Pusan Kyöngnam Math. J. 10(1994), No. 1, pp 67-72

MONOTONICITY OF HYPERBOLIC CURVATURE

JONG SU AN AND TAI SUNG SONG

1. Introduction

Let Ω be a hyperbolic region in the complex plane \mathbb{C} and $K_{\Omega}(a, \gamma)$ denote the hyperbolic curvature of a C^2 curve γ in Ω at a point $a \in \gamma$. Flinn and Osgood [3] established a monotonicity property for the hyperbolic curvature. They proved that if Ω is a simply connected subregion of a simply connected hyperbolic region Δ , then for any C^2 curve γ in Ω

$$\max \left\{ K_{\Omega}\left(a,\gamma
ight) ,2
ight\} \leq\max \left\{ K_{\Delta}\left(a,\gamma
ight) ,2
ight\} .$$

They also showed that the monotonicity property would not extend to arbitrary hyperbolic regions.

In this paper we show that the conclusion of the Flinn-Osgood Monotonicity Theorem remains valid for arbitrary hyperbolic regions provided that the group homomorphism $g_* : \pi(\Omega, a) \to \pi(\Delta, a)$ induced by the inclusion mapping $g : \Omega \to \Delta$ is a monomorphism.

2. Universal covering projections

Let D be the open unit disk in the complex plane C. Suppose Ω is a hyperbolic region C and $a \in \Omega$. Then there exists a holomorphic universal covering projection $f : (D,0) \to (\Omega,a)$. This is called the General Riemann Mapping Theorem (see [1, p.142] or [2, p.39]); in case Ω is simply connected this is the Riemann Mapping Theorem. We shall need the following properties of a covering projection (see [4, Ch. 5] or [8, Ch. 3]).

Received March 17,1994

(1) Given any path γ in Ω with initial point *a*, there is a unique path $\tilde{\gamma}$ in *D* with initial point 0 such that $f \circ \tilde{\gamma} = \gamma$. The path $\tilde{\gamma}$ is called the lift of γ via f.

(2) Suppose γ_1, γ_2 are two paths in Ω from *a* to the common terminal point *b*. Let $\tilde{\gamma}_j$ be the unique lift of γ_j via *f* with initial point 0. Then $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ have the same terminal point if and only if γ_1 is homotopic to γ_2 in Ω with fixed end points.

(3) Suppose γ is a closed path in Ω based at a and $\tilde{\gamma}$ is the lift of γ via f with initial point 0. Then $\tilde{\gamma}$ is a closed path if and only if γ is null homotopic.

(4) If $g: (D,0) \to (\Omega,a)$ is any holomorphic function, then there is a unique holomorphic function $\tilde{g}: (D,0) \to (D,0)$ such that $f \circ \tilde{g} = g$. The function \tilde{g} is called the lift of g relative to f.

We briefly indicate the construction of \tilde{g} . For $\tilde{z} \in D$ let $\tilde{\gamma}$ be any path in D from 0 to \tilde{z} . Then $\gamma = g \circ \tilde{\gamma}$ is a path in Ω from a to $z = g(\tilde{z})$. Since f is a covering projection, there is a unique lift $\tilde{\delta}$ of γ in D via f with initial point 0. Let \tilde{w} be the terminal point of $\tilde{\delta}$. Then define $\tilde{g}(\tilde{z}) = \tilde{w}$. It remains to show that \tilde{g} is well-defined. Suppose $\tilde{\gamma}_1, \tilde{\gamma}_2$ are both paths in D from 0 to \tilde{z} . Then $\gamma_j = g \circ \tilde{\gamma}_j$ (j = 1, 2) are paths in Ω from a to z. Since D is simply connected, $\tilde{\gamma}_1$ is homotopic to $\tilde{\gamma}_2$ in D. It follows that γ_1 is homotopic to γ_2 in Ω . Let $\tilde{\delta}_j$ be the lift of γ_j via f with initial point 0. Then $\tilde{\delta}_1$ and $\tilde{\delta}_2$ have the same terminal point since γ_1 is homotopic to γ_2 . This proves that \tilde{g} is well-defined.

We shall employ this lifting property in the special case where $f : (D,0) \to (\Omega,a)$ and $h : (D,0) \to (\Delta,a)$ are covering projections, $\Omega \subset \Delta$ and $g : \Omega \to \Delta$ is the inclusion map. Then $g \circ f : (D,0) \to (\Delta,a)$ has a lift \tilde{g} via h.

The fundamental group of Ω with base point *a* will be denoted by $\pi(\Omega, a)$. For a closed path γ based at *a*, $[\gamma]$ is the homotopy class determined by γ . A continuous function $g: (\Omega, a) \to (\Delta, b)$ induces a group homomorphism $g_*: \pi(\Omega, a) \to \pi(\Delta, b)$ defined by $g_*([\gamma]) = [g \circ \gamma]$.

The following result is well known (see [6]). We include a proof for the convenience of the reader.

Theorem 1. Suppose Ω and Δ are hyperbolic regions in \mathbb{C} with $\Omega \subset \Delta$ and $a \in \Omega$. Let $g : \Omega \to \Delta$ be the inclusion map and $g_* : \pi(\Omega, a) \to \pi(\Delta, a)$ the induced group homomorphism. Assume that $f : (D, 0) \to (\Omega, a)$ and $h : (D, 0) \to (\Delta, a)$ are holomorphic universal covering projections. If g_* is a monomorphism, then there exists a conformal mapping \tilde{g} of (D, 0) into itself such that $f = g \circ f = h \circ \tilde{g}$.

Proof. We already know that a holomorphic function $\tilde{g}: (D,0) \to (D,0)$ exists such that $g \circ f = h \circ \tilde{g}$. All that remains is to show that \tilde{g} is one-to-one. Suppose $\tilde{z}_1, \tilde{z}_2 \in D, \tilde{z}_1 \neq \tilde{z}_2$ and $\tilde{g}(\tilde{z}_1) = \tilde{g}(\tilde{z}_2)$. Let $\tilde{\gamma}_j$ be the radial path in Ω from 0 to \tilde{z}_j (j = 1, 2). Then $\gamma_j = f \circ \tilde{\gamma}_j$ is a path in Ω from a to $f(\tilde{z}_j)$. Note that

$$f(\widetilde{z}_1) = h(\widetilde{g}(\widetilde{z}_1)) = h(\widetilde{g}(\widetilde{z}_2)) = f(\widetilde{z}_2),$$

so that γ_1, γ_2 both end at the same point. Because $\tilde{\gamma}_1, \tilde{\gamma}_2$ do not have the same endpoint but do have the same initial point, the paths γ_1, γ_2 are not homotopic in Ω . Hence, $[\gamma_1 * \gamma_2^{-1}]$ is nontrivial in $\pi(\Omega, a)$. Since g_* is a monomophism, we conclude that $[\gamma_1 * \gamma_2^{-1}]$ is also nontrivial in $\pi(\Delta, a)$, or γ_1 and γ_2 are not homotopic in Δ . If $\tilde{\delta}_j = \tilde{g} \circ \tilde{\gamma}_j$, then

$$h \circ \widetilde{\delta}_{j} = h \circ \widetilde{g} \circ \widetilde{\gamma}_{j} = f \circ \widetilde{\gamma}_{j} = \gamma_{j}$$

Thus, $\tilde{\delta}_j$ is a lift of γ_j via the covering $h: (D,0) \to (\Delta, a)$ and 0 is the initial point of $\tilde{\delta}_j$. Because γ_1 is not homotopic to γ_2 in Δ , it follows that $\tilde{\delta}_1$ and $\tilde{\delta}_2$ must have distinct endpoints. This contradicts the fact that both $\tilde{\delta}_1$ and $\tilde{\delta}_2$ end at $\tilde{g}(\tilde{z}_1) = \tilde{g}(\tilde{z}_2)$. This contradiction shows that \tilde{g} must be injective.

Remark. For multiply connected regions $\Omega \subset \Delta$ there is a simple geometric criterion for g_* to be a monomorphism. The condition is that every hole in Ω must contain at least one hole of Δ .

3. Hyperbolic curvature

We begin by recalling a few basic facts about the hyperbolic curvature. We refer the reader to [5], [6], and [7] for further details. Let $\lambda_{\Omega}(z) |dz|$ be the hyperbolic metric on the hyperbolic region Ω . If γ is a C^2 curve in a hyperbolic region Ω with parametrization z = z(t), then the hyperbolic curvature of γ at a point z = z(t) is given by

$$K_{\Omega}(z,\gamma) = \frac{1}{\lambda_{\Omega}(z)} \left[K_{e}(z,\gamma) + 2Im \left\{ \frac{\partial \log \lambda_{\Omega}(z)}{\partial z} \frac{z'(t)}{|z'(t)|} \right\} \right],$$

where

$$K_{e}(z,\gamma) = \frac{1}{\left|z'(t)\right|} Im\left\{\frac{z''(t)}{z'(t)}\right\}$$

denotes the euclidean curvature of γ at z = z(t). Because the hyperbolic metric is invariant under holomorphic covering projections, the same is true of the hyperbolic curvature. That is, $K_{\Omega}(z,\gamma) = K_{\Delta}(f(z), f \circ \gamma)$ if Ω and Δ are hyperbolic regions and $f: \Omega \to \Delta$ is a holomorphic covering projection of Ω onto Δ .

Lemma. Suppose Ω and Δ are hyperbolic simply connected regions in C. If g is a conformal mapping of Ω onto $g(\Omega) \subset \Delta$, then for any path γ in Ω

$$\max \left\{ K_{\Omega}\left(a,\gamma\right) ,2\right\} \leq \max \left\{ K_{\Delta}\left(g(a),g\circ\gamma\right) ,2\right\} .$$

Proof. Since the hyperbolic curvature is a conformal invariant,

$$K_{\Omega}(a,\gamma) = K_{g(\Omega)}(g(a), g \circ \gamma).$$

The Flinn-Osgood Monotonicity Theorem yields

$$\max\left\{K_{g(\Omega)}\left(g(a),g\circ\gamma\right),2\right\}\leq \max\left\{K_{\Delta}\left(g(a),g\circ\gamma\right),2\right\}$$

so this establishes the lemma.

We can now state our main result.

Theorem 2. Suppose Ω and Δ are hyperbolic regions, $\Omega \subset \Delta$ and $a \in \Omega$. If $g: \Omega \to \Delta$ is the inclusion map and $g_*: \pi(\Omega, a) \to \pi(\Delta, a)$ is a monomorphism, then for any path γ through a,

$$\max \left\{ K_{\Omega}\left(a,\gamma\right) ,2\right\} \leq\max \left\{ K_{\Delta}\left(a,\gamma\right) ,2\right\} .$$

Proof. We need only consider the case in which $K_{\Omega}(a, \gamma) \geq 2$. Let $f: (D,0) \to (\Omega,a)$ and $h: (D,0) \to (\Delta,a)$ be holomorphic universal covering projections. Since g_* is a monomorphism, it follows from Theorem 1 that there is a conformal mapping \tilde{g} of (D,0) into itself such that $g \circ f = h \circ \tilde{g}$. Let $\tilde{\gamma}$ be the lift of γ via f with initial point 0. Then $\overline{\delta} = \tilde{g} \circ \tilde{\gamma}$ is the lift of γ via h with initial point 0. The invariance of hyperbolic curvature under holomorphic coverings implies that

$$K_{\Omega}\left(a,\gamma
ight)=K_{D}\left(0,\widetilde{\gamma}
ight),\ K_{\Delta}\left(a,\gamma
ight)=K_{D}\left(0,\widetilde{\delta}
ight),$$

so it suffices to show that

$$K_D(0,\widetilde{\gamma}) \leq K_D(0,\widetilde{\delta}).$$

Since \tilde{g} is a conformal mapping of (D,0) into itself and $\tilde{g} \circ \tilde{\gamma} = \tilde{\delta}$, $K_D(0,\tilde{\gamma}) \geq 2$, this is a consequence of previous Lemma.

If Ω is a simply connected subregion of a hyperbolic region Δ , then $\pi(\Omega, a) = 1$ for each $a \in \Omega$. Hence the induced group homomorphism $g_* : \pi(\Omega, a) \to \pi(\Delta, a)$ is a monomorphism. Thus, we obtain the following result.

Corollary. Suppose Δ is a hyperbolic region in C and Ω is a simply connected subregion of Δ . If γ is a path in Ω , then for all $z \in \gamma$

$$\max \left\{ K_{\Omega}\left(z,\gamma
ight),2
ight\} \leq \max \left\{ K_{\Delta}\left(z,\gamma
ight),2
ight\} .$$

References

- 1. L. V. Ahlfors, Conformal invariants. Topics in geometric function theory, McGraw-Hill, New York, 1973.
- 2. S. D. Fisher, Function theory on planar domains. A second course in complex analysis, John Wiley & Sons, New York, 1983.
- 3. B. Flinn and B. Osgood, Hyperbolic curvature and conformal m_{ilj} ping, Bull. London Math. Soc. 18(1986), 272-276.
- 4. W. S. Massey, Algebraic topology. An introduction, Harcourt. Brace and World, New York, 1967.
- 5. D. Minda, Applications of hyperbolic convexity to euclidean and spherical convexity, J. Analyse Math. 49(1987), 90-105.
- 6. D. Minda, Hyperbolic curvature on Riemann surfaces, Complex Variables Theory Appl. 12(1989),1-8.
- 7. B. Osgood, Some properties of $\frac{f''}{f'}$ and the Poincaré metric, Indiana Univ. Math. J. 31(1982), 449-461.
- 8. I. M. Singer, Lecture notes on elementary topology and geometry. Scott, Foresman and company, Glenview, Illinois, 1967.

Department of Mathematics Pusan National University Pusan 609-735, Korea