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ON TIME DECAYS FOR SOME SEMILINEAR
WAVE EQUATION WITH A DISSIPATIVE TERM

Kosuke ONO
0. Introduction

In this paper we investigate on the decay properties of the solu-
tion and its derivatives to the Cauchy problem for the semilinear wave
equation with the dissipative term :

ty — Au+ug+ f(u) =0 in RN x{0,00),
(0.3) { u(2,0) = up(z) and uz,0) = u(x),

where f(u) is a nonlinear function like f(u) = |u[*u, @ > 0 (ie,
flu)u 2 0).

In the case 0 < a < 4/[N ~2]*, we have already studied on certain
decay rates for the solution and its derivatives of the equation (0.1).

(See Kawashima, Nakao & Ono [10}.) For example, in the typical case
N=3and a =2,

IDEDiu(t)]} < Clmgn (1 +8)” T 7

for 0 < k,lL,k+I<m+1,m> 1, wheren is some positive number and
Clm+1) 1s some positive constant given by (0.5b) and (0.6) respectively.
Here, we note that this results.do not need a smallness condition to
initial data (up,u;) € H™M'NnL"  x H*NL",m > 1,1 <r <2
Moreover, this results are effective even for weak solutions.

The purpose of this paper is to improve previous results in {10} for
its derivatives with respect to ¢ of the solution of the equation (0.1). To
this end, we need to improve LP-L9-estimates of the linear dissipative
wave equation which is (0.1) with f(u) = f(z,t). So, we shall give more
detailed LP-L%-estimates than {10] do. (For the nondissipative case,
see Brenner [1], Pecher [18], Mochizuki [13], Ginibre & Velo (5], etc.)
Under initial data (uo, u;) is sufficiently small, similar results on decay
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property of classical solutions are given by Matsumura [11]. Recently,
Rack [19] have given some L?-L%-estimates for the dissipative equation
in more general setting for the case N = 3 and f(u) = 0. Moreover,
in this paper, adding the improved LP-LY-estimates, we utilize the
L?-norm of the equation (0.1) and its differentiated equations, e.g.,
| Diuel] < ||Di(uwee — Au+ f(u))], i =0,1,---, etc. Then, we regard a
decay rate of ||us(t)l] as a decay rate |Au(t)|| in a certain case.

The existence and uniqueness for a solution of usual nondissipa-
tive wave equations (e.g., s be removed from (0.1))have already been
proved by many scientists. (Cf. Jorgens [9], Strauss [22], Pecher {18],
Brenner & W. v. Wahl [3], Grillakis [6], [7], Struwe [23], etc.) Thus,
we can obtain the similar results for our equation (0.1) by trivial mod-
ifications.

Recently, we have give some results the case when we do not need an
assumption such that f(u)u > 0 (for example f(u) = —|ul®u) under
some smallness condition of (ug,u1), or when the nonlinear dissipative
term case (see [15)], [16]). Moreover, we have derived precise results on
the decay of solutions for the equation (0.1) with f(u) replaced by a
nonlinear function g(u;) like g(u,) = |u:|Pus, 8> 0 (see [17)).

The content of this paper is as follows. In Section 1 we state some
known Lemmas (but we omit their proof). In Section 2 we give en-
ergy decay estimates and LP-L?-cstimates for a linear dissipative wave
equation. In Section 3 we state our hypotheses on the nonlinear term
f(u) and our main results for the nonlinear dissipative wave equation
(0.1}. Their proof consist of sevcral steps and will be given in Section
3~ 6.

” Notation” We shall denote by DX, k > 0 integer, any partial
differential operators of order k& with respect to the space variables
Z,, ¢t = 1,2,..- | N. The differentiation of order ! with respect to the
time ¢ is denoted by D! or (j’%)‘. In particular, D denotes a partial
differential operator D, or D;. We use only standard function spaces
H; (L? = Hy, H* = Hj) equipped with the norm :

(0.2) lullzy = NF7H{< &> @EM,

where < £ >= /1 +(¢|? and || - ||, denotes the usual LP-norm (we use
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| - || for [+ |lz), and F denotes the Fourier transform :

1
Var

©3)  FluE@}O)=aE) = —— [ () de.

We denote special notations by

k
(0.4) wk,JE;-i-l for %,1=0,1,2,---,
. N1 1
(05&) 77,.5—2—(;—5) for IST‘SZ,
and

min{n}, Na/4} if a>4/N,

(0-5b) = { 0 if a<4/N.

Here, we note that
(0.5¢) n =min{n;, Naf4} =y; if N <4anda>4/N.

. And, we denote by C various positive constants independent of (uo,u1)
and , in particular, denote by Cy, 41y various positive constant depend-

ing on fJuollsms -+ lurlsim or uollgm s + fouslre -+ Ntofl- + fualls
and other known constants, namely,

(08)  Cimtay = cllluollamsrr +{lusllzm + frollr + Jlusfic).

Moreover, let {a]t = max{0,a}, where 1/{a}]* = oc if {a]* =0, and let

pairs of conjugate indices be written as p,p’, where 1/p+ 1/p' = 1.
A. Preliminaries and Linear Dissipative Wave Equation

1. Some Lemmas

We use the following Lemmas through this paper (but we omit their
proof).

The first one is well known.
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LEMMA 1.1, (Gagliardo-Nirenberg) Let 1 < r < p £ 00,1 <
g < p and 0 < k < m. Then, the inequality

(1.1a) IDzollp < Coll DT oligllvls™ for ve HT ML

holds with some constant Cy > 0 and

am e Gop-HE-F-Y

provided that 0 < 6 <1 (0 <8< 1ifl<g<ooandm—Nfgisa
nonnegative integer).

The second one is powerful in deriving decay rates of energies.
LEMMA 1.2.  (Nakao) Let ¢(f) be a nonnegative function on
Rt = [0, 00), satisfying

(1.2a) sup $(s)' T < ko(1 +1)°{g(2) — 4(t + 1)} + h(t)

1<s<t+1
for some kg > 0, > 0,8 < 1, and a function h(t) with
(1.2b) 0<ht) S k(1 +2)"

for some k; > 0 and v > 0. Then, ¢(i) has a decay property

12)  HOSCoain™,  e=mn{L T},

where Cy denotes a positive constant depending on ¢(0) and other
"known constants.

REMARK 1.1.  The proof of this lemma. is given in Nakao [14] under
a little strong assumption A(t) = o(¢t™7) with v = (1 + a)(1 — f)/a as
t — co. The perfect proof of this lemma is given in [10].

The third one is useful in deriving L?-estimates.

LEMMA 1.3, ([10]) Let y(¢) be a nonnegative function on [0,T), T >
0 (possibly T = o0), and satisfy the integral inequality

(1.32)  y(t) < ko(1 +12)™" + ky [ t(1 1t —s) (1 +8) Yy(s)* ds
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for some kg, k1 >0, a, 8,7 > 0 and 0 < p < 1. Then, the function y(1)
has

(1.3b) y(t) < Co(1 +1)7°

for some constant Cy > ) and

— Y B+r-1
(1.3¢) G_mm{a,ﬂ,l_#, — }

with the following exceptional case : Ifa > § and B+y-1)/(A—p)=
8 < 1, where

(1.3d) g= min{ﬂ, ﬁ-ﬂ} ,

then, the function y(t) has

e 1/{(1—u)
(1.3¢) y(t) < Co(1 +1)~ (log(Z +1)) .

REMARK 1.2.  Once we know y(1) is a bounded function, we can
apply Lemma 1.3 also to the case g > 1. In particular, if v > 0 and
B+~ —1>0, we obtain (1.3b) with

(1.3f) 8 =min{a, 8} ( = min{a,ﬁ, i __7#]4_ , '8{1-*;7;5: } ) .

Moreover, we note that even for the exceptional case, (1.3b} is valid if
f1sreplaced by 8 =0 ~¢,0<e g 1.

The forth one is well known.
LEMMA 1.4.  (Fourier Multiplier (cf. (8], [12], {21]) Let f({) be
class C™, m > N/2, in the complement of the origin of R? , satisfying

(14a) EFIDEFEN < My, O0Sk<m,
with some My > 0. Then, for1 < p < oo and v € CX(RN),

(1.4b) IFHAET , < CoMoffolls ,
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where Cy is a certain positive constant independent of M.

2, Energy Decay and L?-L?-estimates for Linear Dissipative
Wave Equation

In this section we consider the linear wave equation with a dissipa-
tive term :

ug — Au+ug = f(x,t) in RY x [0, 00),
(2.2) { u{xr,0) = uo{z) and wuz,0) = ui(z).

First, we give here a decay property for the energy E(t) = | D u(?)|I*+
| Dsu(t)||? to the linear equation (2.1), which is useful in deriving the
decay rates of its derivatives to the nonlinear equation {0.1). The fol-
lowing result is proved by Propositions 4.1 and 4.2 in [10]. (We omit
here the proof.)

LEMMA 2.1.  Let (up,u1) € H'xL? and let f(t) € L}, ([0, 00); L?).
Suppose that u(t) is a solution of the linear equation (2.1} which be-
longs to C([0, 00); H')N CY([0, 00); L?). Further, we assume that

(2.2a) HuI* < ko(1 + )7

and forn =1,2,---,

(2:2b) PO < D k(L + 1)~ Bty
=1

with some ko, k; > 0,a > 0,b, >0,and 0 < p, < 1 for j =1,2,--- ,n.
Then, the energy E(t) has the decay property

(2:2¢) E(t) = IDu@)|]® + 1D < Ci(1+1)7,

where C is a positive constant depending on E(0) and other known
constants, and 8 > 0 is given by

(1 b a+b
2.2d 0 = — i 2 L .
( ) mm{2+a’115n;2“{[1-#3]+,2"111}}
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Next, we shall derive LP- L9-estimates for the solution and its deriva-
tives of the linear equation (2.1). Now, we see that the solution u(t)
1s given through Fourier transform :

(2.32) a(6,t) = ap(6,t) + (6, ).
Here, we define

(2.3b)

—~

TE(E 1) = 5 ($1(6,1) + $alE)T(E) + balE OT(E),

and

(2.3¢)
Fe,t) = ]0 ba(E,t — $)FE, 5) ds

where we set

¢1(£at) = C_tlz{eA‘/z + c—kt/z}

(2.3d) - { 2e2 cosh(Mt/2) i [ <1/2,
: Tl 2¢72 cos(At/2) if|€] > 1/2,
and
¢2(§’t) = %“5_1/2{6%”2 — c_’\t«/2}
(2.3¢) _ { 207 e2ginh{At/2) if |£] <172,
. 23 Ye 2N, 1/2) i €] > 1/2

with A = /1 —4[{]? and A = /4[E12 — 1 (= /-1 A). Then, we sec

easy that for 1 = 0,1,2,---,
(2.4a)
() puiet
dt ? bl

—14 X\ -1 =2\ )
( 2+ )e(—l+h)t/2+( > )e(wl—).)iﬂ’ i=1,

%[(*1 t )‘)‘e(—1+,\)t/z _ (_12_ )‘)‘e(~1—>«)t/2] i=9.

2
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In particular, if [£] > 1/2 we see
(2.4b)
d.i
(EE) ¢1(§7t)

1 - —j A+ (I —g)r
-1 -t/ I—j -
_ 2 ¢ ZJ:G( 1)-,A‘t COS( 9 ) ] i 1.‘
-1, T O o o U DL :
-1, ,~tf2 5 1—3-1 -2
27 eTHE Y o (1P A sm( 5 ), i=2
Now, we take x, € C®(RY), j = 1,2,3, such that
(2.5a)
1 if | <1/4,
xi(é) = { - 4 /
0 i f£>1/3,
(2.5b)
0 if [ <2/3,
x3(§) = { . 4 /
1 it ¢l > 3/4,
and
(2.5¢)

3
x2(8) =1 —x1(§) — xa(§), e, ij(g) =1.

The purpose here is to improve the L?-L%-estimates for the solution
and its derivatives of the linear dissipative wave equation (2.1) given
in a previous paper {10] (with the case k = [ = 0). To this we give
the LP-L%-estimates for a function v which belongs to C°(RV) and is
divided up the function x,(£), 7 = 1,2,3, by the following forms.

THEOREM Al. Let v belong to C°(RN) ,and let k and | be
nonnegative integer. Then, we have :
(i) For1<p<22<¢<00,0<7<k, andvy€ER,

(0 = 177 (O (5) 4,90 g
(2.6) <O+t FHHEG-DDiy,, i=1,2.
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(i) For1<p<2,0<j<k,andy€R,
- d.\i .
120 = 1F {108 (5) (& 00
(2.7) < Ce " Dlvl,, =12,

with some 0 < v < 1/2.
(i) Forl<p<2, v € R, and an integer m > 0,

Ja(t) = 177 {(@(V-16)* ( ) $:(&: 00 Har,
(2.8a) < Ce e~ IN-DG -3 ’||D;‘v|;,,, 1=1,2,
with some 0 < v < 1/2, provided that

1 1 m if 1=1,
2.8b k41 N+1)(2-2)<
(285) ity + N+ )(p 2)—{m+1 ifoi=2.

(iv) Forvy € R,

1) = |17 ()T (5) (6 09}
(2.92) <Ce*olly=, i=12,

with some 0 < v < 1/2 and

k+1 if 1=1,
(2.9b) :{ +i4+y if 2

E+l+~y—-1 of 2=2.

Proof. We consider the case : = 2 only (because that the case
1 = 1 is proved in the same way). First, we shall show (2.6). Noting
the (2.4a), we have from the Hausdorff-Young inequality that

B < () < € > (IOHCD) gale Ol
< () < €57 (Ve (THR) et sg(g)
Flha(©) < €57 (VTef (——*) Vg
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where A = /1 — 4|¢[2. Here, since [é} < 1/3 (see (2.52)), we see that
—4[é]2 < 14 A < —2f¢}? and v5/3 < X £ 1. Thus, we have that for
any 0 <j <k,

Ju(t) < Clxa (O |€P eI DLu(€)|o
(2.10) +Ce P (€)Div(E)lly = T + 1) -
Here, we see from the Holder inequality that

Jl(l)(t) <C (/ |€|p’q’(k~1+zl)/(:"—q')e—p'Q'|€I2‘/(p'—q‘)d§
l¢1<1/38

1Dzvljpr
and we see from the Hausdorff-Young inequality that

1/3
-71(1)(1&) <C ( / / |§lr'q'(k-j+2t)f(p‘—q‘)+N—1
¢

)(P'—q')/ﬂ'q'

1 oser12 v
e P YU g1y D2 vl

)(p'—q')/p'q‘
(2.11) <C(1+ty FHHEG-D) Dlyll,y,

using the following inequality : If 0 < & <1, k1 2> 0, and k2 > 0, then
(212) / ¢* e Kl tdle] < € (141) D2,

0
On the other hand, we see easy

(2.13) TPty < C e Y Div||y < Ce*?||Dlvll,.
Thus, from the above estimates (2.10), (2.11), and (2.13), we obtain
the desired estimate (2.6).

Next, we shall show (2.7). Noting that supp x2(€) C {1/4 < ¢} <
3/4} (see (2.5¢)), we see that for any j such that 0 < j < &,

sup | < €>7 (\/:ff)k_j(%)t¢2(fat)]

1/4<]¢|<3/4
(2.14)
eAti2 e-»).t/z

/2

<CHle " sup
1/4<[€]<3/4

| SCC_N
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with some 0 < v < 1/2. Thus, applying the Hausdorff-Young inequal-
ity, we arrive at the desired estimate (2.7).
Moreover, we shall prove (2.8). Noting (2.4b), we see

J(t) = 27 e 2| F {xs(6) < £ >7 (V-T€)*
!
S oA (AT

=0

Here, since supp xs(£) C {|¢| > 2/3} (see (2.5b)) and

e

|&1>2/3 .25

<E ST (VIO Yy (—1p Al g (VDG Sin(/\*t + (; - J)ﬂ')
{€l™ sin [t

<ca+tv,

where y+ &+ (I —j— 1)+ (N +1)(1/p — 1/2) < m for any j such
that 0 <3 <! (by (2.8b)}, we can choose

<> (VIO (-1l G b i (2L 200
{€jm sin |¢]¢

as a Fourier multiplier on supp x3(£) (see Lemma 1.4) to get

(0 S0+ " E {xal6) i 75O

Now, we take y € C*(R) such that

0 if s} <1/4,
X(S):{l i Js| > 1/2.

Then, we can choose

N
™ /> x(€n)iéal™

n=0
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as a Fourier multiplier on supp x3(£) to get

N
Ts(t) < C U+t e 3 F {xa(6)

n=0

RS

Furthermore, we take

x(EIEI™ /(V=Ta)™
as a Fourier multiplier. Then, we have
al sin €]t =
Ja(t) £ C(1+ )N e /2 ;} 7! {xa(é)l_smpav(g)}up, :

Finally, using an estimate used for the LP-L* estimate of the usual
wave equation (cf. [1], [18], [20]), we obtain

N
J3(t) < C(1+t)Ne 2|t 2N G- DHNIDG-D ¥ D o,
n=0

(2.15)
< C e~V D],

with some 0 < v < 1/2, where k + [+ 7+ (N +1)}{(1/p-1/2) <m+1,
which implies the desired estimate (2.8).
Finally, we note that (2.9) follows easily from the Plancherel theo-

rem. 1]

Summing up the above estimates (2.6), (2.7), and (2.8) in Theorem
Al, we see the following LP-LP -estimate as a corollary.

COROLLARY Al.  (LP-L? -estimate) Let k and ! be nonnegative
integeres, and let v belong to C°(RN). Then, it holds that for 1 <
p<2andy€ R,

IDEDLF " {$il€, t)5(6) Hlarr,
(2.16)
< C{1 4ty EHHEGD) 4 (N DG=De |,
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with some 0 < v < 1/2, provided that k+14+v+ (N +1)(1/p—1/2) £
m+i—1,21=1,2

Applying Theorem Al to the equation (2.1) or using similar ar-
gument as in the proof of Theorem Al, we can obtain the desired
LY-estimates (with some 2 < ¢ < oo0) of the solution u(t) and its
derivatives DX Diu(t) of the equation (2.1).

THEOREM A2.  Let (ug,u1) € H*H L™ x HE-1" N L7 £ and
! being nonnegative integeres, 1 < r < 2, and let f be an appropriate
function such that the right hand side of (2.17¢) is bounded. Suppose
that u(t) is a solution of the equation (2.1). Then, we see that

(2.17a)
|DEDiu()
< IFHVTO () T O+ IV ) e o
= I{l(t) -+ Kg{t) ,

and the terms K;(t) and K;(t) have the following estimates :
(1) The term Ki(t) has that

Ki(t) < C (14 8y EHFC=D (ugll + [lu )
(2.17b) + C e (Jluoll gr+e + Nl yrsi-ut)

with some 0 <v < 1/2.
(1) The term Ry(t) has that for 1 < p < 2,0 < i < k, and
m > [k + I — 1}t being a integer,

Kt <C§|Dk91—3~1“ 3—1 if jisodd,
0= ,J=1i o ®llae, o= 7 —2 i j7iseven,
(2.17¢)

t
i, [ (14t — ) CFHHFG= D £(5)|l,pds
0

+C fo e D™ £(s)|| ds

(=KL 0+ P+ K@) )
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with some 0 < v < 1/2, where we exclude the term Kgl)(t) from (2.17¢)
fl<1.

REMARK 2.1. When k = I = 0, we have already known the same
results as above from {10]. We can give the proof of this theorem easier
than the proof of the following one for L7-estimate. So, we omit the
proof of this theorem (but we give the proof of following theorem).

THEOREM A3.  Let (ug,u) € H¥H' N L7 x H¥H-1" A L7 k and
! being nonnegative interes, 1 < r < 2, and let f be an appropriate
function such that the right hand side of (2.18d) is bounded. Suppose
that u{t) is a solution of the equation (2.1). Then, we see that for
2<g< o0,

(2.18a)
105 Dyu(t)l,

< IF (VIO mte, H e + 17 H{TOM ) e 0}
= Ll(t) + L2(t) )

and the terms Ly(t) and Ly(t) have the following estimates :
(i) The term L,(t) has that

1 1

Li(t) < C (1 + )"t EGE=D) (|lug, + fllr)
(2.18b) + CC_M("‘“O"HH‘ + ||“1umk+t—1}+)

with some 0 < v < 1/2, provided that

(2.18¢)

(ii) The term Ly(t) has that for { < 3,0<: <k, 1 <p;,p £2, and
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m > 0 being a integer.

L) < 3 UDEDI f(o)l,

t
+C [t o) CFHEGE DD f(s)],
0
(2.18d)
t
+ C/ =9 g _ =N =GP D £(o)||ds
0

( =P +Pw+ L0 )

with some 0 < v < 1/2, provided that there exists ¥ > 0 such that

v 1 i 1 7 .
P SR g ]—-=-——<Qifg=00
NGS5 ( S~ <0 )

1 1
k+l+'y+(N+1)(;-§)$m+l,

1 -

R

(2.18e)

where we exclude the term Lgl)(t) from (2.18d) if | < 1.

To proof of these theorem, we use the following : From (2.4), we see
that

(2.19a) (%)1¢2(6’t)|3=0 = _2}?2 (;)(_1)1 {}(f-q—-l + (_/\)1—3“1} )

In particular, we see that for [ =1,2,3,
(2.19b)

d
w0 =0, ()] =0, (Glaes] =1,

respectively. Furthermore, we see from (2.3c) and (2.19) that
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(S et = [ () 6al6,t 7€, s,

(@60 = Re + [ (5 ealet— e )i,
(2.20)

d.3-~ di1o - ! s
(a)sz(&t) = (ag)lf(‘f,f) - f(61) +[0 (%)3¢2(§1t —5)f(¢,8)ds,
and for [ > 4

()6 = (a)“f(f, NER )

P ZYaen]_ (27T R

1=3

+ [(G'tatest - R spis

Proof of Theorem AS. Now, we assume 2 < ¢ < oo. (The case
g = oo is treated quite similarly by a trivial modification.) First, we
shall give the proof of (i) in Theorem A3. Recall that

TEE1) = 5(d1(6,1) + 26, 0)Ta(E) + h2(6, DTH(E).
From the Sobolev embedding theorem

E4+1_ 1 1
2.21 HAH g _— > -
(2.21) cL? if 2 2375
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we have that

(2.22)

L) < YIF O ToH (),

(5161 + 8206, 0)T(O) + p2(e.07() ) H
<1 OV
(.12. (62(£,1) + d2(&,8)) W (€) + ¢z(£,t)6?(€))) }Ilq

+ € {17 OO () 16 972
d.i
%)
d2(&, 1) (Ua(€)/2 + U1 (&) Ml yiwrs—urt }
<O+ EHHEED (flug | + flullr)
+Ce " (lluoll + [feall) + Ce ™ (Jlualgr+r + Juall jppicn+ )

+ 17 {xs(OV=16%(

using Theorem A1, which give the desired estimate (2.18b-c).

Next, we shall give the proof of (ii) in Theorem A3 the case when

I = 3 only. (The case { < 2 can be proved in the same way.) From the
Gagliardo-Nirenberg inequality

(223)  HICL if 1--
p

and (2.20), we obtain that
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Lo(o) = 1P {(V10 () Tre D) e
<IDZD2 f)llg + 1D D f(B)ile

+0 [ LIF @/ T 5) b6t - )€ Hi
HIF D OTEH () balest— )€ ) iy
I (O TN ) ba(ert = 7€) i, |

(2.24)

-1
< S IDEDTT A,

j=1

¢ — L
+0 [{a+i- s TG DD ),
0

+ 7D f(3)llp, + 7t — o] NG

D2 (5l } s

for any 0 <7 < k, i3 > 0, using Theorem A1, where m is a nonnegative
integer, p1 is any number with 1 < p; < 2, (y2,p2) should satisfy
the condition (2.23}, and (v, p) should satisfy the condition (2.23) and
(2.8b). When 1 < p < 2 and 2 € ¢ < o0, there always exists v
satisfying (2.23). Hence, we can take p; = p; (1 < p1 < 2)in (2.24).
Furthermore, we take i, = ¢ (0 < < k). Thus, from these, we get the
desired estimate (2.18d-e). The proof of Theorem A3 is now complete.
(We can prove Theorem A2 easier than Theorem A3.) [

B. Semilinear Dissipative Wave Equation
3. Hypotheses and Main Results

In this section and the following sections, we consider the decay
property of the solution to the Cauchy problem for the semilinear wave
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equation with a dissipative term :
(3.1) { Uy — Au+ug + f(u) =0 in RNX[U,OO),
' u(z,0) = up(z) and wuz,0) = uy(z).

Now, we state our hypotheses on the nonlinear term f(u) in the fol-
lowing.

HyYp. 0. f(u) is a continuous function on R and satisfies the
conditions

62)  flukF@ >0, F@=2 [ fod,

for some & > 0 and

(3.2b) |f(w)] £ kolul™t?

for some kg > 0 and o > 0.

Hyp. m. (m=1,2,---) f(u) belongs to C™(R) and satisfies the
condition

(3.3.m) [F ()| < ke Jusflott=mI*

for some kyy >0, m=1,2,--, and a > 0.

We shall pick up freely appropriate set of hypotheses on the nonlin-
ear term f(u) from Hyp.m, m=0,1,2,---.

Using some results which have given by {10] (see, e.g., Proposition
4.1 in the following sections), we shall give our main results in this
paper by the following two theorems.

First theorem is the following :
THEOREM Bl. Let 1 < N <3 and (up,u1) € H'NL" x L*N LT,
1 <r <2, and let HYP.0 be satisfied with o such that

(3.4a) 4/N <a<2/(N-2) (4/N<a<ooif N=12)}.

Then, the solution u(t) &€ C([0, co); HHNCL([0, 00); L*) of the equation
(3.1) satisfies that for 0 < k, L,k +1 <1,

(3.4b) I1D; Diu(t)l) < Cpy(1 +)™ 77,
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where wi; and 1 are nonnegative numbers given by (0.4), (0.5), re-
spectively, and Cy) is a certain positive constant given by (0.6) (see
Notation in §0).

REMARK 3.1. For N > 1, o > 0, and (ug,u;) € H* x L?, weak
solutions u(t) € L>([0, 00); H' NLo+)NW12({0, c0); L?) of the equa-
tion {3.1), which be established the existence by Strauss [22], have the
boundedness and decay property that

(3.5a) flu()ll < Cyy
and

(3.5b)
Ex(t) = ID-u®)IP + [Dw)lP + [ Flu(®)ds < Cpu1 477,

where Cly) is a certain positive constant depending on {|uol| g +{tolj a1+
jz1]]. This fact have already been given in [10] and the reference.

Second theorem is the following :

THEOREM B2. Let 1 < N <6 and (up,u1) € H"H NL" x H™N
L', m=1,2,1<r <2, and let HYP.0 ~ HYP.m be satisfied with «
such that

(3.6a) 4/N < a < 4/|[N - 2]*.

Then, the solution u(t) € n;:;l C1([0, 00); H™ 177 of the equation

(3.1) satisfies that for 0 < k,l,k+{<m+1,

(3.6b) | DX Dlu(t)|| < Cpngny(1 + )%
with
(3.60) 0H={uk,t+n if 1<m,

) ’ wim+n if l=m+1.

Moreover, it follows that for 2 < ¢ < 00 (2 £ ¢ < 00 if N = 6),

(3.6d) fu(t)llg < Cpgj(L+8)~%
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with
N

1 1
(3-6e) Ag=5(5- E) +17.

REMARK 3.2. When N = 7, the result of Theorem B2 holds
under a restricted condition 4/N < a < 2N(N —1)}/(N —2)(N - 3)
(<4/(N-2)).

REMARK 3.3. Even in the case 0 < o < 4/N, we can derive some
decay rates. Indeed, let (ug,u;) € H! x L?, and let HYP.0 ~ HYP.m,
m = 1,2, be satisfied with «a such that

0<a<4/N if N <7,
(8.7a) { o <4 l N

0<a<2N/(N-—-2)(N-3) if N>8.

Then, the decay estimate (3.6b) holds true with 8¢, 0 <k, L,k +1<
m + 1, replaced by

(3.7b) 81 =

{wl,o+[k-i—l--1]+w+l£5 if 1<m,
wiogt(-w+({(-1& if I=m+1,
where w is given by
(3.7¢)
af8 if N=1,
afd—e if N=2,
af(4 — (N —2)a) if N2>3anda<2/(N-2),
a/{4~ (N —2)a)—¢ if N>3anda>2/(N—-2)

for any 0 < € € 1, and @ is given by

[Na—-2*/4 i a<2/(N-2),

(87d) = { w if a>2/(N-2).

We note that 0 < U < w <w g and n =01if a < 4/N.

REMARK 34, When 1 < N < 5 and (up,u;) € H™1 n L7 x
H*NL,m>3,1<r <2, we can derive some decay estimates of
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the solution and its derivatives of the equation (3.1) under the assump-
tion which f{u) is an m-times continuously differentiable function and
satisfies HYP.0 ~ HyYP.2 with « such that

4/IN<a<wx if N=1,

(38a) {O<a<4/[N-2]+ if N>2.

Indeed, we can see that the solution u(t) € n;n:(-ll Cj([O, oo0); H™H1-7)
of the equation (3.1) satisfies that for 0 < k,LLk+I < m+1,

(3.8b) |D; Diu(t)|| < Cmany(1 + )%
with

wet+ 1 if N=12and!<2,
or N>3and! <3,

wii-22+n if N=1,2and >3,

Wg4+1-33+ 7 if N>3and!>4.

(3.8¢) O1 =

To derive these, we use the following fact that

(3.8d) O w®)] < Clag(lu(®lea)lu@®P™, i=0,1,23.

(Cf. Consider the Taylor expansion of f(u) at u = 0, noting {|u(t)[c <
Claj- See [10].)

4, Proof of Theorem Bl

In this section we shall prove Theorem Bl. To this we use the
following results which have been given in [10]. (We omit here the
proof.)

PROPOSITION 4.1. Under the assumption of Theorem Bl, the
solution u(t) of the equation (3.1) satisfies that
(4.1)

lu(®)]| < Cy(1+t)™" and || Dou(t)|+|| Dau(t)f] < C[l](l_H)—lm—rt.
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his proposition implies Theorem B1 with (k,1) = (0,0),(1,0). For
case (k,1) = {0,1) in Theorem Bl, we need improve the decay
nate of |Diu(t)||. Now, Applying Theorem A2 with k¥ = 0,{ =
= r,m = 0, we have that

(O < Cy(1+ )70 4 Cf[, (1+1 = s)70 =" | f(u(s))l|ds
)

+Cﬂe”“”ww@nwa

;, we see from Proposition 4.1 that for 4/N < o < 2/(N —2)
V<a<ooif N=1,2),

(u- < C fla(?)) f('::}_l) <C "u(t)"(“"*‘l)(l _E‘)lIDzu(t)'f(a+l)51

) SOyl +4)™7,
re { = N(1/2 - 1/r(a+ 1)) and

o1 = {a+ 1)1 —£)n + (e + D& (wio + 1)
b) =Nafdt+an>wy1+7.

the other hand, we see

FuN < Cllu)llsii, € C w08 D)) (et

2 <Oy,
re {2 = N(1/2 — 1/2(a + 1)) and
b) oy =Nafd+(a+1>wey +7.

s, applying Lemma 1.3 to the inequality (4.2), we obtain from (4.3)
(4.4) that

) [Deu(®)]] < Cpy(1 +2)72 77,

ch implies Theorem B1 with (k,1} = {0.1). The proof of Theorem

s now complete.
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5. Proof of Theorem B2

At the first step, we shall prove Theorem B2 with m = 1. To this,
we use the following results which have been given in [10]. (We omit
the proof.)

PROPOSITION 5.1. Under the assumption of Theorem B2 with
m =1, we have :

(1), The solution u(t) of the equation (3.1) satisfies that
(5.1)
lu(t)l < Clg(1+6)™" and [Dou(@)|[+1Dwu(t)]| < Cpgg(1+2)71/277.

(ii) Moreover, it satisfies that for 3 < N < 6 and 2 < ¢ < g»,
(5-2a) flu(Mly < Cig(1 +6)7%,

where we set

2N(N — 1)

(520) Sl ) T

with 0 < ¢ € 1, and
1
(5.20) Aq = —(— —_ E) +q

with  given by (0.5).

REMARK 5.1.  The (ii) of Proposition 5.1 plays essential role in
the previous paper [10] (and, of course, in this paper). For the proof
of this proposition, we use Proposition 6.2 in Appendix and Theorem

A3 with k =1 =0 and (3.5) in Remark 3.1.

Using Proposition 5.1, we see the following :
PROPOSITION 5.2. Under the assumption of Theorem B2 with
m = 1, the solution u(t) of the equation (3.1) satisfies that for (k,I) =

(0! 1)3 (2}0)’ (1s 1); (01 2):

(5.3) IDEDiu(t)]| < Cpgy(1 4 t) 20,
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“oof of Proposition 5.2.  First, applying Theorem A2 with k =
:0,3 =0,p=r,m = 1, we have that

(O S G147 4.0 [ (1 sye 7 s

+C / 9D, f(u(s)|} ds.

, using the results of (5.2) in Proposition 5.1, we see from HyP.0
Hyp.1 that

) @@ < C NI, < O+,
e oy = (a+1)Ayas1) = Nafd + an > wa o + 1, and

ID= St < C eI Dau(®)f < Clu@ %ol D@
) < Cpg(1 +1)772 || D2u(t)

e 02 = 0Ang = (Na—2)/4+ an > 0. Thus, applying Lemma 1.3
.4), we obtain from (5.4) and (5.5a-b) that

[Dzu(t)l} < Cigy(1 + #7207,
h gives the case (k,1) = (2,0) in (5.4).
ext, we use that
D= f(E) < C (I felD3u(®)]l < Cig(1+1)77°

03 = aANa +wz0+ 7 > wyg + 1 to get the decay estimate for
Wt | Do Dyu(t)||, and || D?u(t)||. For these norm, we can get the
"ed estimates by a same way with {5.6) replaced by (5.7). O

[oreover, using the Gagliardo-Nirenberg inequality, we see the fol-
ng {which improves the (ii) of Proposition 5.1).

'OROLLARY 5.3.  Under the assumption of Theorem B2 withm =
2e solution u(t) of the equation (3.1) satisfies that for 2 < ¢ <
[N —4]t 2 <g<ooif N=4),

) "u(t)]lq < C{g}(l + t)_Aq
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with A, given by (5.2¢) in Proposition 5.1.

Next, by use Corollary 5.3, we shall improve the decay estimates for
the case (k,7) = (1,1),(0,2) in Proposition 5.2.

PROPOSITION 5.4.  Under the assumption of Theorem B2 with
m = 1, the solution u(t) of the equation (3.1) satisfies that for (k,1) =

(1,1),(0,2),

(5.9) 1D Dyu(t)f] < Crp(L + )72 77,

Proof of Proposition 5.4. Setting v = Du (D = D, or D}, v(z,1)
satisfies

(5.10&) Vet — Av + v = —Df(u) .
It is easy to see that Lemma 2.1 is applicable to this v(z,t) with
(5.10b) En(t) = || Doo(t)|I? + | Deo(t)]f? -

In particular, setting v = D;u, we have from HyP. 1 and Corollary 5.3
with ¢ = Nea that

" (5.11)

D F (N < C () ¥allDs Deu() < Cpop(L + 1) Ea(?)

with b1 = 03 = (Na —2)/4+an > 1/2 (by a > 4/N, cf. (5.5b}).
While, we see from Proposition 5.2 with (k,I) = (0,1) that

(5.12) [Deu(®)l* < Cpgy(1 +1)7%

with @ = wp 1 + 7 (we note that w9 = wy ). Thus, applying Lemma
2.1, we obtain from (5.11) and (5.12) that

(5138)  Eyna(t) = 1D Do)l + [ID3u(t) < iyt +)72%,

where

e 1
(5.13b) 91|1=mm{§+a,a+d}=§+w0,1+7]=w1,1+'71
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which is the desired estimates (5.9). O

Summing up the above Propositions 5.1, 5.2, and 5.3, we arrive at

Theorem B2 with m = 1. The proof of Theorem B2 with m =1 is now
complete.

At the second step, we shall prove Theorem B2 with m = 2. First,
we shall prove the following.

PROPOSITION 5.5, Under the assumption of Theorem B2 with

m = 1, the solution u(t) of the equation (3.1) satisfies that for k,1 > 0
such that k 41 =3,

(5.14a) | DED{u(t)l] < Cpay(1 + £)7% .

with

(5.14b) 9k,={“"‘"+" if sl
) ’ wey+n H 122,

Proof of Proposition 5.5. Setting w = Dv and v = Du (D = D,
or D), w(z,t) satisfies.

(5.15a) wyy — Aw + wy = —D? f(u).
Now, we note that w = D?u can be regarded as (N + 1) x (N + 1)
matrix valued function and it is clear that Lemma 2.1 is applicable to

this w(z,t) with

(5.15b) E3(t) = | Dew(®)]|” + |1 Daw(t)* -

By Hypr.0 ~ HYP.2, we have
(5.16)

1D F(uENI? < © ([l ()| i)+ el o[} = Lt +12()

Here, since the term I;(¢)? is treated by the same way as in (5.11), we
see that

(5.17) L(1)? < Cpg(1 + ) 2 Es(2)



162 Kosuke ONO

with & = (Na — 2)/4 + an > 1/2. Next, we shall estimate the term
I(t)*. When N =4,5,6, we have

(5.18a)
1]+
L(t)* < Clu(®snin-n @l
< CIDsu(®)] 1 Dz * O DIu()]*
with 2/p = 1/2— (N = 2)[e — 1]t /2N and 6 = N(1/p — (N — 2)/2N).
(When N < 3, trivial modifications are needed. We can use ||u(t)fjo <
Clg} < 0o. Cf. (5.8) in Corollary 5.3.)

First, in particular, we set w = Dyv = D2u in (5.15). Then, we see
from (5.15) and (5.18a) that

L(1)? < C D u(@)l* " | D2u(t)]| 9 Ey(t)??
{5.18b) < Cpy(1+1) 21 By(2),

using Propositions 5.1 and 5.2, where

1

(5.18¢) by = S {lo = ¥ wr0 + ) + 41— O) w20 + )}
and

(5.18d) p=20=——+—=—a-1" (0<p<1),

and we note that (if a = wy g +7)

bo >a+52
R—pt ™ 2-p

(5.186) Z w3 + 1.

Thus, we obtain from (5.16), (5.17), and (5.18) that
(519) IDZF(uDI® < Cpy(1+)7*" Ba(t) + Cap(1 +8)7 Ea(t)"
While, we see from Proposition 5.2 with (k,1) = (2,0} that

(5.20) (i = ID2u(]? < Cia1 + 1)
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with @y = wz 5 + 1. Thus, applying Lemma 2.1 to (5.15), we obtain
form (5.19) and (5.20) that

(5.21)  Esolt) = || Dzu(®)|* + | DIDw(t)* < Cpg(1 +1)7%
with 93,0 = 1/2 +ag = wsz 0+ 7.

Next, in particular, we set w = D, Dyu in (5.15). Then, we see from
(1.18a) that

(5.22) L{t)* < Cpy(1 +¢)7%s

with b3 > wy2 +9 (> w2, + 1), using Propositions 5.1 and 5.2 and
(5.21). Thus, we obtain from (5.16), (5.17), and (5.22) that

(5.23)  {|D:Duf(u())|® < Cigyy(1 + )21 Ex(t) + Cpyg(1 +¢) 720
While, we see from Proposition 5.4 with (k,!} = (1,1) that
(5.24) lw@I? = §D. D) < Ciy(1 + )72

with @3 = wy; + 9. Thus, applying Lemma 2.1 to (5.15), we obtain
from (5.23) and (5.24) that

(5:25)  Ea41(t) = DL D)l + | D Diu()|* < Cpgy(l + )77

with 82’1 = 1/2 + az = Wy + n.
Finally, we set w = Dfu(t) in (5.15). Then. we can get the following
estimate by the same way as the above

(5:26)  Bypa(t) = [[D:Diu(®)||* + | DYu(t)]} < Cpyg(1l +1)7*2

with 91'2 =wa1 + 7.
The above escalated energy estimates (5.21), {5.25), and (5.26) give
the desired estimates (5.14). O

From Proposition 5.5, we see immediately the following (which im-
proves the (ii) of Proposition 5.1 and Corollary 5.3).
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COROLLARY 5.6.  Under the assumption of Theorem B2 withm =
2, the solution u(t) of the equation (3.1) satisfies that for 2 < ¢ <
2N/[N - 6* (2 < ¢ < o0 if N =6),

(5.27) fu(®)lly < Cry(1 +1)™"

with A, given by {5.2c) in Proposition 5.1.

Finally of this section, by use Corollary 5.6, we shall improve the
decay estimates for the case (k,{) = (0,2),(1,2),{0,3) in Propositions
5.4 and 5.5.

PROPOSITION 5.7.  Under the assumption of Theorem B2 with
m = 2, the solution u(t) of the equation (3.1) satisfles that for (k,I) =
(0,2),(1,2),(0,3),

(5.28a) IDEDIu(t)ll < Cpap(1 + 1)+
with

weatn if 1<2,
5.28b 0. = ’
(5.28b) kit {wl,g-l-n if 1=3.

Proof of Proposition 5.7. By use the equation (5.10a) with v =
Dyu, we see from (5.11), (5.13), and (5.14) that

17 u()l < HDZDeuM + | Dy u(t)l + D f(u()N
(5.29) <Cu(1+8)7%, az=wz2+7n,
noting that wg 1 = wp 2, which gives the case (k,!) = (0,2) in Propo-
sition 5.7. Next, to improve estimates of the case (k,!) = (1,2),(0,3)

in Proposition 5.5, we set w = DZy in (5.15) and we shall estimate
[ D? f(x(t))|l. By the same way as in (5.17) and (5.22), we see that

(5:30) | D f(u()® < Cryg(1 +£) ™ Ealt) + Cpgg(1 + )7,

where by > 1/2 and b = b3 > w12 + . Thus, applying Lemma 2.1 to
(5.15), we obtain from (5.29) and (5.30) that

E1+2(t) = "D;Ethu(t)llz + "D?U(t)”z < 0[3}(1 + t)—201’g
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with 6; 2 = w; 2 + 7, which gives the desired estimates (5.28). O

Summing up the above Propositions 5.5 and 5.7, we arrive at The-
orem B2 with m = 2. The proof of Theorem B2 is now finished.

6. Appendix

In this section, by way of precaution we shall give a sketch of the
proof of Remark 3.3 with m = 1. To this we use the following two
results given in [10].

The first one is the following :

PROPOSITION 6.1.  Let (ug,u;) € H? x H!, and let Hyr.Q ~
Hyp.1 be satisfied with « such that

4/N if N <4
(6.1a) {0<a</ i <4,

0<a<2/(N-2) if N2>5§.
Then, the solution u(t) of the equation (3.1) satisfies that for k,{ > 0
such that k+1= 2,

(6.1b) I DED{u(t)l} < Cay(L +1)™0 7,
where w is given by (3.7c).
The proof of Proposition 6.1 is easy. (We omit here the proof. Sce

10].)

The second one is following :

PROPOSITION 6.2. Let N > 3 and (ug,ui) € H? x H', and let
Hypr.0 ~ HyP.1 be satisfled with a such that
{2/(N—1)§a<4/(N-2) if N <86,

(6.22) 2/(N —1)< a <2N/(N-2)(N -3) if N2T.

Then, the solution u(t) of the equation (3.1) is uniformly bounded in
L+(RM), ie,

(6.2b) fu(H)ile. < Cm < 0

where ¢, is given by

2N(N —1)

(6:2¢) "S- - I

+£
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with0) <e <€ 1.

This result is one of the most important fact through this paper
(and the previous paper [10]). So, we sketch the proof of Proposition
6.2.

Proof of Proposition 6.2. We utilize Theorem A3 with k ={ =0,
=g, m=1,p=p, =2(N-1)/(N+1)+¢,0<e <1, and Hyr.0
~ Hyp.1 to get

(6.3)
Hu(t)ilq
<O+ 3P 40 [ (Lt = 5) FOE B (o s
+ [ (6= 9 DGl Dyl b
Here, we set
1 if a>1
6.4 = ’
(6.42) b1 {2/(a+1) if a<l1.
Then, we see
N, 1
(6.4b) 5(; - —-) >1 and 2<p{a+1) <2N/(N -2).
1

Thus, we have from Theorem Bl and Remark 3.1 that

(6.5) ()5 (as1) S Cllu@)im < Cpyy < 0.

Also, if 2/(N — 1} < @ < 2N/(N — 1)(N — 2), we have

(6.72)  [Ilu()}*Dan(®)llp. < Cllu(t)y: g2 < Cllu(llel

where

1

(6.7b) 28, = (_ -5~ _) (_ _ ?)—1
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and

(670) g2 =a— 20 (< 1ifa< 4/(N - 2)) ’

which follows from the Gagliardo-Nirenberg inequality. Thus, we ob-
tain from (6.3), (6.5), (6.6), and (6.7) that

t
_N(L_ 1 (L
le(®)lla. < Cpy(1+8)” 33 4 €y / (1+¢—s) Twds
t
(6.8) +Cpy f (t — 8)"(N"DG=D) =030 (3 4 fju(s)]|#2) ds
0
with 0 < v < 1/2 and 0 < g2 < 1, which implies (6.3) by Lemma
1.3. O
Noting Proposition 6.1, it is sufficiently that we give some decay
estimate of | D¥Dlu(t)||, k +1 =2, when N > 5and 2/(N -2) < a <
4/N.

PROPOSITION 6.3. Let N > 5 and (ug,u;) € H? x H!, and let
Hyp.0 ~ HYP.1 be satisfied with o such that

{2/(N—-2)5a<4/N if N<1,

(6.9a) 2)(N ~2) < a <2N/(N —2)(N ~3) if N>8.

Then, the solution u(t) of the equation (3.1) satisfies that for k,1 > 0
such that k + 1 =2,

(6.9b) 1D D]l < Cpgg(1 + )70

with w = 4/(4(N - 2)a) — £,0 < e € 1, given by (3.7¢c).

Proof of Proposiiron 6.8. We apply Lemma 2.1 for the equation
(5.10). Since we see from Proposition 6.2 and Remark 3.1 that

(6.10)  Jlw(OI¥u < Cllu@3 2 hDu(t)** < Cgg(1+8)7*7
with 0 < ¢ < 1, we have that

(6.11) DA < C u(®)lXaBa(t) < Cin(1 + 1™ Ea(2)
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with 2by = ao > 0 (D = D, or Dy, see (5.11)). While, we see from
Remark 3.1 that

(6.12) [Du(®)|| < Cpay(1+18)™20.

Applying Lemma 2.1 to (5.10), we obtain from (6.11) and (6.12) that
(6.13a)

Balt) = | D Du(®) HIDeDu()|* < Cpy(1+8) 2% (< Ca(1+1)%),
where 8 = min{1/2 + wy g,w10 + bo} Z w1 (= 9;1)), i.e.,

(6.13b) ID2u(t)} < Cry(1 +8)~%".

Then, we see from (6.10) and (6.13) that

(6.142) [[u(®)i¥e < CID-u)|P*C O D2u(@)** < Cgg(1+8)7",
where b; = a(l — & w0 + afogl) = aOgl), and

(6.14b) £ =((N—2)a—2)/2a

Thus, applying Lemma, 2.1 again to (5.10), we obtain from (6.14) that
(615) Ea(t) < Cpy(1 +)% o [D2u(t] < Cia(1+6)7%

where 6&2) = min{1/2+w p,w1,0 + b1} = w10 +b1. Then, we see again
that

(6.16) (I3, < Cpag(1+1)"%7,
where by = a(l — £)wi o + a{Ggﬂ. Thus, we obtain that
(617)  Ex(t) < Cy(1+ 7% or [ID2u()f < Cg(1+)™%

where 953) = wy p+b2. Repeating this procedure indefinitely, we obtain
that

(6.182) Ea(t) < Cp(1+6)"2%" | m=4,5,-.-,
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where 8{™ is given by

(6 18b) { agm) = wl,o + dm-—-l 3

dm-—l = Cl'(]. — f)wl'o + O,’fegmﬁl) 3
or
(6.18b') 8™ = att{™ V{1 + o1 — €)}wr o

with £ given by (6.14b), which gives the desired estimates (6.9). O

By the similar way as in previous sections, we shall improve the
decay estimates for the case (k,I) = (1,1),(0,2) in Propositions 6.1
and 6.3.

PROPOSITION 7.4. Under the assumption of Remark 3.3 with
m = 1, the solution of u(t) of the equation (3.1) satisfies that

(6.19a) [ Deu(t)]] < Cpgy(1 +t)no"
and
(6.19b) ID= Deu(t)|| + | DFu(t)|| < Cpgy(1 +¢) <10~ %,

where @ Is given by (3.7d).
Proof of Proposition 7.4. By use the equation (3.1), we see

(6:20) 1Dl < IDZu()| + | Diu(l + 1w
Here, by Proposition 6.1 and (6.3) we have that

(6.21) IDZu()l] + IDfu(B)]] < Cpyy(1 + )7 re™.
Also, if o < 2/(N — 2) we have from HYP. 1 that

I < C lelt)ligthy, < € (@)= N =292 Dy sy Ner?
(6.22a)
< Cpyy(1 + ¢)roNa=2 /4
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noting Remark 3.1. While, if a > 2/(N — 2) we have that

I F(u(@))] € C||Dou(t)| 4 N-90/2|| D2y (1) (N -D)a)=2)/2

(6.22b) < Cpy(l + )0 v,

Thus, we obtain from (6.20), (6.21), and (6.22) that

(6.23) WD)l < Cpg(l + ) ~ne?

with & given by (3.7d).
Next, by the same methods as in the proof of Proposition 5.4, we can
get the desired decay estimates (6.19b), using this estimate (6.23). [

Summing up the above Propositions 6.1, 6.3, 6.4, and Remark 3.1,
we arrive at Remark 3.3 with m = 1. And, we can get Remark 3.3
with m = 2 by the same way as the above. The proof of Remark 3.3
is now finished.
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