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REAL HYPERSURFACES OF TYPE A
IN A COMPLEX SPACE FORM
IN TERMS OF RICCI TENSORS

YONG-S500 PYo AND SEUNG-KOOK LEE

§1. Introduction.

A complex n-dimensional Kihler manifold of constant holomorphic
sectional curvature ¢ is called a complez space form, which is denoted by
M,(c). A complete and simply connected complex space form consists
of a complex projective space P,C, a complex Euclidean space C* or
a complex hyperbolic space H,,C, according as ¢ > 0,c =0 or ¢ < 0.

In his study of real hypersurfaces of P,C, Takagi [9] classified all
homogeneous real hypersurfaces and Cecil and Ryan [3] showed also
that they are realized as the tubes of constant radius over Kéhler sub-
manifolds if the structure vector field ¢ is principal. Real hypersurfaces
of H,C have also investigated by Berndt [2], Montiel [5], Montiel and
Romero [6] and so on, and Berndt {2] classified all homogeneous real
hypersurfaces of H,,C and showed that they are realized as the tubes of
constant radius over certain submanifolds. According to Takagi’s clas-
sification theorem and Berndt’s one, the principal curvatures and their
multiplicities of homogeneous real hypersurfaces of My(c) are given.

Now, let M be a real hypersurface of M, (c),c # 0. Then M has
an almost contact metric structure (¢, ¢, 7, ¢) induced from the Kéhler
metric and the almost complex structure of M,(¢). We denote by A
the shape operator in the direction of the unit normal on M. Then
Okumura [7] and Montiel and Romero [6] proved the following

THEOREM A. Let M be a real hypersurface of P,C,n 2 2. I it
satisfies

(1.1) Ap— pA =0,
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then M is locally a tube of radius r over one of the following Kahler
submanifolds:

(A1) a hyperplane P,_1C, where 0 <1 < 7/2,
(A2) a totally geodesic PrC (1 S kS n— 2), where 0 <r <«/2.

THEOREM B.  Let M be a real hypersurface of H,C,n 2 2. K it
satisfies (1.1), then M is Jocally one of the following hypersurfaces:

(Ao) a horosphere in H,C, i.e., a Montiel tube,

{A;) a tube of a totally geodesic hyperplane H,_,C,

(Az2) a tube of a totally geodesic HxC (1 £ k £ n —2).

Such real hypersurfaces in Theorems A and B are said to be of type
A. Let T, be a distribution defined by the subspace To(z) = {u €
T. M : g(u,é(x)) = 0} of the tangent space ToM of M at any point
z, which is called the holomorphic distribution. The second funda-
mental form is said to be n-parallel if the shape operator A satisfies
9(VxA(Y),Z) = 0 for any vector fields X,Y and Z in Tp, where Vx A
denotes the covariant derivative of the shape operator A with respect
to X. Then the following is recently proved by Ahn, Lee and Suh [1).

THEOREM C. Let M be a real hypersurface of Mp(c),c # 0,n 2
3. Assume that the structure vector field £ is not principal. Then it
satisfies

(1.2) 9((44 — pAX,Y) = 0

for any vector fields X and Y in Ty and the second fundamental form
is n-parallel if and only if M is locally a ruled real hypersurface.

On the other hand, Kimura and Maeda [4] and Suh {8] classified real
hypersurfaces in M, (c),c # 0,n 2 2 which satisfy the conditions that
¢ is principal and the Ricci tensor is 5-parallel.

The purpose of this article is to characterize real hypersurfaces of
type A in My(c), ¢ # 0 for the Ricci tensor in spite of the shape operator
and to prove the following

THEOREM. Let M be a real hypersurface of Mu(c),¢ # 0,n 2 2.
If it satisfies (1.2) and if the Ricci tensor S is n-parallel, then M is of
type A.
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§2. Preliminaries

First of all, we recall fundamental properties of real hypersurfaces
of a complex space form. Let M be a real hypersurface of a complex
n-dimensional complex space form (My(c), ) of constant holomorphic
sectional curvature ¢, and let C' be a unit normal vector field on a
neighborhood in M. We denote by J the almost complex structure of
M (c). For alocal vector field X on the neighborhood in M, the images
of X and C under the linear transformation J can be represented as

JX =¢X +9(X)C, JC = -

where ¢ defines a skew-symmetric transformation on the tangent bun-
dle TM of M, while n and ¢ denote a 1-form and a vector field on the
neighborhood in M, respectively. Then it is seen that ¢{{, X ) = n(X),
where ¢ denotes the Riemannian metric tensor on M induced from
the metric tensor § on M,(c). The set of tensors (¢,£,%,9) is called
an almost contact meiric siructure on M. They satisfy the following
properties:

¢2=—I+ﬂ®£s ¢§:‘07 77(6)':11

where I denotes the identity transformation. Furthermore, the covari-
ant derivatives of the structure tensors are given by

(2.1)  Vxt=¢AX, Vxp(Y)=g(Y)AX — g(AX,Y)E

for any vector fields X and Y on M, where V is the Riemannian con-

nection on M and A denotes the shape operator of M in the direction
of C.

Since the ambient space is of constant holomorphic sectional curva-
ture ¢, the equations of Gauss and Codazzi are respectively obtained

R(X,Y)Z = Z{g(Y,2)X - 9(X, Z)Y

+9(AY, Z2)AX — ¢(AX, Z)AY,

(2.3) VxA(Y) = VyA(X) = 2{n(X)$Y —n(V)$X —29($X, Y )¢},
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where R denotes the Riemannian curvature tensor of M and Vx4

denotes the covariant derivative of the shape operator A with respect
to X.

Now, we here calculate the covariant derivative of the Ricci tensor
S. Since the Ricci tensor § is given by

S= -Z—{(2n+ VI -3n®¢} + hA— A
for the identity transformation I and the trace h of A,

VxS(¥) =~ 3eg($AX, Y )¢ + dh(X)AY
+ AV XA(Y) — VxA(AY) — AVXAY),

from which it turns out to be

9(VxS(Y), Z) =dh(X)g(AY, Z) + hg(Vx A(Y), Z)

(24) ~ g(VxA(Y),AZ) — g(Vx A(Z), AY)

for any vector fields X,Y and Z in Tp.

The Ricci tensor S is said to be n-parallelif if satisfies g(VxS(Y'), Z)
= () for any vector fields X,Y and Z in Tj. It follows that if £ is
principal and if the second fundamental form is n-parallel, then S is
also n-parallel by (2.4). (See [4] and (8].)
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§3. Proof of Theorem.

Let M be a real hypersurface of M, (c),¢ # 0,n 2 2 and assume
that the Ricci tensor S is n-parallel. Namely, we assume that

(3.1) d(VxS(Y),2)=0, X,Y,Z €T,

Suppose that the structure vector field £ is not principal. We put
A = af + pU, where U is a unit vector field in the holomorphic
distribution T3, and o and # are smooth functions on M. Then it
means that the function § does not vanish identically on M. We denote
by M, the non-empty open subset of M consisting of points = at which
B(z) # 0. Hereafter unless otherwise stated, we shall discuss on the
subset My of M. We here assume the following condition:

(1.2) 9((Ad - 94)X,Y) =0, XY eTh.
By the above assumption, it turns out to be
(32) (A¢' - ¢A)X = "ﬂg(Xv ¢U)§$ Xe TO'

Making use of this property, we have
o(VxA(Y ), A9Z) + ¢(Vx A($Y), AZ)
(3.3) =g(VxA(Y),$AZ) — Bg(Z,¢U)g(Vx A(Y),£)
+9(VxA((AZ)o), Y ) + Bg(Z, U)g(Vx A(E), ¢Y)

for any vector fields X,Y and Z in Tj, where (AZ)o denotes the Tp-
component of AZ. Furthermore, by the form Af = af + BU, we get

9d(VxAY),¢Z) + g(Vx A(Z),¢Y)
(3.4) =f{g(Y,U)g9(AX,Z) + g(Z,U)g(AX,Y')
- Q(Y) ¢U)g(¢A—X: Z) - g(za ¢U)g(¢AXa Y)}

for any vector fields X,Y and Z in T,. Hence the equation (3.3) is
reformed as
(3.5)

9(VxA(Y),A4Z)+ g(Vx A($Y ), AZ)

=p{g(Y,U)g(AX,AZ) + g(AZ,U)g(AX,Y)
— (Y, ¢U)g($AX, AZ) — g(AZ,¢U)g($AX,Y)
- B*9(X,U)g(Y,U)g(Z,U) + 9(2,U)g(Vx A($Y ), £)
- 9(Z,4U)9(VxA(Y), 6)}-
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On the other hand, we have by (1.2) and (2.4)

9(Vx5(Y),82) +9(Vx5(Z), ¢Y)
=h{g(VxA(Y),4Z) + 9(Vx A(Z),¢Y )}
—9(VxA(Y),A¢Z) — o(Vx A($Y ), AZ)
- 9(VxA(Z), AdY) — 9(Vx A(¢$2), AY ).

for any vector fields X, ¥ and Z in Typ. From (3.4), (3.5) and the
above equation, we obtain

9(VxS(Y)$Z) + g(Vx$8(2),4Y)
= BI{g(Y,U)g(AX,Z) + 9(Z,U)g(AX,Y)

— g(Y, ¢U)g($AX, Z) — 9(Z,¢U)g(4AX,Y)}
—g(Y,U)g(AX,AZ) — g(AZ,U)g(AX,Y)
+9(Y, dU)g($AX,AZ) + 9(AZ, U )g($AX,Y)
—g(Z, U)g(AX,AY) — g(AY, U)Q(AX: Z)
+9(Z, $U)g($AX, AY) + g(AY, ¢U)g(¢AX, Z)
-9(Y,U)g(VxA($2),£) — 9(Z,U)9(Vx A($Y),£)
+9(Y, ¢U)g(Vx A(Z),&) + 9(Z, ¢U)g(Vx A(Y ), £)
+28%9(X,U)g(Y,U)g(2,U))

(3.6)

for any vector fields X, Y and Z in Ty.
Next, taking account of (1.2) and the first equation of (2.1), we have

g(VxA(Y), 5) = ag(gﬁAX, Y) - 9(¢AX1 A'Y)

(3.7) +dB(X)g(Y,U) + Be(VxU,Y),

and hence, by the property of the structure tensor ¢ , we get also

g(vXA(¢Y)a£) xOfg'(A--‘Xv Y) - g(AX: AY) + ﬂzg(xv U)g(Y1 U)
—dp(X)g(Y,¢U) + Bg(VxU, ¢Y)

for any vector fields X and Y in Ty. By substituting the above two
equations into (3.6) and by the assumption (3.1), it follows that the
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shape operator A satisfies

(h— a){g(Y,U)g(AX, Z) + 9(Z,U)g(AX,Y)
—9(Y,¢U)g(9AX, Z) — 9(Z,4U)g9($AX,Y )}
—g(AY,U)g(AX,Z) ~ g(AZ,U)g(AX,Y)
+9(AY, ¢U)g(pAX, Z) + g(AZ,¢U)g(¢AX,Y)
+2dB(XHg(Y, U)g(Z, U + 9(Z,U)g(Y, $U)}
~Ble(Y, U)g(VxU,$2) + g(Z,U)9(Vx U, 4¢Y)

~ (Y, oU)g(VxU, Z) — 9(Z,¢U)g(VxU,Y)}
=0

(3.8)

for any vector fields X, Y and Z in Tj.
If n=2, then we can put
AU = BE+ U + 64U, A¢U = 86U +e4U,

where v, 6 and ¢ are smooth functions on M. Since A¢U = AU by
(3.2), we get

(3.9) =0, 7=c.
Next, we suppose that n 2 3 and let T} be a distribution defined
by the subspace Ti(z) = {u € To(z) : ¢(u,U(z)) = g(u, ¢U(z)) = 0}

of the tangent space T,M at z. Taking X in Ty and Y = Z in T} in
(3.8), we have

g(AY,U)g(AX,Y) — g(AY,¢U)g(¢AX,Y) = 0.
Accordingly we get
(3.10) g(AY, U)AY + g(AY,dU)A¢Y =0, Y € Ti,
where we have used that g(AY,{) = 0 and g(4¢Y,€) = 0. Since
AU = ¢AU, g(AU,¢U) = 0 and hence the vector field AU can be

decomposed into

(3.11) AU = BE+~U + Uy,
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where U is a unit vector field in 7}, and v and &' are both smooth

functions on Mp. Let M, be the subset of My consisting of points =

at which 8'(z) # 0. Suppose that M is not empty. By the forms

AU = B€ +~U + §'Uy and AU = v¢U + §'¢U, we have by (3.10)
g(Y,U0)AY +g¢(Y,¢U1)A¢Y =0, Y €Ty

on My, which means that it satisfies AU; = 0 and hence §' = 0 by
(8.11), a contradiction. Thus we get

& = 0.

According to (3.9) and the above equation, we have

Af = of + AU,
AU = B¢ +1U,
AU = y¢U.

Hence we get by (3.8)

(h~a~1){g(Y,U)(4X,Z) + 9(Z2,U)g(AX.Y)

— g(Y,¢U)g($AX, Z) — g(Z, $U)g($AX,Y')}
+2dB(X){g(Y, U)g(Z,4U) + ¢(Z,U)g(Y, 6U)}
—B8{9(Y,U)g(VxU,9$2Z)+ 9(Z,U)g(VxU,$Y)

~ g(Y,0U)9(VxU, Z) - g(Z,$U)g9(VxU,Y)}

=0

(3.12)

for any vector fields X,Y and Z in 75. Putting Y = Z = U in this
equation, we have

ﬂg(VXU, ¢U) = 7(}" —a-— 7)9(}(1 U)1 X € To.
Again, putting Y = U and Z = ¢U in (3.12), we get

(3.13) df(X) = ~v{h - a—v)9(X,¢U), X €Ts.
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In the case where Y = U and Z in Tj in (3.12), the above two equations
give us

Ba(VxU,¢Z) = (h —a—7){9(AX,Z) — v9(X, $U)g(Z, U )}
for any vector fields X and Z in Ty. Hence we obtain
(3.14) BVxU = Byg(X, U + (h — o — yH{SAX + v¢(X, ¢U)U}

for any vector field X in Tp. Substituting (3.13) and (3.14) into (3.7),
we get

9(VxA(Y),€) = (h —7)9(dAX,Y) — g(A4AX,Y), XY €T
Accordingly we obtain by (2.3)
(3.15) 9(VeA(X),Y) = (h-7)9($AX,Y)~g(APAX,Y )+ Z9(6X.Y)

for any vector fields X and ¥ in Tp. Putting X = U and ¥ = ¢U in
this equation, we get

c
§ —(h—21) - £ =0,

where we have used that g(V¢A(U), ¢U) = 2. Again, putting X = ¢U
and Y = U in (3.15), we have

[
B +y(h—2m)+ 7 =0

Combining the above two equations, we get § = 0, a contradiction.
Accordingly ¢ is principal and hence A¢ — ¢A = 0 by (1.2). This
completes the proof by Theorems A and B.

REMARK. If M is a real hypersurface of type A in My(c),c #
0,7 2 2, then it satisfies Ap — ¢A = 0 and S is n-parallel.(See [4] and
[8].) Accordingly the converse of Theorem holds.
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