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(FDE；©) <

ON THE SOLUTIONS OF NONLNEAR FUNCTIONAL 
EVOLUTION EQUATIONS IN A BANACH 

SPACE WITH UNIFORMLY CONVEX DUAL

Kuk- Hyeon Son

1. Introduction

Let X be a real Banach space with norm ||-||. Let PC be the space of 
piecewise continuous functions^ : [—匚 이 ——> X for a fixed r > 0. PC 
is a Banach space with norm ||例pc = sup{||VJ(^)|| | 6 E [—r,0]} for 
W € PC * In this paper, we consider the abstract nonlinear functional 
evolution equation

t e [0,T],
% =如 S € PC.

where u : [―尸, 꼬] —> is an unknown function, {A(i) : D (二 X ——> 
X \ t E [0,T]} is a given family of single-valued operators on X, D 
independent of i, G : [0,T] x PC ——> X, and © : [一八이 ——> X 
is Lipschitzian with。(0) € D. The symbol ut denotes the function 
*(°) = 。£ [—r, 0]. The purpose of this paper is to establish
the existence of the limit solution of (FDE\ ©). To do this, we give a 
convergence theorem for solutions of a certain approximate difference 
equation associated with (FDE;,、). The limits of solutions of the 
approximate difference equation are regarded as generalized solution 
of (FDE; ©) and we shall call them limit solutions of (FDE; ©).

Now we make further assumption regarding A(f) and G.
(A.l) The dual X* of X is uniformly convex.
(A.2) There exists u; > 0 and a nondecreasingfunction L : [0, oo)——> 

[0, oo) such that

(yi ~V2,X1 - X2)t < 에:知 -X2\\2 + |『 吋乙(腿||)|岡 f 시I
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forallO<s<t<T, [勿菸/i] G A(t) and [©很시 G 厶 (s).
(A.3) For each t G [0,T] and 0 < A < Ao,為3 V 1, R(I — AA(t))= 

X.
(A.4) There exists a constant 0 > 0 such that, for 啊羽 £ PC and

(A.5) There exists L\ : [0,oo)——> [0, oo) nondecreasing such that

||G(i, ©) -(구(s, 奶II < 시如由卅 一 이 for § e pa

2« Preliminaries

Ley X be a real Banach space with norm || • |( and let X* be the 
dual space of X with || • || also denoting the norm of X*. The value 
of x* G X* at x will be denoted by (x, a:*). Recall that the defini- 
tion of the duality mapping F : X —> X* of X, i.e., F(x) = (x* | 
(x,x*) = II께2 = ||x*||2}. Using the Hahn-Banach theorem it is imme­
diately clear that F(a?) is nonempty for any x € X. In general, F is a 
multi-valued operator. One would need somewhat stronger condition 
to ensure that F is continuous. A convenient sufficient condition is 
given by the following.

Theorem 2.1 [1]. If X* is uniformly convex^ then F is single-valued 
and is uniformly continuous on any bounded set of X. In other words, 
for each e > Q and M > 0} there is a 6 > 0 such thdt ||x|| < M and 
际 f/|| V J imply I 成(z) - < 氏

The properties of F are related to the differentiability of the norm 
II * II in X. For y E X and h £ R, let (x,y)h =，广'(|g + 切|| 一 II께) 
be the difference quotient of ||x|| at x in the direction y. Since the 
function /z ||x 4- /iy|| is convex, we easily deduce that/i i (x^y)h is 
monotone increasing for /i > 0 and(x,?/)/l > —||g|| for all > 0. This 
implies the existence of the right derivative

S"/)+ =声mjw 浦”
fc—>o+

of |g +方训 at — 0. As (x^y)-h = —(x^ ~y)h we deduce that(x, y)h is 
also monotone increasing and bounded above iorh V 0. Thus the left 
derivative

= lim {x,y)h.
fe—>0-
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exists and we have(x,?/)_ = —(% —g)+・ Finally, we obtain the follow­
ing inequality (see [1])

(x,y)-h < < (s,y)+ < (x,y)h, h > 0.

For x^y 6 X)we define the functionals ( , )s and ( , * on X x X 
by

{y,x}s = sup{(y,x*) I x* e F(x)}

and
{y,x)t = inf{(g,：r*) I x* G F(x)}.

Clearly {y,x)s = -= -(y, -x)t for all x, y E X.
Definition 2,1. An operator A on X is said to be dissipative if for

every x2 6 -D(A) there is a x* G F(xi — 叼) such 나点t

{yi - 02,虻)< o, for all y} G Ax}, j = 1, 2.

An operator A is said to be accretive if —A is dissipative.
Definition 22 Let cu be a real number.An operator A on X is 

said to be <v-dissipative if A — u?Z is dissipative.
The condition (A.2) implies that, for each t G [0,T], A(t) is tu- 

dissipative.
The following proposition is useful for later argument.
Proposition 2.1. (1) The condition (A.2) is equivalent to the 

statement

(2.1) (1 —)3)||缶 1 — a시I < II中 一 ©2 - 시01 一 切)11 + 시* 一 이£세"시I)

for all X > G, 0 < s < t < Tj G A(t) and 区幻殂]€ A(5).
(2) The inequality (2.1) implies

(入 + 产 一 入尹3)脸 1 一 x2|| W시]©2 — 网2 - a시] + /메中 一 細 一 叼||

(2.2) + — 시I)

for 0〃 人 > 0； 0 V s < t V C [xi,yi] C A(t) and 阮,切]€ A(s).
(3) The inequality (2.2) implies

( 1 一 入3)||中 一 띠I < ||^i 一 A?/i 一 베 + 시厶(s)이 + X\t 一 乙시메) 
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for all X > 0, 0 < s < t < Ty € A(t) arid u € jD(A(s))? where 
|4(s)찌 = inf{||v|| I v £ A(s)u).

3. Main result

In what follows, we assume that the conditions (A.1)-(A.5) hold. As 
in [7], we have the following lemmas.

Lemma 3.1. Let {t；} be a partition of the interval [0,T], where 
= jhm = jT/n} j — 1,2,••- ,n. If n > + ^)T? then there exists

such that for j = 1,2, • • • ,n,

-
(3.1) 卫一产 = 4(『】汚 +(구(垸乏；:时,

nn 3

where

' 矶、t), t e [-質,이

祥佔)=< z^, t e (代一i,瑁 f°r k = 1,2，…J -1 
書，江(垸幻.

and
方方 i”(0) =祥。jT” + 0)，0C[—r,O]

Lemm& 3.2. There is a constant Mq = A〔)(©) such that

(3.2) sup(max | 1 < J < n, n>(0 + w)T) < Mq,

Lemma 3・3. There exists a constant and an integer
N = N((g such that

(3.3) sup{max||，z； - 絡项|//知 | 1 < J < n, n>N}< Mi-

We now define the functions

'扒t), te [-r,0],
(3.4) Zn(t) = < +(i — - Zj-^/hnyt G (t爲,t；]

forj = )n.
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Then the sequence is uniformly Lipschitz with Lip­
schitz constant M? = max{Ax,_Z"}. Let

(3-5) *") = 空(t), t 티—權]

where，靖(£) is obtained from Lemma3.1(the function un(t)=五岩(£) is 
said to be hn-approximate solution of (FDE;&). Explicitly, we have

'七 £ 0],
f。호% = 1,2- ,n — 1, 

zn(t}=
"丿—卜：=(1 一笊4(罗T))T(绪T +如編」))，

・ 提 (標-J끼 •

The operators A(t) and Gn(t) are defined by

^n(O) = A(0)^(0),
An(t)=厶(弓T)Z； Jor <t<t^
GJt) = 乏方二])Jbr t；一 1 < t

It is easy to check that the function zn(t) is strongly differentiable 
on [0, T] except at a finite number of points at which the strong left 
derivative {d~ jdt)zn(t) exists. Thus, from (3.1) and (3.4), we obtain

(3.6) (d~~/dt)zn(t) = An(t) + Gn(t), t €

We will show that un(i) — zn(t) -h- 0 as n —> oo uniformly on [—r,T]. 
For t G (0,T], t G (号for some j = 1,2,- * - ,n. Then, from the 
definition of we have

(3.7)
lhn(t) - 기圳 I = |閤 - 球_] 一 (J - 以)〃시 I

= 11(，如 一 £ + 町一1)(2； - Z；_i)//시I

V M^hn
V M사板
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Since un(t) = zn(i) — 8(') for f € [—r, 0], we have ||un(t) — zrt(t)|| < 
M^hn for £ C [—r,T]. On the other hand, by the Lipschitz continuity 
of Zn(t), we have, for G [—r, T],

||«n(<) 一 WnG)|| < ||un(t) - 2危(圳I + 如(£)-标(时||

+ ||z”($) - *(s)||
V A^2^n + “2 — 이 + M2hn
W 2M2(\t — s| -p hn)

(3.8) =M(|t-s| +端)，

where M = 2峨.
Theorem 4.L The sequence (un(f)} of functions converges uni­

formly f as n co, to an absolutely continuous function u(t) on [0二Z]
Proof. We will show that zn(t) convergesuniformly, as n —> oo, to 

a function “(£). Then it follows from above that un(f) also converges 
uniformly to u(i). Let {t；} and {tg} be two partitions of [0,T], where 
t； = jhn = jT/n, j = 1,2, ,n, t? = khm = kT/m, k = 1,2, - • - 
Let t G (母D (弓一1 By the Lipschitz continuity of zn(t) and 
Lemma 3.1 of Kato [4], we have

(3.9)
(d~/dt)pm(4)- zn(圳|2 = 出)Zm(t)

一 (d~7出)标(t),F(Zm(t) - ％(£)))
=2(Gm(f) — Gn(f) + Am(t) — An(t),

F(Zm(t) - 2負)))

V 의|Gm(t) — Gn(圳||gm(t) — Zn(圳I
+ 2(Am(t) — An(t)^F(zm(t) — 2m(£))〉.

We also have

||Gm(t) - Gn(i)|| = ||G(曜]成燈_[) - G(『詩；:％〔)11

WG(堆1鴛私)- G(『詩知“)11

+ IIG(埃- G(垸1昭;、)II

+ 10(%,畦吋-1 )-％;_],旁『1)||,
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IIG（提、或f ） - G（『詩队顼|| < I聲］-弓二關燈」I）,

l|G（J,%」）-G（垸一詩糸、）II 

"II茕」-弓由」Ipc 

= 0sup{|| 처昏 （s） —荐 （s）|| 
|点啰_］一牌项}.

으 0sup{||建*S）- 祥（s）|| I s G ［一7서］},

and

l|G何T,餐％） - G（『1,翟弓 JI < 削琨％ - C^JIIpc.

If 弓二〈埋then

徂也i+°） =襦愆、+°）

and
暧（弓二+。）=襦（弓二+伊）

for any 0 € [―r, 0]. Also, since — zm（t） —，0 uniformly on [—r, T], 
there exists a sequence of positive numbers em such that Em -셔 0 a웡 
m —> oo and

IIC（^-1 + 0） - 乏 +。）11 = IICG^i + 0）—諜（『I + 咧

=||S（t口 1 +。） - +。）||

< ||Zm（母一1 +。）- Zm（[t：_k +。）|| +

< I母—1 — *；一11 + £m

by the Lipschitz continuity of zm（t） on [—r, T]. Now, it is easy to 
prove that the sequence {t^_r 一 t^_x} converges to zero uniformly in 
J, fc. From this fact, it follows that

~ 球:％」I — EmK^-1 ,n 
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where £m(n 0 as m,n —> oo. Since similar inequality holds if < 
ij_13 we conclude that there exist sequences E’m,” and such that 
e'm,” 一승 0 and 尸叫存 —* 0 as m,n —> oo, and

II") - &(圳I
V Zi(M))|t吗—<7-il
+ 0SUp{|R?(S)- 乏;(S)|| I S e [-r, <]} + 时m,n
< (乙i(Mo) + 0)e*,n + 0即p{|段(s)-乏;(s)|| I s e ]-r J]} 

Now, for any s € [—r, T], we have

I囲(s)-尋(刎=II禱(s) - 式(s)||
=||Sn(S)— U”(S)H
< ||%心)-細(S)|| + |km,n(5)lb

where —> 0 uniformly on [—r,T] as m,n —> oo. Thus

sup{|| 窄(s)"；(s)H|s€[t,幻}

< sup{||zm(s)-标(s)|| I s e [-r,]}+£^)n, 
where the constants MM,n 0 as m,n —> oo. Applying the above 
bound to (3.9), we arrive at
(3.10)

(d~/d圳Zm(z) - ^n(i)||2
< 2片"+ 0sup{U(s) - 2M(s)|| I s e 一 2頌(圳|

+ 2〈4m(Z)— An(t^ F(zm(t) _ 2我(t))\
where —> 0 as m, n oo. Using the uniform continuity of F on
bounded subsets of X、we obtain a sequence of functions with
values in X* such that limm,“T8 ||e^)n(t)|| = 0 uniformly on [—r, T] 
and

P(2m(t) - 2n(0) = F(um(t) 一 Un(i)) +《"(*)• 

Thus

=— An(Z), F(um(t) — — An(i),
W (厶m(t) — An(t),F(Um(t) — un(t))) + 皿4•(瑕
+ 114( 土 1)夸 IIHE叩(圳.
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From equation (3.1), we obtain

||厶(峪1)冲| <M, + 0M° + G< C7.

Similarly, ||厶(操!t)z昏|| < C7. Therefore,

(c厂 /出)[km(t) - 2如(圳|2
< 2[驾:,n + /3sup{||zm(s)-气(£)|| | S G [-r, t])]) 一 Zn(圳I
+ 2(ATO(f) — An(t),F(um(t) — un(f))) + 勿 (圳 l・

Since (um(t) — un(t)) —(2赤。)一标(£))—> 0 uniformly on [—r, T], there 
exists a sequence {emjn} of positive numbers such that £m)n —> 0 as 
m^n 00 and

一 *(圳I < 一 Zn(圳I +^m,n-

On the other ha교d, by the condition (A.2), we get

- An(t);F(um(f) - *(£)))
=〈4(«】潁 一 碩二汚顼(가 - 考))

< 에理 - 咨|2 + I也] - 土] 区(M)||，帶 - 讯

< {이" - 考|| + ㈤ + hm)L(M3)]\\zf - 明I
= [이~ un(^)|| + 或g]|gm(Z)~ f (圳L 

where 弗"=(羸，+ Am)L(Mo) and Mq is a constant such that 

sup{max{j|^|| I 1 < ^ < m} | m > (u; + 0)/} < Mq, 

and M3 = max{Mo, Mq}. Hence

〈4m(t) — An(t), F{um(t) — un(£)))
W (에Zm(f) — %(圳I + + 或,n)(||Zm(t) - *(圳| + &时)

= 이|*(*) — 气(圳 2+驾嘉

where

em*n = 에 Zm(f) — %(圳倍 m,n + ((展 m,n + 或/位从*) — 시*)II

+ + £m,n)
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and so £艺九—> 0 as m, n —> oo. Therefore, we obtain

(d-/dt)||zfn(t) 一 zn(t)||2
((3-11))

< Sm,n +2(0 +3)SUp{||Zm(S)— 2n(s)||2 | S G [-r,T]}, 

where the sequence of positive constants 5m>n 0 as m, n —> oo. 
Integrating (3.11), we obtain

临(t)-电圳2

< Sm,nT + 2(/3 + 3)/ [sup{||Zm(丁)一 ^n(T)|| | T G [-F, s]}fds, 
Jo

where we have used ^m(0) = zn(0) = ^(0).
Since for any 认 in the interval 切 £ J；](堤以)坪]for

some j, fc, we have

||御（切）-2抑1）||2

< £m,nT + 2(0 + 3)/ [sup{||Zm(T)- 2n(T)|| | T E [-F, s]}]2(Zs
Jo

< £m,nT + 2(/3 + 3)/ [sup{||z，n(T)- 2危(以 | T € [-F,司}]七怂

Jo

We actually get

SUp{||Zm(t)-褊(圳 |2 | T £ [ft]}

< Sm,nT + 2(0 + 3)/ [sup{||zm(T)- 2n(T)|| | T E [一r, s]}]2rfs. 
Jo

An application of GronwalPs inequality to the above estimate shows 
that the sequence zm{t) — zn(t) —> 0 as m,n —> oo uniformly on [—r,T]. 
This implies that zn(i) t u(t) uniformly on [—r, T] and hence un(i)—> 
u(t) uniformly on [—r, T]. Finally, by (4.26), we obtain

||u(f) — u(5)|| < M\t — s| for f, 5 € [—r,T]. 
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This shows that u(f) is absolutely continuous on [™r, T). This com­
pletes the proof.

We say that the functionu(f) = limn—8*(*) is a limit solution of 
(、fde 点
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