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REMARKS ON FINITE NORMALIZING
EXTENSION RINGS OF GRADED RINGS

DONG-S00 LEE AND KEUN PARK

1.Introduction

Generally a finite normalizing extension ring S of a graded ring R
is not a graded ring. In this paper we will give some conditions that
a finite normalizing extension ring of a graded ring is also a graded
ring. An example of this paper shows that this condition is adequate.
Under this condition we can find some properties for graded ideals and
graded modules. We will prove that a result of L.Souief’s paper is also
true in graded ring case.

Let G be a multiplicative group with identity element e. A ring R
is said to be a graded ring of type G if there is a family of addititve
subgroups of R, say {Ry | ¢ € G} such that R = P cq Ry and Ro R C
R, for all g,k € G, where we denoted by R Ry the set of all finite
sums of products r,r; with r;, € Ry and ry € Ry.

An R-module M is said to be a graded left R-module if there is
a family of additive subgroups of M, say {M,; | ¢ € G} such that
M = @ e My, and RgMy C My, It is well known that R, is a
subring and the identity 1 of R is contained in R,. And also we know
that every M, is a left R.-module.

For example the group ring R = A[G] is a graded ring where G is a
group and R is a ring. The element of h(R) = (J,cq Ry and A(M) =
{J scc My are called homogeneous elements of R and M respectively.
If a nonzero m is contained in Mj, we call m a homogeneous element
of degree g and we write deg{m) = g. Of course any nonzero element
of a graded ring or a graded left R-module has a unique expression as
a sum of homogeneous elements.

A submodule N of a module M is a graded submoduleif N = B(NN
M) or equivalently, if for every z € N the homogeneous components
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of x are again in N. Similary we define a graded (left) ideal of a ring
R.

On the other hand we call an overring S of a ring R a finite normal-
izing extension of R if there is a finite set {x,} such that § = Y% | Rz,
and Rz, = z,R for all . In this case the set {z;} is called a normalizing
base for S.

Generally a finite normalizing extension ring of a graded ring is not
a graded ring. But the following theorem shows that there exists a
graded ring which is a finite normalizing extension of a graded ring,

THEOREM1. Let R be a graded ring of type G and S be a finite
normalizing extension ring of R with normalizing base {z,}. If for every
14,7 £ njevery g,k € G, the product (Ryz,)(Riz,) is contained in
Sot=1 Reuze, and (3 Ryx,) N (3. Riz,) = {0} for g # k, then S is a
graded ring of type G.

Proof. Let Sy = }_ Ryz,. Then S is the direct sum of the family
of subgroups S, for S, NS¢ = {0} for ¢ # k. In fact every s in §
is of the form ryz; + ++- + rpz, for some r, € R and each r; has a
unique expression as a sum of homogeneous elements. On the other
hand S,S% C Sy for every g,k € G since (Ryzi {Rez;) C Y Rarze.

An example of a finite normalizing extension of a ring satisfying the
above conditions is a semigroup ring where the base semigroup is finite.
But the following corollary shows that there exist some others which
satisfy the above conditions.

COROLLARY 2. Let R be a graded ring of type G. If S is a finite
normalizing extension of R with normalizing base {z,} satisfying
(1) for every ¢ € G, Ryz, = iR, for all i
(2) for every i,j, zix, is contained in ) R.z;
(3) for every g,k € G, Y Ryz, N Y Ryz, = {0}

Proof. Since (Ryz,)(Riz,) C RgRrz,z; C Rgr ) Rewe C Y Rokze,
the conditions of corollary 2 satisfies the conditions of theorem 1.

An example of a finite normalizing extension satisfying the condition
of corollary 2 is a free liberal extension satisfying (2). The following
example shows that there are some other finite normalizing extension
rings satisfying the conditions of corollary 2 which are not semigroup
ring neither a free liberal extension.
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EXAMPLE 3. Let A be a graded ring of type G. Let R be the ring
of two by two diagonal matrices over A that is

(A 0 (10

R_(O A)and xl“(() 1)

(01 (0 0 (0 0
2=\o0 o Ta=11 o Tt=10 1

If we define S as S = Rxy + Rz2 + Rzs + Rx4 where the operation is
matrix multiplication, then S is the ring of two by two matrices over

A and a finite normalizing extension of R. Clearly R and S are graded
rings of type G where

- Ag 0 — Ag Ag
Rg_(o Ay)and Sg—(Ag Ay

But S is not liberal extension neither free. In fact

0 ri\ _ r; 0 r; 0y
(6 9)=(% 3)=#=(% 3)-

1
for (Tog :)2) € R,

g

0 0 rn 0 _
a.nd(o r2>$1+(’0 __r2)z4—~0foreveryr1,r2€A.

But S satisfies the conditions of corollary 2. In fact (Ryz2)(Riz3)
and (Ryz3)(Rrzo) are contained in Ry and S, N S = 0 for g # k.

01"3
0 O

In this paper we assume that R is a graded ring of type G and S is
a finite normalizing extension of R satisfying the conitions of corollary
2. At first we get the following propositions.

PROPOSITION 4.

(1) K I is a graded ideal of S, then I N R is a graded ideal of R.
(2) If I is a graded ideal of R, then ST is a graded left ideal of §
and SIS is a graded ideal of S.
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Proof. (1)For every a € I N R, a has a unique expression as a sum
of homogeneous components that is a = ag, + a4, + -+~ + @4, where
ag; € Sy,. Since a is contained in R each a,, is also contained in R and
contained in I for [ is a graded ideal.

(2) Clearly ST is aleft ideal of S. Soit is sufficient to show that every
homogeneous component of an element of SI is also contained in SI.
In fact > 2,a, = Ex,-(a;h +-- ~+a;’)where a, € I and a;l +--ay is
the sum of homogeneous components of a,. Since each g}, is contained
in I (I is a graded ideal) z,a}, is contained in SI for every : and g, in
G. So every homogeneous component of > z,a, in § is contained in

SI.

PROPOSITION 5. Let M be a graded left S-module and N be a
graded R-submodule of M, Let N* = {m € M | 2,m € M}. Then
N* js a graded R-submodule for every 1 £ i £ n.

Proof. At first we know that N* is an R-submodule for z,{(rm) =
(z.r)m = (r'a)m = r'(z,;m)N for every » € R and some r' € R.
Secondely let m € N* and m = my, +mgy, +- - -+my, wheremy, € M,,.
Then z,(mgy, +---+mg, } = z,my, +---+ z,my, is contained in N. But
each z;m, is a homogenious component of z,m in N. So each x,mg,
is contained in N for N is graded submodule. Thus mg, is in N™.

2. Essential Extension

In this section, we prove that a result of L.Soueif in a finite normal-
izing extension of a ring is also true in a graded ring case.

Recall that a graded submodule N is called a graded essential sub-
module of a graded module M if for every m € h(M), there exist some
a € h(R) such that am € N — {0} ( or equivalently for every graded
R-submodule K of M, K NN # {0} ). We denote N as gr-essential in
M. Generally if N is a gr-essential in M, then N is essential in M in
usulal meaning. But the converse is not true.

Also recall that a function f : M — N where both M and N are
graded R-modules, say M = @ M, and N = @ Ny, is called an R
gr-homomorphism if f = Y f,, where f,, is an R- homomorphism and
Jo:(My) C Nyg (we call fy, a graded morphism of degree g;). Immedi-
ately we know that the set of all R gr-homomorphisms Homp, (M, N)
is the direct sum of families of graded morphisms of degree g. In fact
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Hompgy, =P eq Homp(M, N); where the right hand side is the set of
all graded morphisms of degree g. Clearly Homp, (M, N) is a graded
abelian group of type G. Moreover we get the following lemma.

LEMMA 6. Let R be graded rings of type G and S be a finite nor-
malizing extension ring of R. If M is a graded right S5-module and an
R — 5 bimodule, then Hompg, (S, M) is a graded left S-module via
(sf)m = f(ms)

Proof. Let f € Homp, (M,N) and s € 5. At first we show that
sf is a sum of some graded morphisms of degree g/s. Let f = f,, +
fo2 + -+ fy, where fg is a gradeed morphism of degree g, and s =
Sky + 8k, +- - -+5k, Where sy, € S,. Since f(m) = f,,(m)+---+f,.(m)
for every m € M and (st +5t,+ -+ )f(m) = f(m(se, + - +s5,) =
sk f(m)+- -+, f(m), so sf = s, +8x, fo ++ -+ Sg - F sk, o, +
s+ 45k [y, Soit is sufficient to show that sy, fy; is a graded morphism
of degree k,g.. In fact (s¢, fg, my) = fo,(ngsk,) C My, 4, for every
9,9k, € G. Also it shows that SyHomp(M,N), is contained in
Homp(M, N)gi for every g,k € G.

Finally we get the following result.

PROPOSITION 7. If N is a graded R-module and M is a gr- essential
submodule of N, then Hompg_, (S, M) is a gr-essential submodule of
Hompg, (S, N} as a graded R-module. Consequently it is gr-essential
submodule as a graded S-module.

Proof. From above lemma we know that Homg,, (S, M) is a graded
left S-module and Hompg,, (S, N) is a graded submodule of Hompg,,
(S,M). Let 0 # f; € Homp(S,N). We want to show that there exist
some rx € Ry such that r % f, # 0 and (ri * fy)(z.) € M for every
z, where {z,} is a normalizing base for § over R. At first we can
show that f;(z1R) is a graded R-submodule of N. In fact Rf,;(z:R) =
fo(Rz1RR) C fyo(z1R) ( If R have an identity 1, then we assume
z; = 1 and clearly zf,(z,R) = f4(R)) and fy(z1r) = fo(za(ry, +
codrg, ) = folzarg, + -+ aary, ) = fy(zary, + - + 211y, ) implies
each homogenious component fo(x17y,) = fo(r}, z1) of fe(z1r) € Sy,
is contained in fy(z,R). Let Ly = {r € R | fo(x1r) € M} # 0 for
M is gr-essential in N. If f,(z1R) = 0, then clearly L; is R itself.
Secondly we also know that fy(z2L1) is a graded R-submodule of N
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and similarly L; is a graded left ideal of R since fy(z)(rg, +- +rg)) =
felzarg, ) + - + fg(z1rg, ) implies that fy(z17g,) is contained in M (
In fact each fy(z1rg, ) is homogenious component of an element of M).
Ly = {r € L1 | fo(z2r) € M} is a nonzero left graded ideal. By similar
method we can get L, = {r € L._, | fo{xnr) € M} which is 2 nonzero
graded left ideal of R. So for a homogenious component rj of r in Ly,
(re* fg)(z:) = fg(@7r) is contained in M and clearly ri * f, # 0. Thus
theorem is proved.
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