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THE MULTIPLE HURWITZ ZETA FUNCTION

TAE YOUNG SEO*, JUNESANG CHOI*™,
Jin Sook KanNG*, Bo MyounNG Ok*

1. Introduction

Recently the theory of multiple gamma functions, which were
first introduced by Barnes [WB2], [WB3], [WB4], [WBS5] and others
about 1900, has been revived according to the study of determinants
of Laplacians [HP1}, {HP2], {O], [PS], {IV}], [AV]. Vignéras [F'V] gives us
Weierstrass canonical product forms for multiple gamma. functions by
using a result of Dufresnoy and Pisot [JD]. Barnes [WBJ] introduces
these functions through n-ple Hurwitz zeta functions. We give detailed
computation for the analytic continuation of the n-ple Hurwitz zeta
functions {»(s,a) which is important for us to give Barnes’ approach
for multiple gaznma functions. We can also express some special values
of n-ple Hurwitz zeta functions as n-ple Bernoulli polynomials.

2. The Analytic Continuation for the n-ple Hurwitz zeta
Function

In this section we give an analytic continuation for {,(s,a) by the
contour integral representation. First we introduce Eisenstein’s theo-
rem [RF] which gives a criterion for the convergence of a n-ple series.

THEOREM 2.1. (Eisenstein’s Theorem)
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k3

converges if p > %, where ’ denotes that we exclude the case m; =
My = .., 3= My =0,

Let s = o + it, where o,t € R. The n-ple Hurwitz zeta function
(n(s,a) is imitially defined for ¢ > n,a > 0 by the series

o0

(a(s,0) = Y {adhkith+ k)
klykza"' 7kn=0

THEOREM 2.2. The series for (,(s,a) converges absolutely for o >
n. The convergence is uniform in every half-plane o > n 4+ 6,6 >
0,s0 {n(s,a) is an analytic function of s in the half-plane o > n.

Proof. Note that, for o > 0,
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in which the last series is convergent for ¢ > n by Eisenstein’s theorem.
Thus all statements in Theorem 2.2 follow from the inequalities
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THEOREM 2.3. For 0 > n we have the integral representation

a]—a:r:

O

Proof. Note that, for o > 0,

oo
F(s):/ e % dx
0

First we keep s real, s > 1, and then extend the result to complex s by
analytic continuation. In the integral for I'(s) we make the change of
the variable # = (a + k; + k2 + -+« + k)¢, where k, = 0,1,2,...,1 <
t < n, to obtain

o
I'(sy=(a+ ks +hkat -+ kn)sf e (athithattha)tys=1 g
0

or
oo
(a+ ki +ky+- 4 k) °D(s) = [ o (Rt kot +kn)t —atys—1 gy
0

Summing over all k, > 0,1 <1 < n, we find

Cn(s,a)T(s}) = Z / e (thkat Fha)t~atys—i gy

kyi,k2, kn=0

the series on the right being convergent if s > n.
Now we wish to interchange the sum and integral. The simplest way
to justify this is to regard the integrand as a Lebesgue integral. Since

the integrand is nonnegative, Levi’s convergence theorem (Theorem
10.25 in [TM]) tells us that the series

Z / —(k1+kz+ Aka )t —alts—ldt

kl)k21 ) n
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converges almost everywhere to a sum function which is Lebesgue-
integrable on [0, +00) and that

(n(s,a)l(s)

o0
— Z ] e*—(k|+k2+~ +kn)te—a!t5—1dt
klka,""kﬂ=0 9

o0 00
= / Z e—(k;-l-kz-i—----i—k,;‘)te—cita—~1 dt
O ki kg, k=0

But if ¢t > ¢ we have 0 < e~ < 1 and hence

x>
Yoet=

e = 1 3
k=0 ¢

the series being a geometric series. Therefore we have

oo - -
e atta 1

e-(kl+kz+'"+kn)te—att3—l _

—tn
khkb“')kn:o (1 )
almost everywhere on [0, +0c0), in fact everywhere except at 0, so
(a(s,a)I(s)

o0 o0
= / Z e-—(kl+k2+"'+kn)‘e—att8—1dt
0 ky,k2,- - kn=0

/ —atts-vl

I =et) c“)"
This proves (2.1) for real s > n. To extend it all complex s = o + it
with ¢ > n we note that both members in the left side of (2.1) are

analytic for ¢ > n. To show that the right member is analytic we
assume n + 6 < ¢ < ¢, where ¢ > n and § > 0 and write

o0 =] —atyor—1
j dt == f -e—*i‘—-dt
0 o (1—e )"
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If0<t<1wehavet” ™ <#° andif ¢t > 1 we have " < #°°™. Also
since ¢! — 1 > ¢ for ¢ > 0 we have

1 ~atro—1
e ¢
f et
o (L—et)n
1 (n—a)ttﬁ—!-n—l
< / st
0

(et — 1)
[ ferdt =<2 f0<a<n,
folta—l dt:% if a > n. '

and

[ et

‘This shows that the integral in (2.1) converges uniformly in every strip
n+6 < o < ¢,where § > 0, and therefore represents an analytic func-
tion in every such strip, hence also in the half-plane ¢ > n. Therefore,
by analytic continuation, (2.1) holds for all s with o > n.

To extend (.(s,a) beyond the line ¢ = n we derive another rep-
resentation in terms of a contour integral. The contour C is a loop
around the positive real axis, as shown in Fig.

C,
SN CI
é,_
- + OO
6 -,
G
Fig.

The loop is composed of three parts Cy,C;, C3, where C; is a pos-
itively oriented circle of radius ¢ < 27 about the origin, and Cy,Cj
are the upper and lower edges of a cut in the 2- plane along the posi-
tive real axis, traversed as shown in Fig. This means that we use the
parametrizations —z = re ™ on C; and —z = re™ on Cj, where r
varies from ¢ to 4o0.



178 Tae Young Seo*, Junesang Choi**, Jin Scok Kang*, Bo Myoung Ok*
THEOREM 2.4. Ifa > 0, the function defined by the contour integral

_ 1 (_z)s—lc—az
In(s,a) = 21t Jo (1—e%)n dz

is an entire function of 3. Moreover, we have

(n(s,a) =T(1 —8)u(s,a) if 0 > n.

Proof. Here (~z)* means r?e~™ on C; and r’e™ on C3. We
consider an arbitrary compact disk {s} < M and prove that the integrals
along Cy and Cj converge uniformly on every such disk. Since the
integrand is an entire function of s this will prove that I,(s, a) is entire.
Along C; we have, forr > 1,

I(_z)s—ll =g~ Ie—m(o—l«l—zt)l — r¢r—lewt < rM—lerM
since |s] < M. Similarly, along C3 we have, for r > 1,
l(__z)a—ll - ro‘-l |8m(a~l+s‘t)l — ra-—le—rt < rM—lexM‘

Hence on either C; or C3 we have, for r > 1,

(_z)swl e~ %% pM-1,7M ,—ar rM—lctrM e(n—a)r

(1-e %)

T o (l-emr o (-

But fcoo rM—1e—ardr converges if ¢ > 0 this shows that the integrals
along Cy and Cj converge uniformly on every compact disk |s| < M,
and hence I,(s,a) is an entire function of s.

To prove (2.2) we write

—2mila(s,a) = /C + /C o+ [ ) ate)de

where g(—2) = e7%*/(1—e~%)". On C; and C; we have g(—z) = g(—~7),
and on €, we write —z = ce*® where 8 varies from 27 to 0. This gives
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us

—2mil,(s,a) =/ rolem ™) g(_r)dr

o0

0
— / Ca—le(s—l)xecetﬂg(cen?)dg
2

k.3

o0
+/ ra—lewx(s—l)g(Tr)dr
° oo
=—2isin(7rs)f r*lg(~r)dr
o [
—ic’/ e**%g(ce*?)d8.
2x

Dividing by —2i, we get

wl.(s,a) = sin{ws)Ii(s,c) + I2(s,¢),

where

Ii(s,¢) = /:o r*lg(—r)dr

0
c?

I(s,c) = 5
2%

e*¥g(ce’?)d8.

Now let ¢ — 0. We can find

.rs—l —ar

fiy F(s,0) = [ mdr = (s, 0)

179

if o > n. We will show next that lim._,q [5(s,c} = 0. To do this note
that g(—z) is analytic in {2} < 27 except for a pole of order n at z = 0.
Therefore z"g(—z) is analytic everywhere inside |2| < 27 and hence is
bounded there, say |g(—z)| < A/|z|", where |z] = ¢ < 27 and A is a

constant. Therefore we have

o

2w
{a(s,c)f < 52—/ e_w-jidé' < wAetitlern,
0 c®
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If ¢ > n and ¢ — 0 we can find I;(s,¢) — 0 hence
#1a(3,a) = sin(ws)0(s)(a(s, a).
Since T'(s)I’(1 — 8) = «/sinns this proves (2.2).

In the equation {a(s,a) = I'(1 ~ s)I.(s,a), valid for ¢ > n, the
function I,(s,a) and I'(1 — s) are meaningful for every complex s.
Therefore we can use this equation to define (,(s,a) for ¢ < n.

DEFINITION 2.5. If 0 < n we define (,,(s,a) by the equation
(ul(s,a) = T(1 — 8)I (s,a).

This equation provides the analytic continuation of {s(s,a) in the
entire s-plane.

THEOREM 2.6. The function (»(s,a) so defined is analytic for all s
except for simple poles at s = 1,1 <[ < n, with their residues

1 dn—t ZPe 8%
lim .
(n = DI - 1) z=0 dzn—H (1 — e~%)®

In particular, when s = n, its residue is 1/(n — 1)\.

Proof. Since I,(s,a) is entire, the only possible singularities of
(n(s,a) are the poles of I(1 — s). Since 1/T'(1 — s} has simple zeros
at s = 1,2,3,--+ ,I'(1 — 5) has simple poles at s = 1,2,3,---. But
Theorem 2.4 shows that (,(s,a) is analyticat s=n+1,n42,---, 50
s=1,2,3,--- ,n are the only poles of (s(s, a).

Now we show that there are poles at s.= [,1 < [ < n, with their
residues

1 5 dn—l 2P0z
(n— DI = 1)! £0 dzn—1 (1 — e—%)*
If s is any integer, say s = I, the integrand in the contour integral for
I.(s,a) takes the same values on C; as on C3 and hence the integral
along C} and C; cancel, leaving

1 (_z)b-le—az
2mi Jo, (1—e%)"
(—z)‘_le““

I.(l,a) = — dz

= —~Res,—g
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We can show that (—z)~'e™%*/(1 — e~#)" has a pole of order n 41 ~1
at z = 0,1 <! < n. Therefore we have

(_1)! ) dn—! SRe=—az

I.(l,a) = .
(1) (n 01 2 o 1—e7)r

To find the residue of (,(s,a) at s = {,1 < < n, we compute the limit

Exjﬁ(s — )n(s,a) = 13151?(3 ~ DI(1 — s)I.(s,a)

= I.(l,a) 11.{{1'(.5 -~ DT(1 - s)
T
= (L) 5{13}(3 B Z)I"(s) sin s
_ wIn(l,a) i s—1
(1) s—isinms

_ In(lba) 1
T I cos(wl)
- I“(Z’ a)
~(CDHE - 1)
_ 1 L dn—l Zhe— 8z ‘

(n—=DII — 1) 20 dzn=1 {1 — g=%)m

In particular, the residue of {,(s,a) at s =n is 1/{(n — 1)L

The generalized zeta function (or Hurwitz zeta function) {(s,a) is
defind for ¢ > 1,a > 0 by the series

((s,a) = Z(a +k)7c.

k=0

In particular, when @ = 1,{(s,1) = Y to, k~° is usually called the
Riemann zeta function, denoted by ((s) {TW]. Corollary 2.7 follows
easily from Theorem 2.6.
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COROLLARY 2.7. ((s,a) can be continued analytically to the entire
s-plane except for a simple pole only at s = 1 with its residue 1.

3. Some Special Values of (,(s,a)
Now the value of (,(—!,a) can be calculated explicitly if ! is a non-

negative integer. Taking s = —I in the relation {n(s,a} = I'(1 —
8}In(s,a) we can find

Ca(=1,a) = T(1 + DIu(~1, a) = Mo (~1, a).

We also have
_ 1 (_z)~I—l e~ 0%
In(-1,0) = 2w c, (l—e#)" dz
—z —t—le—az
= -—Reszzo_.(_fz_eT)n

The calculation of this residue leads to an interesting class of functions
known as Bernoulli polynomials.

DEFINITION 3.1. [HB]. For any complex z we define the functions
Bi(x) by the equation

Z B‘(x) 2! where |2} < 2.

-1 i=0

The functions By(z) are called I-th Bernoulli polynomials and the num-
bers Bi(0) are called Bernoulli numbers and are denoted by B;. Thus

b4

= , Where |z| < 2.
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The Bernoulli polynomials and numbers of order n are defined re-
spectively by, for any complex number r,

PP x© n zl
_(ez 1) = ZB; )(x)T'—, where |z| < 2m,
=0 )

n oo t
__* —~ (n) %
(e* — 1) ;B, Tk where |z| < 2.
Note that B‘(I)(m) = B:(m),Bfl)(O) = B and B,(n)((}) _ Bg").

There are lots of formulas involved in Bernoulli polynomials. Here
we give some of them:

{
n 1\ pn) e
BM() =3 (k) B!k,

k=0

The Bernoulli polynomials satisfy the addition formula

i
Bgﬂ)(m +y)= Z (Z) Bin)(m')yl"k‘

k=0

THEOREM 3.2. The Bernoulli polynormnials Bf")(:c) satisfy the equa-
tion

& 1

{I—n)

2" if 1> n.

(3) coBe + 1) =

k=0

In particular, when n = 1, Bi{(z + 1) — Bi(z) = -1 if 1> 1.



184 Tae Young Seo®, Junesang Choi**, Jin Sook Kang*, Bo Myoung Ok*
Proof. We have

£ Sk (}) o8+

1 2

=0

n

; kg (z) (—1)n* (Erz—;n; bz
[ (5] 2

<

Forl > n, equa,ting the coefficients of 2!, the theorem follows.

THEOREM 3.3. Bf")(n —-z)= (ﬂl)‘Bf“)(m) for every integer { > 0.

Proof. For {z] < 2r, we have

zeln—2)z _ = Bfn)(n—:c)z‘.
(ez — 1) — It
Replacing 2z by —z, we have
oyt B Bn-z)
RV |

On the other hand

{=0

(_._z)ne(x-*n)z M eTZ _ (“)(m)
(s —1)7 (e _1),.#2 P

Equating coefficients of z{, we obtain the desired results.

=0
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THEOREM 3.4. For every integer | > 0, we have

Gul=10) = (~1' 3 B — o)

Proof. As noted earlier,we have (,(—I,a) = I!I,(—1,a). Now

_ B (_z)-lwle—az
In(—1,a) = ~Res,=o o)

) e(n-a)s

(e —1)"

(n—-a)z
_ ! —nei—12"€
— (—1) Reszzoz n m“

= (—-1)}Resz=oz_"

o0 k
—_n—{— Z z
k=0

f:gz(" a)

=0 =

from which we obtain (3.4).

From Theorems 3.3 and 3.4 we have the following,.

CROLLARY 3.5. For every integer | > 0 we have

—_ n (n)
(ﬂ( IG.) ( 1) ( +Z);Bn+( )‘

In particuar, ((—1,a) = —Bi1{a}/(I + 1).
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