Proof of the Classical Kronecker Lamt Formula, Tokyo J. Math. 3 (1980), 191-199.
21. I. Vardi, Determinants of Laplactans and Multaple Gamma Functons, SIAM J. Math. Anal. 19 (1988), 493-507.
22. M. F. Vignéras, L'Equatzon Fonctronnelle De la Fonctzon Zeta de Selberg Du Groupe moudulatre PSL(2,Z), Socıété Mathématıque de France Astérique 61 (1979), 235-249.
23. A. Voros, Special Functions, Spectral Functions and the Selberg Zeta function, Comm Math. Phys. 110 (1987), 439-465.
24. E. T. Whittaker, G. N. Watson, A Course of Modern Analysıs (4th edz), Cambridge University Press, 1963.

*Department of Mathematics Pusan National University Pusan 609-735, Korea
**Department of Mathematics
Dongguk University
Kyongju 780-714, Korea

