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ON THE SOLUTIONS OF NONLNEAR FUNCTIONAL
EVOLUTION EQUATIONS IN A BANACH
SPACE WITH UNIFORMLY CONVEX DUAL

Kuk- HYEON SON

1. Introduction

Let X be a real Banach space with norm ||-{|. Let PC be the space of
piecewise continuous functionsy : [—r,0] — X for a fixed r > 0. PC
is a Banach space with norm ||¢||pc = sup{|[¢(8)] | 6 € [, 0]} for

¥ € PC. In this paper, we consider the abstract nonlinear functional
evolution equation

u'(t) = A(t)u(t) + G(t,ue), t€[0,7],

(FDE; ) {uo“-':‘ﬁ, 4 € PC.

where u : [—r,T| — X is an unknown function, {A(t): D C X —
X |t €[0,7T]} is a given family of single-valued operators on X, D
independent of £, G : {0,T] x PC — X, and ¢ : [-r,0] — X
1s Lipschitzian with ¢(0} € D. The symbol u; denotes the function
us(8) = u(t + 8), 6 € [—r,0]. The purpose of this paper is to establish
the existence of the limit solution of (FDE;¢). To do this, we give a
convergence theorem for solutions of a certain approximate difference
equation associated with (FDE;¢). The limits of solutions of the
approximate difference equation are regarded as generalized solution
of (FDE; ¢) and we shall call them limit solutions of (FDE; ¢).

Now we make further assumption regarding A(¢) and G.

(A.1) The dual X* of X is uniformly convex.

(A.2) There exists w > 0 and a nondecreasing function L : [0,00) —
[0, 00) such that

(11 — 2,21 — 22}, S w2y — 2|2 + [t — s|L([|z2]])]|z1 — 22}
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forall 0 < s <t < T, [x1,11] € A(t) and [z3,32] € A(s).

(A.3) For each t € [0,7] and 08 < )\ < Xp, dow < 1, R(I — AA(#)) =
X.

(A.4) There exists a constant 8 > 0 such that, for ¢,4 € PC and

t €{0,7),
G2, 8) — G, $)]| < Bll¢ — ¥l po-
(A.5) There exists L : [0,00) — [0, o) nondecreasing such that

G (¢, ¢) — G(s, )| < La(ll$ll )it — s for ¢ € PC.

2. Preliminaries

Ley X be a real Banach space with norm | - || and let X* be the
dual space of X with || - | also denoting the norm of X*. The value
of z* € X* at ¢ will be denoted by (z,z*). Recall that the defini-
tion of the duality mapping F : X — X* of X, ie., F(z) = {=* |
(z,2*) = ||z]|? = {|=*||*}. Using the Hahn-Banach theorem it is imme-
diately clear that F(z) is nonempty for any # € X. In general, F is a
multi-valued operator. One would need somewhat stronger condition
to ensure that F' is continuous. A convenient sufficient condition is
given by the following.

Theorem 2.1 [1]. If X* is uniformly convez, then F is single-valued
and 33 uniformly continuous on any bounded set of X. In other words,
for each € > 0 and M > 0, there is a § > 0 such that ||z|| < M and
o — il < & imaly | F(z) — F(y)] < e.

The properties of F are related to the differentiability of the norm
| Y in X. Forz, y€ X and k € R, let (z,4)n = 2~ {||z + hy| - ||z}
be the difference quotient of {|zf| at z in the direction y. Since the
function h ~— ||z + hy|| is convex, we easily deduce thath i~ (z,y)s is
monotone increasing for A > 0 and{z,y)r > —{ly|| for all A > 0. This
implies the existence of the right derivative

(x} y}'l‘ = h]ilf]l-F(x’ y)h

of lz+hyl| at h=0. As {z,y)-s = —{z, —y}» we deduce that{z,y)s is
also monotone increasing and bounded above forh < 0. Thus the left
derivative

(2,)- = lim (z,9)4
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exists and we have(z,y)_ = —(z, —y)+. Finally, we obtain the follow-
ing inequality (see [1})

(xay)—h < (x’_y)— < (-"I,y)+ < (:Evy)fn h > 0.

For z,y € X, we define the functionals { , })s and {, }; on X x X
by

{y,z)s = sup{{y,z") | =* € F(z)}
and
{y,z), = inf{{y,z*) | z* € F(z)}.

Clearly {y,z)s = —(—y,z), = —{y,—2z), for all z, y € X.
Definition 2.1. An operator 4 on X is said to be dissipatrve if for
every 1, 2z € D(A) there 1s a z* € F(x; — z2) such that

{1 — y2,2°) <0, for all y, € Az,, 7 =1, 2.

An operator A is said to be accretive if —A is dissipative.

Definition 2.2. Let w be a real number.An operator A on X is
sald to be w-dissspative if A — wl is dissipative.

The condition (A.2) implies that, for each ¢ € [0,T], A(t) is w-
dissipative.

The following proposition is useful for later argument.

Proposition 2.1. (1) The condition (A.2) 138 equivalent to the
statemnent

(2.1) (L= dw)llzr — z2l| < flzx — 22 = Ay —y2)l| +Alt — s{L({lz2]})

for all A >0,0< s <t < T, {zy,5] € A(t) and [z2,y2] € A(s).
(2) The smequalsty (2.1) ymphes

(A + g = dpw)|lzr — z2f] KAl|lzz — py2 — 21| + pllzy — dyn — 22|
(2.2) + Ault — s|L(fz2]|)

for all A >0,0< s <t < T, [z1,11] € A(t) and [z3,y2] € A(s).
(3) The snequality (2.2} imphes

(1= doljer — ull < [lzx = Ayr — ull + M A(s)u| + At — s|L([])
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forall A >0,0<s <t<T, [x1,51] € A(?) and u € D(A(s)), where
|A(s)ul = inf{ljv]| | v € A(s)u}.

3. Main result

In what follows, we assume that the conditions (A.1)-(A.5) hold. As
in [7], we have the following lemmas.

Lemma 3.1. Lei {7} be a partition of the interval [0,T], where
) =jh, =jT/n, j =1,2,---,n. Ifn> {(w+ BT, then there ezists
{2} }}=o such that for j =1,2,--- ,n,

n n

(3.1) fz% = A2 + Gt 2 ),
where
#(t), t € [-,0]
()= z}:, te(tp_y,t5) for k=1,2,--- ,j—1
y te(t)_, T}
and

e, _n(0) = 2} (1" + ), 6 € [0}

Lemma 3.2. There 1s a constant My = Mq(¢) such that
(3.2) sup{max ||z} |1 < j <n, n > (f +w)T} < M.

Lemma 3.3. There exists a constant My = Mi(¢) and an integer
N = N(¢) such that

(3.3) sup{max ||z} — 2} | |/ha |1 < <n, n2> N} < M.

We now define the functions

¢(t): i€ [—Y’, 0]1

(3.4)  za(t) = 25y +(E =87 )2] — 231 )/ ha,t € (t]_1, 8]
forj =1,2,--- ,n
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Then the sequence {zn(t)}se[—r 7] is uniformly Lipschitz with Lip-
schitz constant My = max{Mi,Lg}. Let

(3.5) una(t) = 2;(t), t € [-n, T

where z,(t) is obtained from Lemma3.1(the function u,(t) = z2(t) is
said to be h,-approximate solution of (FDE;¢). Explicitly, we have
¢(f), te [_TvO]’
2, t € (t5_y, 17 fork = 1,2, ;n — 1,
n=(1 = haA(t_ ) Nznog + BaG(tho1s 20 en_ )),
te (tn 12 }

The operators A(t) and G(t) are defined by

An(0) = A(0)¢(0),
An(t) = A(t] l)zJ Jfor ¢y <t <t

Ga(t) = G(t} 4,7} ,n ),for th_y <t 5 ty.

Za(t) =

It 1s easy to check that the function z,(¢) is strongly differentiable
on {0,T] except at a finite number of points at which the strong left
derivative (d~ /dt)z,(t) exists. Thus, from (3.1} and (3.4), we obtain

(3.6) (d” Jdt)zn(t) = Au(t) + Gult), t € (t7_y, 7

We will show that ©,(t) — z,(t) — 0 as n — oo uniformly on [—»,T].
For t € (0,T}, t € (t7_,,t]] for some j = 1,2,--- ,n. Then, from the
definition of z,(t), we have

(3.7)
lun(t) — zalt)|| = llz} =~ 27—y — (¢t = 17_1)(2] — 27-1)/hall
= [I(hn —t + 17, )z} — 2]_1 )/ Bal
< (17 - )M,
< Myh,
< Myh,,.
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Since u,(t) = 2.(t) = ¢(t) for t € [—r,0], we have [Jun(t) — za(t)| <
M2k, for t € [—r,T]. On the other hand, by the Lipschitz continuity
of z,(t), we have, for t,s € [-r, T},

llen(t) = un(s)ll < Hun(®) = za(E)l| + [lz2(t) — 2als)l
+ |lzn(s) — ua(s)]
< Mahp + Mzft — s| + Mah,
< 2Mo(jt — s| + hy)

(3.8) = M({t ~ s| + hn),
where M = 2M,.

Theorem 4.1. The sequence {un(t)} of functions converges uni-
formly, as n — o0, to an absolutely continuous function u(t) on [0,T].

Proof. We will show that z,(t) convergesuniformly, as n — oo, to
a function u(t). Then it follows from above that un(t) also converges
uniform]y to u(t). Let {t}} and {t}"‘} be two partitions of {0, T, where

= jhp =3T[n,j =1,2,-- ¥ =khm=kT/m, k=12,

Let te (i, tr]N{_,, 7] By the Lipschitz continuity of zn(t) a.nd
Lemma 3.1 of Kato {4], we have
(3.9)

(d™ JdtWzm(t) — za(DI* = 2{(d™ /dt)zm(2)

—(d7 /dt)za(t), F(zm(2) — za(t)))
= 2{Gm(t) — Ga(t) + Am(t) — An(t),
Fzm(t) — za(1)))
< 2{Gm(t) — Gat)lllzm(t) — za(B)]
+ 2(Am(t) — An(t), F(zm(t) — 2a(t)))-

We also have

1Gm(t) — G|l = |Gy, 2 gn ) — G(t)1, 2 ]
<"G(t;?*1>5::tm ) — G(ti_y, 2k, e )”
+ "G(tg 152k, tr )—G(t] 1v2k o )”
+ G312 e ) — Gy, o s
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161,285y ) = G0,
< BT, , ~ . lipc
— Boup{llEp(s) - O
|s €[ty ~mt)l}.

< Bsup{||Z*(s) — ' (s)ll | s € [-n 2]},

and

”G(; 172ktm ) G(tj lazkt" )IISﬁIIEFJ’m zkt“ Mipc-

17— 1

If t7_y < ty,, then

Zy (tpey +0) = Z5 (851, + 6)

and
zp (t. +O)y=25(t7., +0)

for any 6 € [—r,0]. Also, since um{t) — zm(t) — 0 uniformly on [—r, 77,
there exists a sequence of positive numbers ¢, such that ¢, — 0 as
m — oo and

W2x" (BFoy + 0) — 27 (£]_y + O} = 22 (85 + 6) — 2 (5, + 0)]|
= [[um(ti_y +0) — um(t7_ +0)l
< lzm(tiey +0) = 2m(t7y + )| +€m
< Mot — t?—i‘ +Em

by the Lipschitz continuity of z,(t) on [-r,T]. Now, it is easy to
prove that the sequence {¢tJ* , — t;‘_l} converges to zero uniformly in
7, k. From this fact, it follows that

T

12, = ZHn_ M < Emia

=1
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where £py, , — 0 as m, 1 — 0o, Since similar inequality holds if i | <
%, we conclude that there exist sequences &'m,» and £, 5 such that
€'mn - 0ande'mn — 0asm,n — oo, and

|G (t) — Ga(E)l
< In(Mo)ltR—y — 541
+ Asup{[lzg’(s) — 27 ()} | s € [-r,t]} + Ber
< (In(Mo) + B)erm  + Bsup{lizi’(s) — Z7(s)| | s € [-n, 1t}
Now, for any s € [—r, T, we have
128 (s) — 237 () = |Zm (s) — za(s)l
= |[um{s) ~ ua(s)i
< |lzm () = zn(s)|| + llem, ()l
where €}, (s} — 0 uniformly on [=r,T] as m,n — oco. Thus
sup{[|z"(s) — 2 (s}l | s € [-r, T}}
< sup{||zm(s) ~ zn(s) | 5 € (-7, ]} + &m0

where the constants €}, , — 0 as m,n — oo. Applying the above
bound to {3.9), we arrive at

(3.10)
(4™ /dt)lfzm(t) — za(t)||?
< 2[eqm o + Bsup{{izm(s) — za(s)| | s € [—r, th}]llzm(t) — za(t)]
+ 2{An(t) — An(t), Flzm(t) — za())),
where g7y, — 0 as m,n — co. Using the uniform continuity of F' on
bounded subsets of X, we obtain a sequence of functions s:m,ﬂ(t) with

values in X™* such that limm n— 0o ||e;n,n(t)|| = 0 uniformly on [—r,T]
and

Flzm(t) — 2a(t)) = F(um(t) — unlt)) + 5 0(t)-
Thus
{(Am () — An(t), F(zm(t) — zn()))
= (Am(t) ~ An(t), F(tm(t) — un(t))} + {Am(t) — An(t), €7, (1))
< {Am(t) = Aa(t), Flum(t) — un (D)) + A2
+ A )25 e, (Il-
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From equation (3.1), we obtain
NA(E] )27 < My + BMo + C1 < Ch.
Similarly, JAGRT.; )2|| < Cr. Therefore,
(d7 [dt)|zm(t) — za (D]
< 2z + Bsup{llzm(s) — za(s)ll | s € [=r, P]l|zm(E) — za(]
+ 2(Am(t) — An(t), Flum(t) ~ ua(t))) +2Crlles, o ()]I-

Since (um(t) — un(t)) — (2m () — za(t))— O uniformly on [—r, T}, there
exists a sequence {€, .} of positive numbers such that &, , — 0 as
m,n — oo and

litm(t) = va(B)ll < llzm(t) = 2a(t)[| +Eém,n-

On the other hand, by the condition (A.2}, we get

(Am(2) — Au(t), Fum(t) — un(t))}

= (AQY1)20 — A(t] )] (20 — 27))

Swlfef — 2|7+t ~ o [L(Ms) |l ~ 27

< wli2f — 271 + (o + ha ) L{M3)]l|2" — 27

= Wwllum(t) ~ wa(Ol| + e nlltm () — ua(B,
where &) = (hn + hm)L(Mp) and Mj is a constant such that

supfmax{||zf| 11 <k <m} ] m > (w+ 8T} < M,

and Mj = max{My, M]}. Hence

(Am(t) — An(t), Fum(t) — ua(t)))
< Wllzm(t) ~ za®)l| + wém,n + €m n)(ll2m(t) — 20()lf 4 €m,n)
= wlizm(t) = 22 (| + e
where

TkE

e = wlzm(t) = zn(t)llEmn + (WEmn + € o Hl2m(t) = 2a(D)|

+ énl,n(wgm,n + efn,n)
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and so ey, — 0 as m,n — co. Therefore, we obtain

(d” fdt)lzm(t) — 2za(D)|?
((3.11))
S Emn + 2(ﬁ +w)sup{||zm(s) - ZR(S)nz f s € [*r’ T]}’

where the sequence of positive constants £ ~ 0 as m,n — oo.
Integrating {3.11), we obtain

12 (2) — za(®)If*

< emnT +2(8 + ) / sup{lzm(r) — zu(r)]| | 7 € =7, s]}]Pds,

where we have used z,,(0) = 2,(0) = ¢(0).
Since for any ¢, in the interval [0,1], t1 € (#7_,, 7] N (E.,, ¢} for
some j, k, we have

zm(t1) — za(t0)l)?

< mnT + 26+ w) ] lsup{lizm(r) — 2a(r]l | 7 € [-7, 5]} ds
< emnT +2(B + w) j [sup{lzm(r) — za(r)lf | 7 € [, 5]} 2ds.

We actually get

sup{zm(t) = za (&) | T € [-r, ]}

SémaT +2(8+ w)[o [sup{llzm(r) — za(r)ll | 7 € [-7, s]}]"ds.

An application of Gronwall’s inequality to the above estimate shows
that the sequence z,,(t) — 2,(t) = 0 as m,n — oo uniformly on {7, 7).
This implies that z,(¢) — u(¢) uniformly on [~r, T] and hence u,(t) —
u(t) uniformly on {-r, T}. Finally, by (4.26), we obtain

lu(t) — u(s)|| < M)t — s| for ¢, s € [-r,T].
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This shows that u(%) is absolutely continuous on {—r, 7. This com-
pletes the proof.

We say that the functionu(t) = lim,_,o, un(¢) is a limit solution of
(FDE; ¢).
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