MONOTONICITY OF HYPERBOLIC CURVATURE

Jong Su An and Tai Sung Song

1. Introduction

Let Ω be a hyperbolic region in the complex plane \mathbf{C} and $K_{\Omega}(a, \gamma)$ denote the hyperbolic curvature of a C^{2} curve γ in Ω at a point $a \in$ γ. Flinn and Osgood [3] established a monotonicity property for the hyperbolic curvature. They proved that if Ω is a simply connected subregion of a simply connected hyperbolic region Δ, then for any C^{2} curve γ in Ω

$$
\max \left\{K_{\Omega}(a, \gamma), 2\right\} \leq \max \left\{K_{\Delta}(a, \gamma), 2\right\} .
$$

They also showed that the monotonicity property would not extend to arbitrary hyperbolic regions.

In this paper we show that the conclusion of the Flinn-Osgood Monotonicity Theorem remains valid for arbitrary hyperbolic regions provided that the group homomorphism $g_{*}: \pi(\Omega, a) \rightarrow \pi(\Delta, a)$ induced by the inclusion mapping $g: \Omega \rightarrow \Delta$ is a monomorphism.

2. Universal covering projections

Let D be the open unit disk in the complex plane C. Suppose Ω is a hyperbolic region \mathbf{C} and $a \in \Omega$. Then there exists a holomorphic universal covering projection $f:(D, 0) \rightarrow(\Omega, a)$. This is called the General Riemann Mapping Theorem (see [1, p. 142] or [2, p. 39]); in case Ω is simply connected this is the Riemann Mapping Theorem. We shall need the following properties of a covering projection (see [4, Ch. $5]$ or [8, Ch. 3$]$).

[^0](1) Given any path γ in Ω with initial point a, there is a unique path $\widetilde{\gamma}$ in D with initial point 0 such that $f \circ \tilde{\gamma}=\gamma$. The path $\widetilde{\gamma}$ is called the lift of γ via f.
(2) Suppose γ_{1}, γ_{2} are two paths in Ω from a to the common terminal point b. Let $\widetilde{\gamma}$, be the unique lift of γ, via. f with initial point 0 . Then $\widetilde{\gamma}_{1}$ and $\widetilde{\gamma}_{2}$ have the same terminal point if and only if γ_{1} is homotopic to γ_{2} in Ω with fixed end points.
(3) Suppose γ is a closed path in Ω based at a and $\widetilde{\gamma}$ is the lift of γ via f with initial point 0 . Then $\tilde{\gamma}$ is a closed path if and only if γ is null homotopic.
(4) If $g:(D, 0) \rightarrow(\Omega, a)$ is any holomorphic function, then there is a unique holomorphic function $\tilde{g}:(D, 0) \rightarrow(D, 0)$ such that $f \circ \tilde{g}=g$. The function \tilde{g} is called the lift of g relative to f.

We briefly indicate the construction of \tilde{g}. For $\tilde{z} \in D$ let $\tilde{\gamma}$ be any path in D from 0 to \tilde{z}. Then $\gamma=g \circ \tilde{\gamma}$ is a path in Ω from a to $z=g(\tilde{z})$. Since f is a covering projection, there is a unique lift $\tilde{\delta}$ of γ in D via f with initial point 0 . Let \tilde{w} be the terminal point of $\widetilde{\delta}$. Then define $\tilde{g}(\tilde{z})=\widetilde{w}$. It remains to show that \tilde{g} is well-defined. Suppose $\widetilde{\gamma}_{1}, \widetilde{\gamma}_{2}$ are both paths in D from 0 to \tilde{z}. Then $\gamma_{j}=g \circ \tilde{\gamma}_{j}(j=1,2)$ are paths in Ω from a to z. Since D is simply connected, $\widetilde{\gamma}_{1}$ is homotopic to $\widetilde{\gamma}_{2}$ in D. It follows that γ_{1} is homotopic to γ_{2} in Ω. Let $\widetilde{\delta}_{j}$ be the lift of γ_{j} via f with initial point 0 . Then $\widetilde{\delta}_{1}$ and $\widetilde{\delta}_{2}$ have the same terminal point since γ_{1} is homotopic to γ_{2}. This proves that \tilde{g} is well-defined.

We shall employ this lifting property in the special case where f : $(D, 0) \rightarrow(\Omega, a)$ and $h:(D, 0) \rightarrow(\Delta, a)$ are covering projections, $\Omega \subset$ Δ and $g: \Omega \rightarrow \Delta$ is the inclusion map. Then $g \circ f:(D, 0) \rightarrow(\Delta, a)$ has a lift \tilde{g} via h.

The fundamental group of Ω with base point a will be denoted by $\pi(\Omega, a)$. For a closed path γ based at $a,[\gamma]$ is the homotopy class determined by γ. A continuous function $g:(\Omega, a) \rightarrow(\Delta, b)$ induces a group homomorphism $g_{*}: \pi(\Omega, a) \rightarrow \pi(\Delta, b)$ defined by $g_{*}([\gamma])=$ $[g \circ \gamma]$.

The following result is well known (see [6]). We include a proof for the convenience of the reader.

Theorem 1. Suppose Ω and Δ are hyperbolic regions in \mathbf{C} with $\Omega \subset \Delta$ and $a \in \Omega$. Let $g: \Omega \rightarrow \Delta$ be the inclusion map and g_{*} : $\pi(\Omega, a) \rightarrow \pi(\Delta, a)$ the induced group homomorphism. Assume that $f:(D, 0) \rightarrow(\Omega, a)$ and $h:(D, 0) \rightarrow(\Delta, a)$ are holomorphic universal covering projections. If g_{*} is a monomorphism, then there exists a conformal mapping \tilde{g} of $(D, 0)$ into itself such that $f=g \circ f=h \circ \tilde{g}$.

Proof. We already know that a holomorphic function $\tilde{g}:(D, 0) \rightarrow$ $(D, 0)$ exists such that $g \circ f=h \circ \tilde{g}$. All that remains is to show that \tilde{g} is one-to-one. Suppose $\widetilde{z}_{1}, \widetilde{z}_{2} \in D, \widetilde{z}_{1} \neq \widetilde{z}_{2}$ and $\widetilde{g}\left(\widetilde{z}_{1}\right)=\tilde{g}\left(\widetilde{z}_{2}\right)$. Let $\widetilde{\gamma}_{3}$ be the radial path in Ω from 0 to $\widetilde{z}_{j}(j=1,2)$. Then $\gamma_{j}=f \circ \tilde{\gamma}_{j}$ is a path in Ω from a to $f\left(\widetilde{z}_{j}\right)$. Note that

$$
f\left(\tilde{z}_{1}\right)=h\left(\widetilde{g}\left(\widetilde{z}_{1}\right)\right)=h\left(\widetilde{g}\left(\tilde{z}_{2}\right)\right)=f\left(\tilde{z}_{2}\right),
$$

so that γ_{1}, γ_{2} both end at the same point. Because $\widetilde{\gamma}_{1}, \widetilde{\gamma}_{2}$ do not have the same endpoint but do have the same initial point, the paths γ_{1}, γ_{2} are not homotopic in Ω. Hence, $\left[\gamma_{1} * \gamma_{2}^{-1}\right]$ is nontrivial in $\pi(\Omega, a)$. Since g_{*} is a monomophism, we conclude that $\left[\gamma_{1} * \gamma_{2}^{-1}\right]$ is also nontrivial in $\pi(\Delta, a)$, or γ_{1} and γ_{2} are not homotopic in Δ. If $\widetilde{\delta}_{j}=\widetilde{g} \circ \widetilde{\gamma}_{3}$, then

$$
h \circ \tilde{\delta}_{j}=h \circ \tilde{g}_{g} \circ \tilde{\gamma}_{J}=f \circ \tilde{\gamma}_{j}=\gamma_{j} .
$$

Thus, $\widetilde{\delta}_{j}$ is a lift of γ, via the covering $h:(D, 0) \rightarrow(\Delta, a)$ and 0 is the initial point of $\tilde{\delta}_{3}$. Because γ_{1} is not homotopic to γ_{2} in Δ, it follows that $\widetilde{\delta}_{1}$ and $\widetilde{\delta}_{2}$ must have distinct endpoints. This contradicts the fact that both $\widetilde{\delta}_{1}$ and $\widetilde{\delta}_{2}$ end at $\tilde{g}\left(\widetilde{z}_{1}\right)=\widetilde{g}\left(\tilde{z}_{2}\right)$. This contradiction shows that \tilde{g} must be injective.

Remark. For multiply connected regions $\Omega \subset \Delta$ there is a simple geometric criterion for g_{*} to be a monomorphism. The condition is that every hole in Ω must contain at least one hole of Δ.

3. Hyperbolic curvature

We begin by recalling a few basic facts about the hyperbolic curvature. We refer the reader to $[5],[6]$, and [7] for further details. Let $\lambda_{\Omega}(z)|d z|$ be the hyperbolic metric on the hyperbolic region Ω. If γ is a C^{2} curve in a hyperbolic region Ω with parametrization $z=z(t)$, then the hyperbolic curvature of γ at a point $z=z(t)$ is given by

$$
K_{\Omega}(z, \gamma)=\frac{1}{\lambda_{\Omega}(z)}\left[K_{\mathrm{e}}(z, \gamma)+2 \operatorname{Im}\left\{\frac{\partial \log \lambda_{\Omega}(z)}{\partial z} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\}\right]
$$

where

$$
K_{e}(z, \gamma)=\frac{1}{\left|z^{\prime}(t)\right|} \operatorname{Im}\left\{\frac{z^{\prime \prime}(t)}{z^{\prime}(t)}\right\}
$$

denotes the euclidean curvature of γ at $z=z(t)$. Because the hyperbolic metric is invariant under holomorphic covering projections, the same is true of the hyperbolic curvature. That is, $K_{\Omega}(z, \gamma)=$ $K_{\Delta}(f(z), f \circ \gamma)$ if Ω and Δ are hyperbolic regions and $f: \Omega \rightarrow \Delta$ is a holomorphic covering projection of Ω onto Δ.

Lemma. Suppose Ω and Δ are hyperbolac simply connected regions in \mathbf{C}. If g is a conformal mapping of Ω onto $g(\Omega) \subset \Delta$, then for any path γ in Ω

$$
\max \left\{K_{\Omega}(a, \gamma), 2\right\} \leq \max \left\{K_{\Delta}(g(a), g \circ \gamma), 2\right\}
$$

Proof. Since the hyperbolic curvature is a conformal invariant,

$$
K_{\Omega}(a, \gamma)=K_{g(\Omega)}(g(a), g \circ \gamma) .
$$

The Flinn-Osgood Monotonicity Theorem yields

$$
\max \left\{K_{g(\Omega)}(g(a), g \circ \gamma), 2\right\} \leq \max \left\{K_{\Delta}(g(a), g \circ \gamma), 2\right\}
$$

so this establishes the lemma.

We can now state our main result.

Theorem 2. Suppose Ω and Δ are hyperbolic regions, $\Omega \subset \Delta$ and $a \in \Omega$. If $g: \Omega \rightarrow \Delta$ is the inclusion map and $g_{*}: \pi(\Omega, a) \rightarrow \pi(\Delta, a)$ is a monomorphism, then for any path γ through a,

$$
\max \left\{K_{\Omega}(a, \gamma), 2\right\} \leq \max \left\{K_{\Delta}(a, \gamma), 2\right\} .
$$

Proof. We need only consider the case in which $K_{\Omega}(a, \gamma) \geq 2$. Let $f:(D, 0) \rightarrow(\Omega, a)$ and $h:(D, 0) \rightarrow(\Delta, a)$ be holomorphic universal covering projections. Since g_{*} is a monomorphism, it follows from Theorem 1 that there is a conformal mapping \tilde{g} of $(D, 0)$ into itself such that $g \circ f=h \circ \widetilde{g}$. Let $\tilde{\gamma}$ be the lift of γ via f with initial point 0 . Then $\bar{\delta}=\widetilde{g} \circ \widetilde{\gamma}$ is the lift of γ via h with initial point 0 . The invariance of hyperbolic curvature under holomorphic coverings implies that

$$
K_{\Omega}(a, \gamma)=K_{D}(0, \widetilde{\gamma}), K_{\Delta}(a, \gamma)=K_{D}(0, \tilde{\delta})
$$

so it suffices to show that

$$
K_{D}(0, \tilde{\gamma}) \leq K_{D}(0, \tilde{\delta})
$$

Since \widetilde{g} is a conformal mapping of ($D, 0$) into itself and $\widetilde{g} \circ \widetilde{\gamma}=\widetilde{\delta}$, $K_{D}(0, \widetilde{\gamma}) \geq 2$, this is a consequence of previous Lemma.

If Ω is a simply connected subregion of a hyperbolic region Δ, then $\pi(\Omega, a)=1$ for each $a \in \Omega$. Hence the induced group homomorphism $g_{*}: \pi(\Omega, a) \rightarrow \pi(\Delta, a)$ is a monomorphism. Thus, we obtain the following result.

Corollary. Suppose Δ is a hyperbolic region in C and Ω is a simply connected subregion of Δ. If γ is a path in Ω, then for all $z \in \gamma$

$$
\max \left\{K_{\Omega}(z, \gamma), 2\right\} \leq \max \left\{K_{\Delta}(z, \gamma), 2\right\}
$$

References

1. L. V. Ablfors, Conformal invariants. Topics in geometric function theory, McGraw-Hill, New York, 1973.
2. S. D. Fisher, Function theory on planar domains. A second conts. in complex analysis, John Wiley \& Sons, New York, 1983.
3. B. Flinn and B. Osgood, Hyperbolic curvature and conformal miti ping, Buil. London Math. Soc. 18(1986), 272-276.
4 . W. S. Massey, Algebraic topology. An introduction, Harcourt. Brace and World, New York, 1967.
4. D. Minda, Applications of hyperbolic convexity to euclidean and spherical convexity, J. Analyse Math. 49(1987), 90-105.
6 . D. Minda, Hyperbolic curvature on Riemann surfaces, Comptex Variables Theory Appl. 12(1989),1-8.
7 . B. Osgood, Some properties of $\frac{f^{\prime \prime}}{f^{\prime}}$ and the Poincaré metric, In ìiana Univ. Math. J. 31(1982), 449-461.
8 . I. M. Singer, Lecture notes on elementary topology and geometry Scott, Foresman and company, Glenview, Illinois, 1967.

Department of Mathematics
Pusan National University
Pusan 609-735, Korea

[^0]: Received March 17,1994

