Pusan Kyŏngnam Math. J. 10(1994), No. 1, pp. 9-19

ON A PROBLEM OF G-PART OF BCI-ALGEBRAS

Jie Meng*, Young Bae Jun** and Eun Hwan Roh**

In this note, we first give a positive answer of the following open problem in [5]:

Does the inverse of $[5$; Theorem 10] hold?
Next, for any subalgebra S of a BCI-algebra X, we obtain a number of statements, each of which is equivalent to that

$$
L(S)=\{x \in S: x=0 *(0 * x)\}
$$

is an ideal of X. Finally, we give some of other characterizations of KL-product BCI-algebras as a complement of [6] and [8].

The set $L(X)$ of all atoms in a BCI-algebra X is a p-semisimple subalgebra of X; hence it is said to be p-semisimple part of X. But it, in general, may not be an ideal of X. W. P. Huang [2] and J. Meng and X. L. Xin [8] considered the question that in order that $L(X)$ is an ideal of X, what condition does X satisfy? To be motivated by [2], Y. B. Jun and E. H. Roh [5] investigated the G-part of a BCI-algebra X and proved the following.
"Theorem 10". If S is a subalgebra of X and $G(S)=\{x \in S$: $0 * x=x\}$ an ideal of X, then for any $x, y \in B(X)$ and for any $a, b \in G(S)$,

$$
x * a=y * b \text { implies } x=y \text { and } a=b .
$$

In [5], they posed the open problem:
(JR) Does the inverse of "Theorem 10 " hold?
In this note, one of our mainly aims is to give a positive answer to this problem. Following the idea of [5] we will also discuss that for a subalgebra S of X, what is the condition under which

$$
L(S)=\{x \in S: x=0 *(0 * x)\}
$$

is an ideal of X ?
Throughout this paper, X will always mean a BCI -algebra without further explanation. We need to review some definitions and results for the development of this paper.

By a BCl -algebra we mean an abstract algebra ($X ; *, 0$) of type $(2,0)$ satisfying the following conditions:

BCI-1 $((x * y) *(x * z)) *(z * y)=0$;
BCI-2 $(x *(x * y)) * y=0$;
BCI-3 $x * x=0$;
BCI-4 $x * y=0$ and $y * x=0$ imply $x=y$.
A BCI-algebra X satisfying
BCK-5 $0 * x=0$ for all x in X
is said to be a BCK-algebra.
In a BCI-algebra X we can define an ordering relation \leq by putting $x \leq y$ if and only if $x * y=0$.

For a BCI-algebra X we have
(1) $x * 0=x$,
(2) $(x * y) * z=(x * z) * y$,
(3) $((x * z) *(y * z)) *(x * y)=0$,
(4) $0 *(x * y)=(0 * x) *(0 * y)$.

In this note, we would use these results at several different occasions, however, we would not mention them explicity.

A BCI-algebra X is said to be associative ([1]) if it satisfies
(5) $(x * y) * z=x *(y * z)$.

In an associative BCI-algebra, the following identities hold:
(6) $0 * x=x$,
(7) $x * y=y * x$.

The set $B(X)=\{x \in X: 0 * x=0\}$ is called the BCK-part of X; clearly, $0 \in B(X)$ and $(B(X) ; *, 0)$ is a BCK-subalgebra of X. In general, $B(X) \neq\{0\}$; if $B(X)=\{0\}$, then X is said to be p semisimple([10]). In our joint paper [7], we investigated atoms in a BCI -algebra.

Definition 1 ([7]). An element a of X is called to be an atom of X if, for any $x \in X$,
(8) $x * a=0$ implies $x=a$.

The set of all the atoms is denoted by $L(X)$, which is also called the p-semisimple part of X. For any $a \in L(X)$, the set

$$
V(a)=\{x \in X: a * x=0\}
$$

is said to be a branch of X.
We will need the following(see [7] and [10]):
(9) $a \in X$ is an atom iff $a=x *(x * a)$ for any x in X;
(10) $L(X)$ is a subalgebra of X, that is, $a, b \in L(X)$ imply $a * b \in$ $L(X)$;
(11) If $a, b \in L(X)$, then for any $x \in V(a)$ and $y \in V(b)$, we have $x * y \in V(a * b) ;$
(12) If x, y belong to the same branch, then $x * y \in B(X)$;
(13) For any $x \in V(a)$ and any $b \in L(X), b * x=b * a$;
(14) For all $x \in X, 0 * x \in L(X)$.

Definition 2 ([3]). A nonempty subset I of X is called an ideal if it satisfies
(i) $0 \in I$,
(ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

The set of all the ideals of X is denoted by $\mathcal{I}(X)$. The set of all subalgebras of X is denoted by $\operatorname{Sub}(X)$. In general, a subalgebra need not be an ideal. But T. D. Lei and C. C. Xi proved

Lemma 3 ([10]). Suppose X is a p-semisimple BCI-algebra, then $S u b(X) \subseteq \mathcal{I}(X)$.
Y. B. Jun and E. H. Roh [5] investigated the G-part of X.

Definition 4 ([5]). For any subset S of X, define

$$
G(S)=\{x \in S: 0 * x=x\} .
$$

In particular, if $S=X$ then we call $G(X)$ the G-part of X.
Lemma 5 ([5]). If $S \in S u b(X)$ then $G(S) \in S u b(X)$.
The following corollary is obvious.

Corollary 6. If $S \in \operatorname{Sub}(X)$, then $G(S)$ is an associative subalgebra of $L(X)$, in particular, $G(X)$ is an associative subalgebra of $L(X)$.

Now we have all the background needed to solve the problem (JR).
Theorem 7. Let $S \in \operatorname{Sub}(X)$. Then the following are equivalent:
(15) $G(S) \in \mathcal{I}(X)$;
(16) for any $x, y \in B(X)$ and for any $a, b \in G(S)$

$$
x * a=y * b \text { implies } x=y \text { and } a=b ;
$$

(17) for any $x, y \in B(X)$ and for any $a \in G(S)$

$$
x * a=y * a \text { implies } x=y ;
$$

(18) for any $x \in B(X)$ and any $a \in G(S)$

$$
x * a=0 * a \text { implies } x=0 .
$$

$P_{\text {roof. (15) }} \Rightarrow$ (16). See [5; Theorem 10].
(16) $\Rightarrow(17) \Rightarrow$ (18) are trivial.
(18) \Rightarrow (15). Assume $x * b \in G(S)$ and $b \in G(S)$. Denote $a=$ $0 *(0 * x)$, then $a \in L(X)$. By (11) we have $x * b \in V(a * b)$, that is, $a * b \leq x * b \in G(S)$. By (8), $x * b=a * b$. Thus

$$
(x * a) * b=(x * b) * a=(a * b) * a=(a * a) * b=0 * b .
$$

Observe $x * a \in B(X)$ by (12), then using (18) we have $x * a=0$, and so $x=a$ by (8). Hence $x * b \in G(S), b \in G(S)$ and $x \in L(X)$. By combining Corollary 6 and Lemma 3 we know that $G(S)$ is an ideal of $L(X)$, it follows that $x \in G(S)$. This says that $G(S) \in \mathcal{I}(X)$, proving the theorem.

The implication (16) $\Rightarrow(15)$ gives a positive answer of the problem (JR). Below we will give further results.

Theorem 8. If $S \in S u b(X)$, then the following are equivalent:
(15) $G(S) \in \mathcal{I}(X)$,
(19) for any $x, y \in X$ and for any $a \in G(S)$,

$$
x * a=y * a \text { implies } x=y,
$$

(20) for any $x \in X$ and for any $a, b \in G(S)$,

$$
x * a=b * a \text { implies } x=b,
$$

(21) for any $x \in X$ and for any $a \in G(S)$

$$
x * a=0 * a \text { implies } x=0 .
$$

Proof. (15) \Rightarrow (19). Suppose $G(S) \in \mathcal{I}(X)$ and $x * a=y * a$ where $x, y \in X$ and $a \in G(S)$, then

$$
(x * y) * a=(x * a) * y=(y * a) * y=(y * y) * a=0 * a \in G(S),
$$

and so $x * y \in G(S)$ by (15). Hence by (9) and (7)

$$
x * y=a *(a *(x * y))=a *((x * y) * a)=a *(0 * a)=a * a=0 .
$$

In the same argument, we have $y * x=0$. Therefore $x=y$, (19) holds.
(19) $\Rightarrow(20) \Rightarrow(21)$ are trivial.
$(21) \Rightarrow(15)$. Obviously, $(21) \Rightarrow(18)$. Combining Theorem 7 we know that (15) is true. The proof is complete.

Theorem 9. For a subalgebra S of $X, G(S) \in \mathcal{I}(X)$ if and only if, for any $x \in X$ and for any $b \in G(S)$
(22) $x=(x * b) *(0 * b)$.

Proof. Suppose $G(S) \in \mathcal{I}(X)$ and $b \in G(S)$. For any $x \in X$, by (14) and (9) we have

$$
(x *((x * b) *(0 * b))) * b=(x * b) *((x * b) *(0 * b))=0 * b
$$

hence by (21)

$$
x *((x * b) *(0 * b))=0 .
$$

On the other hand,

$$
((x * b) *(0 * b)) * x=((x * x) * b) *(0 * b)=(0 * b) *(0 * b)=0 .
$$

Thus $x=(x * b) *(0 * b)$, namely, (22) holds.
Conversely, suppose (22) holds and $x * b \in G(S), b \in G(S)$. Observe $0 * b \in G(S)$, we have

$$
x=(x * b) *(0 * b) \in G(S)
$$

which says $G(S) \in \mathcal{I}(X)$. The proof is complete.
Theorem 10. Suppose $S \in S u b(X)$. Then $G(S) \in \mathcal{I}(X)$ if and only if, for any $x, y \in X$ and for any $a, b \in G(S)$,
(23) $(x * a) *(y * b)=(x * y) *(a * b)$.

Proof. Suppose $G(S) \in \mathcal{I}(X)$. Let $a, b \in G(S)$. Then for any $x, y \in$ X

$$
\begin{aligned}
& (((x * y) *(a * b)) *((x * a) *(y * b))) * a \\
& =(((x * a) *(a * b)) *((x * a) *(y * b))) * y \\
& \leq((y * b) *(a * b)) * y \\
& \leq(y * a) * y \\
& =0 * a,
\end{aligned}
$$

and by (8),

$$
(((x * y) *(a * b)) *((x * a) *(y * b))) * a=0 * a .
$$

Using (21) we obtain
(24) $((x * y) *(a * b)) *((x * a) *(y * b))=0$.

On the other hand,

$$
\begin{aligned}
& (((x * a) *(y * b)) *((x * y) *(a * b))) *(a * b) \\
& =(((x *(a * b)) *(y * b)) *((x * y) *(a * b))) * a \\
& =(((x *(a * b)) *((x * y) *(a * b))) *(y * b)) * a \\
& \leq((x *(x * y)) *(y * b)) * a \\
& \leq(y *(y * b)) * a \\
& \leq b * a \\
& =0 *(a * b) ;
\end{aligned}
$$

hence

$$
(((x * a) *(y * b)) *((x * y) *(a * b))) *(a * b)=0 *(a * b) .
$$

By (21) we have
(25) $((x * a) *(y * b)) *((x * y) *(a * b))=0$.

Combining (24) and (25) we obtain

$$
(x * a) *(y * b)=(x * y) *(a * b)
$$

(23) holds.

Conversely, suppose (23) holds. If $x * a=y * a$ where $x, y \in X$ and $a \in G(S)$, then by (23)

$$
x * y=(x * y) *(a * a)=(x * a) *(y * a)=0 .
$$

Likewise we have $y * x=0$, and so $x=y$. This shows that (19) holds. By Theorem 8, $G(S) \in \mathcal{I}(X)$. The proof is complete.

Observe that if X is quasi-associative([11]), then $G(X)=L(X)$, hence from Theorems $7-10$ we have

Corollary 11. If X is a quasi-associative BCI -algebra, then the following are equivalent:
(26) $L(X) \in \mathcal{I}(X)$,
(27) for any $x, y \in B(X)$ and for any $a, b \in L(X)$

$$
x * a=y * b \text { implies } x=y \text { and } a=b,
$$

(28) for any $x, y \in B(X)$ and for any $a \in L(X)$

$$
x * a=y * a \text { implies } x=y,
$$

(29) for any $x \in B(X)$ and any $a \in L(X)$

$$
x * a=0 * a \text { implies } x=0,
$$

(30) for any $x, y \in X$ and for any $a \in L(X)$

$$
x * a=y * a \text { implies } x=y
$$

(31) for any $x \in X$ and for any $a, b \in L(X)$

$$
x * a=b * a \text { implies } x=b,
$$

(32) for any $x \in X$ and for any $a \in L(X)$

$$
x * a=0 * a \text { implies } x=0,
$$

(33) for any $x \in X$ and for any $a \in L(X)$

$$
x=(x * a) *(0 * a),
$$

(34) for any $x, y \in X$ and for any $a, b \in L(X)$

$$
(x * a) *(y * b)=(x * y) *(a * b)
$$

For a subset S of X, denote

$$
L(S)=\{x \in S: x=0 *(0 * x)\} ;
$$

in particular, when $S=X, L(X)$ is precisely the set of all atoms of X. If $S \in S u b(X)$ then $L(S) \in \operatorname{Sub}(L(X))$; if $L(S) \in \mathcal{I}(X)$ then $L(S) \in \mathcal{I}(L(X))$. To be motivated by Theorem 7 , a natural question arises: does the similar results for $L(S)$ hold? In what follows we respond this question.

Theorem 12. Let $S \in S u b(X)$. Then the following are equivalent:
(35) $L(S) \in \mathcal{I}(X)$,
(36) for any $x \in X$ and for any $a, b \in L(S)$

$$
x * b=a * b \text { implies } x=a
$$

(37) for any $x \in X$ and $a \in L(S)$

$$
x * a=0 * a \text { implies } x=0,
$$

(38) for any $x, y \in X$ and for any $a \in L(S)$

$$
x * a=y * a \text { implies } x=y,
$$

(39) for any $x, y \in B(X)$ and for any $a, b \in L(S)$

$$
x * a=y * b \text { implies } x=y \text { and } a=b
$$

(40) for any $x, y \in B(X)$ and for any $a \in L(S)$

$$
x * a=y * a \text { implies } x=y
$$

(41) for any $x \in B(X)$ and for any $a \in L(S)$

$$
x * a=0 * a \text { implies } x=0 .
$$

Proof. (35) \Rightarrow (36). Suppose $L(S) \in \mathcal{I}(X)$. If $a, b \in L(S)$ then $a * b \in L(S)$ as $L(S) \in S u b(X)$. Hence for any $x \in X, x * b=a * b$ implies $x * b \in L(S)$, and furthermore, $x \in L(S)$. Thus by (9) and (13),

$$
x=b *(b * x)=b *(0 *(x * b))=b *(0 *(a * b))=b *(b * a)=a,
$$

namely, (36) holds.
(36) \Rightarrow (37). It is immediate as $0 \in L(S)$.
(37) \Rightarrow (38). Suppose (37) holds and let $x * a=y * a$ where $x, y \in X$ and $a \in L(S)$, then

$$
(x * y) * a=(y * a) * y=0 * a .
$$

By (37), $x * y=0$. Likewise for $y * x=0$. Hence $x=y$. (38) is true.
(38) \Rightarrow (39). Let $x * a=y * b$ where $x, y \in B(X)$ and $a, b \in L(S)$. Clearly, $0 * x=0 * y=0$. By (9) and (4)
$a=0 *(0 * a)=(0 * x) *(0 * a)=0 *(x * a)=(0 * y) *(0 * b)=0 *(0 * b)=b$.
Thus $x * a=y * a$ where $a \in L(S)$. (39) follows from (38).
$(39) \Rightarrow(40) \Rightarrow(41)$ are trivial.
(41) $\Rightarrow(35)$. Suppose $x * a \in L(S)$ and $a \in L(S)$. By (11) $x * a=$ $b * a$ where $b=0 *(0 * x) \in L(X)$. Hence $(x * b) * a=0 * a$. Since $x * b \in B(X)$ by (12), we have $x * b=0$ by (41), and so $x=b$. This says $x \in L(X)$. Observe that $L(S) \in \operatorname{Sub}(L(X))$, hence by Lemma 3 we have $L(S) \in \mathcal{I}(L(X))$. Thus $x * a \in L(S)$ and $a \in L(S)$ imply $x \in L(S)$ since $x \in L(X)$, that is, $L(S) \in \mathcal{I}(X)$. The proof is complete.

Definition 13 ([8]). A BCI-algebra X is said to be of KL -product if there exist a BCK-algebra Y and a p-semisimple BCI-algebra. Z such that $X \cong Y \times Z$.

In the setting of $S=X$, we put Theorem 12, [8; Theorems 1 and 3] and [6; Theorems 5, 6 and 7] together to obtain

Theorem 14. In a BCI -algebra X, the following are equivalent:
(42) $L(X) \in \mathcal{I}(X)$,
(43) for any $x \in X$ and for any $a, b \in L(X)$

$$
x * b=a * b \text { implies } x=a,
$$

(44) for any $x \in X$ and $a \in L(X)$

$$
x * a=0 * a \text { implies } x=0,
$$

(45) for any $x, y \in X$ and for any $a \in L(X)$

$$
x * a=y * a \text { implies } x=y,
$$

(46) for any $x, y \in B(X)$ and for any $a, b \in L(X)$

$$
x * a=y * b \text { implies } x=y \text { and } a=b,
$$

(47) for any $x, y \in B(X)$ and for any $a \in L(X)$

$$
x * a=y * a \text { implies } x=y,
$$

(48) for any $x \in B(X)$ and for any $a \in L(X)$

$$
x * a=0 * a \text { implies } x=0,
$$

(49) X is of KL-product,
(50) for any $x \in X$ and for any $a \in L(X)$

$$
x=(x * a) *(0 * a)
$$

(51) for any $x, y \in X$ and for any $a, b \in L(X)$

$$
(x * a) *(y * b)=(x * y) *(a * b)
$$

(52) there exists an endomorphism f on X such that for any $a \in$ $L(X),\left.f\right|_{V(a)}$, the restriction of f to $V(a)$, is a bijection from $V(a)$ onto $B(X)$.
Remark. The statement (42) \Rightarrow (46) is precisely W. P. Huang [2; Theorem 1].

References

1. Q. P. Hu and K. Iséki, On BCI-algebras satasfyıng $(x * y) * z=x *(y * z)$, Math Seminar Notes(presently Kobe J. Math.) 8 (1980), 553-555.
2 W P. Huang, On the p-semssimple part in BCI-algebras, Math. Japon. 37 (1992), 159-161
2. K. Iséki, On BCI-algebras, Math. Seminar Notes(presently Kobe J. Math.) 8 (1980), 125-130.
3. H. Jiang and Z. P. Tian, On the independence of axioms of BCK- and BCI-algebras, J. Hangzhou Normal College 2 (1985), 23-26.
4. Y. B. Jun and E. H. Roh, On the BCI-G part of BCI-algebras, Math. Japon.(to appear).
5. J. Meng, S M. Wei and Y. B Jun, Characterizations on KL-product BCI-algebras, Pusan Kyongnam Math J. 8 (1992), 49-53.
6. J. Meng and X L. Xin, Characterzzations of atoms nn BCI-algebras, Math Japon. 37 (1932), 359-361.
7. J. Meng and X. L. Xin, A probletn ${ }^{2} n$ BCI-algebras, Math. Japon.(to appear).
8. T. D Lei, p-radıcal and its bastc propertres of BCI-algebras, Math. Japon. 30 (1985), 753-756.
9. T D. Lei and C C. Xi, p-radıcal in BCI-algebras, Math Japon. 30 (1985), 511-517.
11 C. C. Xi, On a class of BCI-algebras, Math. Japon. 35 (1990), 13-17.
*Department of Mathematics
Northwest University
Xian, 710069
P. R. China
**Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea
