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FLOER HOMOLOGY AND COHOMOLOGY
GROUP OF THE SPHERE BUNDLES

JUNG YOUNG SUN

1.Introduction

On a finite dimensional manifold a Morse-Smale function induces
Morse-Smale gradient flows between the critical points and connecting
orbits as boundary maps on the chain complex. The complex gives
rise to the usual singluar cohomology(homology) on the manifold. A
Morse-Smale gradient flow plays an essential role in Floer’s work. We
will use this technique to study the topology on the sphere bundle
using the Morse theory on the basemanifold and Euler class of the
sphere bundle.

We introduce the Floer homology group and the Thereom of Floer
for the Arnold conjecture. Floer used the infinite dimensional version
of Morse theory to prove Arnold conjecture that the number of fixed
points of an exact symplectic diffeomorphism on a symplectic manifold
can be estimated below by the sum of the Betti numbers if the fixed
points are nondegenerate. He defined a relative index for a pair of
critical points and generalized the Morse complex of critical points
and connecting orbits to the infinite dimensional situation of the loop
space which led to the concept of Floer homology.

In this paper we will outline the main ideas of Floer’s proof of the
Arnold conjecture and at some places suggest slight modifications. We
construct a chain complex whose cohomolgy is isomorphic to the coho-
mology of the total space of the sphere bundle. Using a Morse-Smale
function on the base manifold and a generic section on the vector bun-

dle we define a Morse-Smale fuction on the total space of the sphere
bundle.
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2. Preliminaries and Basic Theorems

Let M be a smooth compact Remannian manifold of dimension n.
We assume that f : M — M is a Morse fuction on M. For a point
z € M let a; be the flow line through z. Then “d;t(t) + Ve, (y(f) =0
and the initial condition a,(0) = z. Let a be a critical point of f and
index of f at ¢ is k. We define the manifold W?{a) and the unstable
manifold W*(a) as follows ;

W(a) = {z € M| lim o(t) = a} = pr*

W*(a) = {z € M| tiig;m a(t) = a} = D*

A Morse fuction f : M — R is to satisfy the Morse-Smale condition
if for any two critical points z and y the unstable and stable manifold
W*(z) and W?*(y) intersect trnsversally.

If f: M — Ris a Morse-Smale fuction, then there is a CW-complex
C(f) whose celis correspond to the unstable manifolds of the critical
points of f such that C(f) is homotopy equivalent to the manifold M.
The CW-complex C(f) is constructed by the Thom-Pontryagin framed
submanifolds as follows; Let M(z,y) = W*(z)NW?*(y), where z and y
are critical points of f. If p = indez(z) and ¢ = indez(y), then M(z,y)
is a (p — ¢)-dimensional submanifold of M. In this case the number
p — g is called the relative index of z and y. In fact M(z,y) is the
space of all points that lie on flow lines starting from z and ending at
y. There is a natural free action of the real line R on the space M(z, y)
given by the flow of V(f). That is, M(z,y) X R — M(z,y) is given
by (z,t) = a,(t), where a, is the unique flow through « satisfying
az(O) == 0 and Oz(t) = *Va(t)(f).

If we choose any point ¢ between f(z) and f(y) and
set M(z,y)° = M(z,y) X f(c), then this action restricts to give a
diffemorphism M(z, y)° x R —» M(z,y). Therefore we have the quotient
orbit space M(z,y) = M(z,y)/R which is called the module space of
flow lines from z to y. Furthermore the composition

M(z,y)* — M(z,y) - M(z,y)/R = M(z,y)
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is a diffeomorphism for any value ¢ between f(z) and f(y), and hence
M(z,y) is a manifold of dimensional p — ¢ — 1.

The CW-complex C(f) yields the associated cellular-chain complex,
which is called the Morse-Smale chain complex

a i
"—’Ck—"f"ck—l—’“‘—*Co—*O

where Cj is the free abelian group generated by the cells of C(f)
of dimensional k, the critical points of f of index k. The boundary
homomorphisms are determine by the relative attaching maps of k-
dimensional skeleton of C(f). We can compute the boundary homo-
morphisms as follows. Suppose z and y are critical points of rela-
tives index one. Let :nd(z) = p and ind(y) = p — 1. The space
of flows (M(z,y),a) is a zero dimensional, framed, compact mani-
fold. M(z,y) is a finite set of points(flow lines) with signs attached
to them induced by the framing. Let n(z,y) € Z denote the signed
number of flow lines, n(z,y) = > a(y), where v € M(z,y) and
a(y) = %1 is the sign associated to the flow line v by the framing
a. n(z,y) € Z =TI,_;(S5P7!) is the integer given by the degree of the
relative attaching map ¢, : SP71 — §P71

PROPOSITION 2.1. The coefficient of [y] € Cp-; of the boundary
Op(z) is given by the formula, < Oy(z),y >= n(z,y) € Z,0,(z) =
Ey n(x,y)y where the sum runs over all critical points of index p — 1.

We can extend the Morse-Smale chain complex to coefficients in any
abelian group G by defining Ci{(G) = Ci ®z G and 0,(G) =3, ® I :
Cp(G) = Cp1(G).

From above construction we have the following significant result.

(1) 3*G)=0

ker 8, _ 1 (G
(2) Hy(M;G) = K59

3. Floer Homology and Arnold Conjecture

The Arnold conjecture states that minimal number of fixed points
of an exact simplectomorphism on a symplectic manifold is the sum
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of Betti numbers provided that the fixed points are nondegenerate.
This was proved by Floer under the assumption that over #2(M) the
cohomology class of w agrees up to a constant with the first Chern
class ¢; € H%(M) of TM which is regarded as a complex vector bundle
via an almost complex structure. He used a Morse type index theory
for an indefinite function on the loop space and a relative index for
two critical points with infinite Morse index. We will outline the main
ideas of Floer’s proof. In order to avoid additional difficulities we
assume that the integral of w vanishes over every sphere, i.e.

/ ww=0, u:8°-M
52

Let (M, w) be a compact 2n-dimensional symplectic manifold meaning
that w € 22(M) is a nondegenerate closed 2-form. A symplectomor-
phism of M is a diffeomorphism 3 € D:if f(M) satisfying *w = w. It
is called exact {or homologous to the indentify) if it can be interpolated
by a time dependent Hamiltonian differential equation.

(3.1) #(t) = Xu(z(t),t)
Here H : M X R — R is a smooth function satisfying H(z,t +1) =

H(z,t) and the associated Hamiltonian vector field Xy : M X R — TM
is defined by

W Xu(z,1),() = —d H(z,t)(, (€M
The solutions z(¢) of (3.1) determine a 1-parameter family of sym-
plectomorphisms ¥, € Dif f(M) satisfying 1+(2(0)) = z(¢) and any

symplectomorphism ¢ = ¢; which can be generated this way is called
exact. We denote by

Po = {z : R - M|zsatisfies(3.1),z(t + 1) = z(¢), zis null-homotopic}.

the space of contractible 1-periodic solutions of (3.1). A periodic solu-
tion z € Py is called nondegenerate if det{l — dyp;(2(0))) # 0.
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THEOREM 3.2. (Floer) Suppose that [, u*w =0 for any u: §% —
M and the contractible 1-periodic solutions of (3.1) are nondegenerate.
Then the minimal number of fixed points of the exact symplectomor-
phism on M is the sum of the Betti numbers of M.

Let L{M) be the loop space of M and Ly(M) C L{M) the subspace
of contractible loops. We represent a loop in M by a perodic map
v : R — M satisfying y(t + 1) = (t).

We define a function on Lo(M) by fy : Le(M) — R,

1
fut) == [ wor [ HGo.ne

where D? is th;a unit disk and u : D? -+ M is a smooth function
satisfying u(e?™) = y(t).

PRroroOsITION 3.3.

(1) The fuction fg is well-defined.
(2) If~ € Lo(M) is a critical point, then +y is a solution of w(¥,{) =
—dH(,t){ for ( € T(TM).

Praof.

(1) Sinceq € Lo(M) the loop v is contractible, and hence there is a
map u : D? — M. Since for any map v : §% —» M, fS, v¥u =
0, the integral [, u*w is independent of the choice of u.

(2) The tangent space TyLo(M) is represented by the space of
vector field ¢ € T(y*TM) along v satisfying {(t + 1) = {(¢)
since y(t + 1) = ¥{t). More precisely let ® : R x {—¢,e) = M
be given by B(t,5) = 7a(t), 0(t) = 7(t) and

Llomo®(t,) = (1) € Ty M.

So (v*O)(®) € (v*'TM)¢ and v*( € T(y'TM), dfu(y) =
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TyyLo(M) — R, for any ¢ € TLo(M).

(M) = 3-lema ()

= ;—3|s=0["' ./D’ u*“”l'fo H(’Y:(t)wt)dt]
- _/m U‘lismo(u“w)*r /0 (%lwoff(%(t):f))df
d - !
= —/D2 d[(a;|,=ou ) w]+f0 dH(v,t){dt
1 1
o / w(¥,¢)dt + / dH (7, t)(dt
0 0
1
- /0 Wi, €) + dH (7, H)C)dt

In order to determine the gradient of fg we choose an
almost complex structure on M meaning an endomorphism
J € C®°(End(TM)) such that
J? = —1 and < (,n >= w((,J(z)m), ¢{,n € TzM defines a
Remannian metric on M. In fact J is an isometry and T, M is
a complex vector space by z{ = s{ +tJ(z) for z = s +it € C.
A holomorphic curve is a solution % : § — M of the nonlinear
Cauchy-Riemann equations

= Ju du
3&—‘5;4-'1(&)5—0

defined on a Riemann surface S. Holomorphic curves plays an
essential role in Floer’s work.

PROPOSITION 3.4. If u is a holomorphic curve, then

/u*w:-l—/ |Vu|?
s 2Js

Let VH : M X R — TM be the gradient of H with respect
to the z-variable then the associated Hamiltonian vectorfield
can be written as Xy(z,t) = J(z)VH(z,1).



(3.5)

(1)
(2)
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Now the gradient of fy with respect to the induced metric
on Lo(M) is given by

Viu(y) = J(v)y + VH(~,t) € Ty Lo(M).

A gradient flow line of fy is a smooth map u: R x §' — M
satisfying

Ou du

3s + J(u)g + VH(u,t) =0

At any critical point the Morse index for both fg and —fy
may be infinite. Nevertheless we can do Morse theory for fy
by studying only the space of bounded solutions, an idea which
goes back to C.Conley.

In order to describe the space of bounded solutions of (3.5)
we choose any two periodic solutions z € Py and y € Py and
denote by M(y,z) the space of connecting orbits with respect
to the gradient flow of fy. If v € M(y,z) , then u satisfies
(3.5) and limy oo u(s,t) = y(t), limy_ooul(s,t) = x(t) and
the minimize the energy functional

B [ ] (24 +12% — O atas

= -/ ] (|6_u. .;.J(u)at + VH(u,t)|*dtds
+ fu(y) — fu(z).

Let M = {u: R x §1 — M|u satisfies(3.5),®y(u) < oo,u is

null-homotopy} be the space of solution u of (3.5) along which

the decreasing function f(u,) with us(t) = u(s,1) is bounded.
THEOREM 3.5. (Floer)

M =U; yep, My, ).
Jou*w =0 foru:5% - M then M is compact.

Floer used the spaces M(y, z) of connecting orbits in order
to define a relative Morse index.
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THEOREM 3.6. (Floer) The boundary operator satisfies 8% -
0¥ = 0. Moreover, the boundary groups

ker8f_,(G)
7 . _ k—1

are independent of Hamiltonian H and the almost complex
structure J used to define them. They agree with the singular
homology groups of M.

THEOREM 3.7. Suppose that g u*w = 0, u : §* —
M holds and the contractible periodic solutions of #(t) =
Xu(z(t),t) with integer period nondegenerate. Then there
are infinitely many of them.

4. Morse Theory on Sphere Bundles

Let E be a vector bundle of rank n with projective map
w : E — M. Suppose that E is oriented and has a Rie-
mannian structure. We restrict = to the (n — 1}-sphere bundle
7 : S(E) — M. There is a long exact sequence.

THEOREM 4.1. (Gysin) Let = : S(E) — M be an oriented
sphere bundle with fiber S*. Then there is a long exact se-
quence

Ae

= HY(S(E)) = H* (M) = H™(M)
o H*(S(E)) = -,
in which the maps «,,Ae, and n* are integration along the

fiber, multiplication by the Euler class, and the nature pull-
back, respectively.

THEREOM 4.2. Let X be a compact manifold and let f :
X — Y be transversal to a submanifold Z C Y, then the
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premage f~1(Z) is a submanifold of X. Moreover, the codi-
mension of f~Y(Z) in X equals the codimension of Z in Y.

The most important and readily visualized special situation
concerns the transversality of the inclusion map @ of one sub-
manifold X C Y with another submanifold Z C Y. To say
a point z € X belongs to the preimage :~'(Z) simply means
that z belongs to the intersection X N Z. Also, the derivative
diz : To(X) — T(Y) is merely the inclusion map of T (X)
into T:(Y'). So¢th Z if and only if, for every z € X N Z,

To(X) + Tu(Z) = Tu(Y)

THEOREM 4.3. Let f : X — Y be a map transversal to
a submanifold Z in Y and let W = f~}(Z). Then To(W) is
the premage of T¢(,)(Z) under the linear map df; : T:(X) —
Tpo)(Y).

Let N.(W;X) be the orthogonal complement to T,W in
T:X, te, N.(OW;X) ® T,W = T, X. Because of df.(T;) +
T.Z =T.Y =dfo(N(W; X))+ T.Z, for each f(z) =z € Z,
the orientations of Z and Y induces an orientations
df:(T(W; X)). By the isomorphism df;, the orientation on
df:{N(W; X)) defines an orientations on N,{W; X). Finally
the orientation on N (W;X) and T; X define orientations on
each tangent space To(W).

In particular if two subspaces X1 and X, of X are transver-
sal and have complementary dimensions, then each point of
X3 N X2 has -+1-orientation which is defined by the inclusion
map z: X; — Xo.

Suppose that a function f : M — R is a Morse function
satisfying the Morse-Smale type. For any two critical points =
and y of f, M(z,y) = W*(z)NW?*(y) is a smooth submanifold
of M with dimension ind(z) — ind(y). Let s : M — E be a
generic section. The preimage W = 571(0) of the zero section
has codimension n. By genericity, W N M(z,y) = @ if ind(z) —
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ind(y) < n, W N M(z,y) is a set of finite points if ind(x) —
ind(y) = n.

Let C" = B, gpr=i Zp' and the exterior differentiation d :
C* — C*'1 is defined by connecting homomorphisms. We
want to define a chain map ¢: C* — C*t" by

c(p') =D W N M(p*, )"
, where the number § is the sign.

THEOREM 4.4. The linear map ¢ : C* — C**" is a chain
map from C™ into itself.

Proof. Consider the following diagram

d
........}C' S C‘+I _ Ct'f'z_)..-

| | |

e citn o Y btz

For each generator p' in C* since c(p*) = 3 i4ncomn f(W N
M(P‘, pt+n))pi+u’

d{c(p’))

=Y HWAME, )

pt+n eC:+n

= ) WM, et)

pl+n GC‘+“

1 1
Z n(p:+n,pt+n+ )pt+n+
Pt+n+1€C|+n+l

= Y (Y Mm@t
o +ntigCitnil ps+n eC:+n

+n , pt+n+1 )pt+n+1 ,

n(p

= Y, (Y nhe™

prntleCitntl prbteCitt

ﬂ(W N M(p‘+1,p'+n+1))p'+n+1

c(d(p"))
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The gradient flow lines and the Euler class determine the
following commutative digram up to sign

d

T pt—}-l

P

Thus

S WM, p (e, g

pl+ﬂGCl+ﬂ

= 2 nlep W A Mt p )

pi+1 eCt-t-‘!.

Thus ¢(dp*) = d(cp).

We define a new coboundary map d: C*9 C* — C* & C*
by

d = (g 2) L@ ol ol g o2

THEOREM 4.5. (1) d2 = 0 if and only if ¢ is a chain map
ie,. dc+ cd =0 (2) The cobomology group for (C* & C*,d)
is isomorphic to the cohomology group of the sphere bundle.
i.e, HP(C* & C*,d) ~ HP(S(E)).

Proof. (1) Since

& = (g ;) Ot L ol g C:-—n-{—?’
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#=(00)( %)

d&? dc+cd)

i

(5
0(0 dc-!-cd)

Hence de +ed = 0. _
(2) To find the cohomology group for (C* @ C*,d) at p, we
consider the chain complex

— Cp—l @ cr—n Jy-! C?@Cp_n+l i cp+l EBCp—n+2 —
The p-th comology group H?(C*®C*,d) = Kerd,/Imdy_, =

{(22,07"") € CP @ CP="H1]dy(67) + (@) = 0 = dpnia (™))

{(dp-1(pP=1) + c(p?7), dp-n(pP~")|(0P 71, pP~") € O~ & CP~}
For each (p?, p? ~"*1) ¢ HP(C* @ C*,d), dp—ati(p?"t1) = 0.
Let e € H* 1(S""!) be a generator. We may consider e €

H*~1(8"1) ~ H™(R", R" — {0}) as an oriention on each fiber
of the vector bundleE. We define a homomorphism,

¢: HP(C* @ C*,d) — H?(S(E))
by
(P, PP ) = 2 (PP )+ (PP ) Ae

Then ¢ is an isomorphism,

Let f : M — R be a Morse function which satisfies the
Morse-Smale condition. We would like to construct a Morse-
Smale function F' : S(E) — R on the total space S(E) of the
sphere bundle and investigate the topology on it. Suppose
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s : M — E is a generic section, namely transversal to zero
section of the vector bundle E. The preimage s~'(0) of the

zero section is a submanifold of M with codimension n. We
define a function

g:5(E)—R

by 9{vz) =< vg,sm(v,) > for each v, € S(E) where the inner
product <, > is defined on E. Thus we define a function F' :
S{E) — R via the function f and g,

Flug) = 7" f(vz) + g(ve)-

THEOREM 4.6. [10] (1} F: S(E) — R is a smooth Morse
function. (2) The complex C(S(E),F) on the fotal space
S(E) defined by F' is isomorphic to the complex (C{X, f) &
C(X, f), d) defined by f and d(defined by a chain map c).
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