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FLOER HOMOLOGY AND COHOMOLOGY 
GROUP OF THE SPHERE BUNDLES

JUNG YOUNG SUN

1 .Introduction

On a finite dimensional manifold a Morse-Smale function induces 

Morse-Smgde gradient flows between the critical points and connecting 

orbits as boundary maps on the chain complex. The complex gives 

rise to the usual singluar cohomology(homology) on the manifold. A 

Morse-Smale gradient flow plays an essential role in Floer5s work. We 

will use this technique to study the topology on the sphere bundle 

using the Morse theory on the basemanifold and Euler class of the 

sphere bundle.

We introduce the Floer homology group and the Thereom of Floer 

for the Arnold conjecture. Floer used the infinite dimensional version 

of Morse theory to prove Arnold conjecture that the number of fixed 

points of an exact symplectic diffeomorphism on a symplectic manifold 

can be estimated below by the sum of the Betti numbers if the fixed 

points are nondegenerate. He defined a relative index fo호 a pair of 

critical points and generalized the Morse complex of critical points 

and connecting orbits to the infinite dimensional situation of the loop 

space which led to the concept of Floer homology.

In this paper we will outline the main ideas of Floer'압 proof of the 

Arnold conjectu호。and at some places suggest slight modifications. We 

construct a chain complex whose cohomolgy is isomorphic to the coho­

mology of the total space of the sphere bundle. Using a Morse-Smale 

function, on the base manifold and a generic section on the vector bun­

dle we deR교e a Morse-Smale faction on the total space of the sphere 

bundle.
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2. Preliminaries and Basic Theorems

Let M be a smooth compact Remannian manifold of dimension n. 

We assume that / : Af —> M is a Morse faction on M. For a point 
x G M let ax be the flow line through x. Then "。沙+ ▽*($)(/) = 0 

and the initial condition aI(0) = x. Let a be a critical point of f and 

index of jf at a is k. We define the manifold Ws(a) and the unstable 

manifold Wu(a) as follows ;

W\a) = {xEM\ tJim ax(t) = a} 스 Dn~k

Wu(a) = {xe 的］프= a} 읏 D*

A Morse faction / : M J? is to satisfy the Morse-Smale condition 

if for any two critical points x and y the unstable and stable manifold 

Wu(x) and Ws(y) intersect trnsversally.

If / : Af —J? is a Morse-Smale fuction, then there is a CW-complex 

C(/) whose cells correspond to the unstable manifolds of the critical 

points of f such that C(f) is homotopy equivalent to the manifold M. 

The CW-complex (7(/) is constructed by the Thom-Pontryagin framed 

submanifolds as follows; Let M(x, y) = Wu(x) A Ws(y)y where x and y 

are critical points of /. If p = index{x) and q = index(y\ then 

is a (p — g)-dimensional submanifold of M. In this case the number 

p — q is called the relative i표dex of x and y. In fact M(x^ g) is the 

space of all points that lie on flow lines starting from x and ending at 

y. There is a natural free action of the real line R on the space M(a:,y) 

given by the flow of V(/). That is, x j? —> Af(x,y) is given 

by (zj) I az(t), where az is 나le unique flow through x satisfying 

시梭(0) = 0 and a(t) = -Va(f)(f).

If we choose any point c between J(x) and f(y) and 

set M(x^y)c = x /~(c), then this action restricts to give a

diffemorphism y)c xR—^ Af(x, y). Therefore we have the quotient 

orbit space M(x,y) = M(xyy)/R which is called the module space of 

flow lines from x to y. Furthermore the composition

y)c t y) t M(x, y)/R = M(x, y) 
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is a diffeomorphism for any value c between f(x) and /(y), and hence 

is a manifold of dime교sional p — § — 1.

The CW-complex C(J) yields the associated cellular-chain complex, 

which is called the Morse-Smale chain complex

* •. -> Ck ~Ck—t —. —> Co ~0

where Ck is the free abelian group generated by the cells of C(f) 

of dimensional fc, the critical points of f of index fc. The boundary 

homomorphisms are determine by the relative attaching maps of k~ 

dimensional skeleton of C(/). We can compute the boundary homo­

morphisms as follows. Suppose x and y are critical points of rela­

tives index one. Let znd(x) = p and ind(y) = p — L The space 

of flows (A^(x, ?/),a) is a zero dimensional, framed, compact mani­

fold. A4(x,i/) is a finite set of points(flow lines) with signs attached 

to them induced by the framing. Let n(x, y) € Z denote the signed 

number of flow lines, n(x,y) = J2a(7), where 7 E and

a(7)= ±1 is the sign associated to the flow line 7 by the framing 

a. n(x,t/) E Z = is 나ic integer given by the degree of the

relative attaching map <f)Xjy : Sp^ 一수

PROPOSITION 2.1. The coefficient of [y] G Cp-i of the boundary 

dp(x) is given by the formula, < dp(x\ y >= n(x^ y) G Z,3p(x)= 

£題 y)y where the sum runs over all critical points of index p — 1.

We can extend the Morse-Smale chain complex to coefficients in any 

abelian group G by defining Ck(G) = Ck ®z G and dp(G)=缶(X)Ig ： 

(為(G)tCi(G)。

From above construction we have the following significant result.

(1) a2(G)= 0

(2) 时泌)=疇靜

3・ Flo er Homology and Arnold Conjecture

The Arnold conjecture states that minimal number of fixed points 

of an exact simplectomorphism on a symplectic manifold is the sum 



112 JUNG YOUNG SUN

of Betti numbers provided that the fixed points are nondegenerate. 

This was proved by Floer tinder the assumption that over tt2(M) the 

cohomology class of 3 agrees up to a constant with the first Chern 

class ci € of TM which is regarded as a complex vector bundle 

via an almost complex structure. He used a Morse type index theory 

for an indef끄ite function on the loop space and a relative index for 

two critical points with infinite Morse index. We will outline the main 

ideas of Floer^ proof. In order to avoid additional difficulties we 

assume that the integral of 3 vanishes over every sphere, i.e.

［知=0, u:S2 

岳

Let (M,u?) be a compact 2n-dimensional symplectic manifold meaning 

that 3 G is a nondegenerate closed 2-form. A symplectomor- 

phism of Af is a diffeomorphism 屮 g Diff(M) satisfying p*3 = 3. It 

is called exact (or homologous to the indentify) if it can be interpolated 

by a time dependent Hamiltonian differential equation.

(3.1) i(i) = XhW)J)

Here HtMxR—^Risa, smooth function satisfying H(x^t + 1)= 

H(x^i) and the associated Hamiltonian vector fieldXh : MxR TM 

is defied by

3(Xh(z/),C = 一d』(:撰)G ( G TXM

The solutions x(t) of (3.1) determine a 1-parameter family of sym- 

plectomorphisms 物 £ Diff(M) satisfying 饱(w(0)) = x(t) and any 

symplectomorphism 寸=which can be generated this way is called 

exact. We denote by

Pq ~ {x : R Af|xsatisfies(3.1), x(t + 1) = x(f), xis ntdl-homotopic).

the space of contractible 1-periodic solutions of (3.1). A periodic solu­

tion a: € Po is called nondegenerate if det(I — ddn(w(0)))丰 0.
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THEOREM 3.2. (Flo이') Suppose that f^2 u*cu = 0 for any « : S2 —> 

M and the contractible 1-periodic solutions of (3.1) are nondegenerate. 

Then the minimal nuinber of fixed points of the exact symplectomor- 

phism on M is the sum of the Betti numbers of M.

Let L(M) be the loop space of M and R)(M) C L(M) the subspace 

of contractible loops. We represent a loop in M by a perodic map 

了 ：丑 t M satisfying y(t + 1) = 7(f).

We define a function on Lq(M) by fn : Lq(M) —> R)

/h(7)= - [ u*3+ j H(t(£)盘)出 

JD2 Jo

where D2 is the unit disk and u : D2 —> Af is a smooth function 

satisfying iz(e27rU) = 7(f),

Proposition 3.3.

(1) The fuction fn is well-defined,

(2) Ify £ Lo(Af) is a critical point, then 7 is a solution ofwfy, <)= 

-dif(7,t)C for ( G T(TM).

Proof,

(1) Since 7 G the loop 7 is contractible, and hence there is a 

map u : D2 —> M、Since for any map v : S2 —> M, 島 v*u = 
0, the integral Jp2 u*iv is independent of the choice of u.

(2) The tangent space is represented by the space of

vector field ( E r(7*TM) along 7 satisfying <(£ + 1) = ((/) 

since 7(t + 1) = 7(f). More precisely let $ : K x (—e, e) —* M 

be given by ©。，司=%(£))%。)= ‘(t) and

£|s=oW，s) =〈(7(t))b%)M.

So (7*C)(i) €and G「(7*TM), dfff(7)=
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T^Lq(M) t R)for any ( 6 TLq(M).

<H(?XO = £|s=oJW(%)

£」s=o|-/ u*u)+ J 

f d . / *、
—/ —|s=：O(W 3)+ mH(为(£)J))dt

$="*)*이 + / dH^,t)Cdt 
Jo

[^(7, C)dt + [ dH(y,t)(dt 

o Jo

I [^C) + dH^t)C]dt 

o

In order to determine the gradient of fn we choose an 

almost complex structure on M meaning an. endomorphism 

J G C°°(End(TM)) such that

J2 = -1 and < >= J(z)7?), (,?? € TXM defines a

Remannian metric on M. In fact J is an isometry and TXM is 

a complex vector space by z, = + tJ(x) for z = s + 社 £ C.

A holomorphic curve is a s시ution u : S M the nonlinear 

Cauchy-Riemann equations

况 = 쁘 + J(ii) 쯔 = 0 

os dt

defined on a Riemann surface S. Holomorphic curves plays an 

essential role in Floor's work.

PROPOSITION 3.4. If u is a holomorphic curve, then

3V▽이 2

Let Vjff : M X B —> TM be 나，e gradient of H with respect 

to the ^-variable then the associated Hamiltonian vectorfield 

can be written as Xh(wJ) = J(x)VZT(x,f).
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Now the gradient of fn with respect to the induced metric 

on is given by

V/h(7) = J(g)) + G T7Lo(M).

A gradient flow line of fn is a smooth map u : R x S1 M 

satisfying

(3.5) — + J(u)— + = 0

At any critical point the Moise index for both fn and —/n 

may be infinite. Nevertheless we can do Morse theory fb호 fn 

by studying only the space of bounded solutions, an idea which 

goes back to C.Conley.

In order to describe the space of bounded solutions of (3.5) 

we choose any two periodic solutions x EPq and y £ and 

denote by 人4(们工)the space of connecting orbits with respect 

to the gradient flow of /h- If u € A4(y,x) , then u satisfies 

(3.5) and lim3->_oou(s,t) = y(f), lims-^oo u(s,t) = x(t) and 

the minimize the energy functional

舞W) = MJ "쯔12 + I쯔 - Xh(5)|2) 出 ds

= 捉」(豊+ 如쯔+、冲，圳"

+ J3(y)-了h(C

Let M — {u : R x Sl 一)M\u satisfies(3.5), $h(u) < oo,u is 

null-homotopy} be the space of solution u of (3.5) alo교g which 

the decreasing function /h(^s) with us(t) = u(s, t) is bounded.

Theorem 3.5. (Floer)

(1)

(2) = 0 for u : S2 —> M then A4 is compact.

Floer used the spaces jM(y, x) of connecting orbits in order 

to define a relative Morse index.
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THEOREM 3.6. (Floer) The boundary operator satisfies dF- 

dF = 0. Moreover, the boundary groups

目fW；G) = 
k*】(G) 

W(G)

are independent of Hamiltonian H and the almost complex 

structure J used to define them. They agree with the singular 

homology groups of M.

Theorem 3.7. Suppose that fs2 u*(v = 0, 四 : S호 一> 

M holds and the contractible periodic solutions of x(t)= 

Xh (戒t)J) with integer period nondegenerate. Then there 

are inGnitely many of them.

4. Morse Theory on Sphere Bundles

Let E be a vector bundle of rank n with projective map 

欠 : E -스 M. Suppose that E is oriented and has a Rie- 

mannian structure. We restrict 7r to the (n — l)-sphere bundle 

7r : S(E) M. There is a long exact sequence.

Theorem 4.1. (Gysin) Let % : S(E) —^Mbean oriented 

sphere bundle with fiber Sk. 꼬hen there is a long exact se­

quence

——> H”(S(E)) 프〉当 Hn+\M)

二 ($(£)) — .••,

in which the maps 7r*, Ae7 and %* are integration along the 

fiber? multiplication by the Euler class, and the nature pull­

back, respectively.

ThEREOM 4.2. Let X be a compact manifold and let f : 

X —> y be transversal to a submanifold Z G Y, then the 
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premage 厂'(Z) is a submanifold of X・ Moreover, the codi­

mension of /-1(Z) in X equals the codimension of Z inY.

The most important and readily visualized special situation 

concerns the transversality of the inclusion map ? of one sub­

manifold X C Y with another submanifold Z C Y. To say 

a point x E X belongs to the preimage L(Z) simply means 

that x belongs to the intersection X「I Z. Also, the derivative 

dix : 7k(X) —소 TX(Y) is merely the inclusion map of 7\(X) 

into TX(Y), So i rfl Z if and only if, for every x E X Q

頌X) +頌 Z) = L(Y)

THEOREM 4.3. Let / : X —> F be a map transversal to 

a submanifold Z 访 ¥ 이id let W = 厂"). Then TX(W) is 

the premage of 7y(x)(Z) under the linear map dfx : Tx(X) t

Let Nx(W;X) be the orthogonal complement to TZW in 

TxX, i.e., Nx(W\X) ® TXW = TxX. Because of dfx(Tx) + 

TzZ = TZY =妩(M(W;X)) + TzZ, for each f(x) = z C Z, 

the orientations of Z and Y induces an orientations

妬(Z(W；X))。By the isomorphism dfx, the orientation on 

dfx(Nx(W;X)) defines an orientations on Nx(W;X). Finally 

the orientation on Nx(W]X) and TxX define orientations on 

each tangent space Tx(W)t

In particular if two subspaces Xi and X》of X are transver­

sal and have complementary dimensions, then each point of 

Xi fl X2 has ±l-orientation which is defined by the inclusion 

map z : Xi -스 X如
Suppose that a function / : M —> -R is a Morse function 

satisfying the Morse-Smale type. For any two critical points x 

and y of /, Wu(x)C\Ws{y} is a smooth submanifold

of M with dimension ind(x) — ind(g). Let 5 : M —> E be a 

gene초ic section. The preimage W = 5-1(0) of the zero section 

has co dimension n. By genericity,iy n g) = 0 if ind(x)—
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ind(y) < n, W D jVt(x,y) is a set of finite points if ind(x)— 

ind(y) = n.

Let C* = and the exterior differentiation d :

(가 —* Q서」is defined by connecting homomorphisms. We 

want to define a chain map c : C* —> C나" by

c(p') = n 나 n

,where the number | is the sign.

Theorem 4.4. The linear map c : C' —+ Ci+n is a chain 

map from C* into itself.

Proof. Consider the following diagram

---- ,。__Cl+1 —Ct+2 -> ••-

--- > Ci+n —-一-> c나f+i —-■■一> C,+n+2 t • • .

For each generator p' in C* since c(pl) = £指+*>€。+” 

人43/5)3+",

d(c(p，))

pt+nGC*+n

p,+n€C*+n

£ n(p，+n,pt+n+1)p，+n+1

Q 너f+1.£C너”너」

£ ( £侦「商3,广))

Q 너f + 너f + 1 p 너F£C너F

n(pt+n,pl+n+1)p，+n+1,

c(W))

E ( E急財•+】)

p너F+i£C너“너」p，+yc归+丄

H( w n M S나 1, pt+n+1 )>t+n+1
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The gradient flow lines and the Euler class determine the 

following commutative digram up to sign

pl ----- > 口中

c c

p나F d )pi-Fn+1

Thus

E KW n 朋 3，/+n))n3+"，+서」)

P*+n€C*+n

= £ "，广새("M"+i,p中나】))

p 너」너」

Thus c(cZpl) = d(cp)

We define a new coboundary map J: (7* ® C* -h- C* ® C* 

by

a=(S d)：Ct® Ct~n+l T °t+1 ® C'f W

THEOREM 4.5. (1) 02 = 0 if and only if c is a chain map

i.e,.  dc + cd = 0 (2) The cohomology group for (C* © C*,J) 

is isomorphic to the cohomology group of the sphere bundle, 

d HP(C* © C*,J) - HP(S(E)).

Proof. (1) Since

『=(《 ；) ：C" ㊉ tC 너그
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T s) (o;)

(d2 de + cd\
=(o罪丿

_〈0 de + cd\
=3 o丿 

=0

Hence dc + cd — 0.

(2) To find the cohomology group for (C* © C*, J) at p, we 

consider the chain complex

t Cp~l © Cp~n !二 cp © cp~n+1 至 cp+l ® cp~n+2 ->

The p-th comology group HP(C* d) = Kerdp/Imdp-i =

甲次 CPf+l|dp(0P) + c(b+1) = 0 = 中)}

一一{(dpT("T) + C(pi)0f Si))5T"P_n) £ CH & CI}—

For each e Hp(C* © C*, J),^,_„+i(pp-n+1) = 0.
Let e G ^Tn-1(5'n-1) be a generator. We may consider e € 

H"-」(s，nT)工 — {0}) as an oriention on each fiber

of the vector bundled. We define a homomorphism,

<b : HP(C* © C*, d) T HP(S(E))

by

的)P,pPf+，)= 政") + 7「*("一서」) A e.

Then is an isomorphism.

Let /: M —> JI be a Morse function which satisfies the 

Morse-Smale condition. We would like to construct a Morse- 

Smale function F : S(E) t R on the total space S(E) of the 

sphere bundle and investigate the topology on it. Suppose 
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s : Af t E is a generic section, namely transversal to zero 

section of the vector bundle E. The preimage 5-1(0) of the 

zero section is a submanifold of M with codimension n. We 

define a function

g : S(E) t R

by =v vx?s7t(?;x) > for each vx £ S(E) where the inner 

product <, > is defined on E. Thus we define a function F : 

S(E) —> R via the function f and 们

F(如)=^f(vx) + g(n)

Theorem 4.6, [10] (1) F : S(E) t R is a smooth Morse 

function. (2) The complex C(S(E),F) on the total space 

S(E) defined by F is isomorphic to the complex (C(X, /) ® 

CQJ /), J) defined by f and d(defined by a chain map c).
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