Pusan Kyŏngnam Math J. 10(1994), No. 1, pp. 21-23

ON A FIXED POINT THEOREM OF SOM-MUKHERJEE

SANG CHUL LEE

1. INTRODUCTION AND MAIN RESULTS

In [4] Som-Mukherjee gives the following definition.

DEFINITION 1. Let X be an arbitrary set and Y any metric linear space. F is called a fuzzy mapping iff F is a mapping from the set X into W(Y), where W(Y) denotes the collection of all fuzzy sets A in Y such that (i) A_{α} is compact and convex in Y for each $\alpha \in [0.1]$ and (ii) $\sup_{y \in Y} A(y) = 1$, where $A_{\alpha} = \{x : A(x) \ge \alpha\}$ if $\alpha \in (0, 1]$ and $A_0 = \{x : A(x) > 0\}$ the closure of $\{x : A(x) > 0\}$.

DEFINITION 2. Let (X, d) be a metric linear space. A fuzzy mapping $F : X \to W(X)$ is nonexpansive if $D(F(x), F(y)) \leq d(x, y)$ for all $x, y \in X$.

DEFINITION 3. Let (X,d) be a metric space, $A, B \in W(X)$ and $\alpha \in [0,1]$, then we define

$$p_{\alpha}(A,B) = \inf_{x \in A_{\alpha}, y \in B_{\alpha}} d(x,y)$$
$$D_{\alpha}(A,B) = H(A_{\alpha}, B_{\alpha})$$

where H is the Hausdorff distance, and $D(A, B) = \sup_{\alpha} D_{\alpha}(A, B)$.

Received February 3,1994

LEMMA 4[3]. Let (X, d) be a complete metric linear space, $F : X \to W(X)$ a fuzzy mapping and $x \in X$. Then there exists $\{u_x\} \in X$ such that $u_x \subset F(x)$.

LEMMA 5. Let X be a set, $x \in X, A \in W(X)$, and $\{x\}$ a fuzzy set with membership function equal to a characteristic function of the set $\{x\}$. Then $\{x\} \subset A$ if and only if $p_{\alpha}(x, A) = 0$ for each $\alpha \in [0, 1]$.

LEMMA 6. Let (X,d) be a metric space, then $p_{\alpha}(x,A) \leq d(x,y) + p_{\alpha}(y,A)$ for any $x, y \in X$.

LEMMA 7. Let (X,d) be a metric space. If $\{x_0\} \subset A$, then $p_{\alpha}(x_0, B)$ $\leq D_{\alpha}(A, B)$ for each $B \in W(X)$

The following Theorem due to Som-Mukherjee[3] is proved by the Lemmas 5, 6 and 7.

THEOREM 8. Let X be a compact metric linear space. If $F: X \to W(X)$ is a nonexpansive mapping, then there exists a $x_0 \in X$ such that $x_0 \subset F(x_0)$.

Proof. Choose a sequence $(x_n)_{n=1}^{\infty}$ in X such that $\{x_0\} \subset F(x_0)$ inductively. Then we can choose a convergent subsequence of $(x_n)_{n=1}^{\infty}$. Denote this subsequence $(x_n)_{n=1}^{\infty}$ again and $\lim_{n\to\infty} x_n = x_0$. So

$$P_{\alpha}(x_{0}, F(x_{0})) \leq d(x_{0}, x_{n+1}) + P_{\alpha}(x_{n+1}, F(x_{0}))$$

$$\leq d(x_{0}, x_{n+1}) + D_{\alpha}(F(x_{n}), F(x_{0}))$$

$$\leq d(x_{0}, x_{n+1}) + D(F(x_{n}), F(x_{0}))$$

$$\leq d(x_{0}, x_{n+1}) + d(x_{n}, x_{0})$$

$$\to 0 \text{ as } n \to \infty$$

for each $\alpha \in [0, 1]$.

Hence $P_{\alpha}(x_0, F(x_0)) = 0$ for each $\alpha \in [0, 1]$. This implies that $\{x_0\} \subset F(x_0)$.

COROLLARY 5. Let $(X, \|\cdot\|)$ be a compact normed vector space and $F: X \to W(X)$ a fuzzy mapping satisfying $D(F(x), F(y)) \leq \|x - y\|$. Then there exists a $z \in X$ such that $\{z\} \subset F(z)$.

COROLLARY 6[1]. Let X be a compact subset of a Banach space X. If F is a fuzzy mapping of K into W(K) satisfying $D(F(x), F(y)) \le ||x - y||$, then there exists a point $z \in K$ such that $\{z\} \subset F(z)$.

Reference

- BOSE, R. K. and Sahani, D., Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems 21(1987) 53-58.
- Heilpeen S., Fuzzy mappings and fized point theorem, J. Math. Anal. Appl. 83(1981) 566-569.
- 3. LEE, B. S. and CHO, S. J., A fixed point theorem for contractivetype fuzzy mappings, Fuzzy Sets and Systems 61(1994).
- SOM, T. and MUKHERJEE, R. N., Some fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems 33 (1989) 213-219.

Department of Mathematics Kyungsung University Pusan 608-736, Korea