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ON A PROBLEM OF G-PART OF BCI-ALGEBRAS

JIE MENG*, YOUNG BAE JUuN** AND EUN HwAN ROR**

In this note, we first give a positive answer of the following open
problem in [§]:

Does the inverse of [5; Theorem 10} hold?

Next, for any subalgebra S of a BCI-algebra X, we obtain a number
of statements, each of which is equivalent to that

L(S)={zeS:z2=0%(0xz)}

is an ideal of X. Finally, we give some of other characterizations of
KL-product BCl-algebras as a complement of [6] and [8].

The set L{X) of all atoms in a BCl-algebra X is a p-semisimple
subalgebra of X; hence it is said to be p-semisimple part of X. But it,
in general, may not be an ideal of X. W. P. Huang [2] and J. Meng
and X. L. Xin {8} considered the question that in order that L(X) is
an ideal of X, what condition does X satisfy? To be motivated by [2],
Y. B. Jun and E. H. Roh [5] investigated the G-part of a BCl-algebra
X and proved the following,.

"THEOREM 10”. If S is a subalgebra of X and G(§) = {z € §:
0*xz = z} an ideal of X, then for any z,y € B(X) and for any
a,b € G(5),

z*xa=1yx*bimpliesz —y and a = b.

In [5], they posed the open problem:

(JR) Does the inverse of "Theorem 10" hold?

In this note, one of our mainly aims is to give a positive answer to
this problem. Following the idea of [5] we will also discuss that for a
subalgebra S of X, what is the condition under which

L(S)={z€S:2=0x(0x2)}
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is an ideal of X7
Throughout this paper, X will always mean a BCI-algebra without
further explanation. We need to review some definitions and results
for the development of this paper.
By a BCl-algebra we mean an abstract algebra (X;*,0) of type
(2, 0) satisfying the following conditions:
BCEHL ((z+y)*x(z*2))x(zxy) =0;
BCL2 (zx(z*y))xy =0;
BCI-3zxz = 0;
BCl-4z+xy=0and y*z=01imply z = y.
A BCl-algebra X satisfying
BCK-50+z=0forallzin X
is said to be a BCK-algebra.
In a BCI-algebra X we can define an ordering relation < by putting
z<yifand only if z xy = 0.
For a BCI-algebra X we have
(1) 0=z,
(2) (z*xy)xz=(z*2)xy,
(3) ((zx2)*(y*2))*x(zxy) =0,
(4) Ox(z*y) = (0*z)*(0*y).
In this note, we would use these results at several different occasions,
however, we would not mention them explicity.
A BCl-algebra X is said to be associative ([1}) if it satisfies
(5) (z*xy)xz=a*(y*2).

In an associative BCl-algebra, the following identities hold:
(6) 0%z ==, )
(7) zxy=y=xz.

The set B(X) = {z € X : 0z = 0} is called the BCK-part of
X; clearly, 0 € B(X) and (B(X);*,0) is a BCK-subalgebra of X.
In general, B(X) # {0}; if B(X) = {0}, then X is said to be p-
semisimple({10]). In our joint paper [7], we investigated atoms in a
BCl-algebra.

DEFINITION 1 ([7]). An element a of X is called to be an atom of
X if, for any z € X,
(8) z *a =0 implies z = a.
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The set of all the atoms is denoted by L(X), which is also called the
p-semisimple part of X. For any a € L(X), the set

Vie)={z € X :axz =0}

is said o be a branch of X.
We will need the following(see {7} and [10]):
(9) a € X is an atom iff a = z * (« * a) for any z in X;

(10} L(X) is a subalgebra of X, that is, a,b € I(X) imply ax b €
L(X);

(11) If a,bd € L(X), then for any « € V(a) and y € V(b), we have
zxy € V(a*b)

(12) If z,y belong to the same branch, then z xy € B(X);

(13) For any « € V(a) and any b€ L(X), b+ z = b+ q;

(14) For all z € X, 0% x € L(X).

DEFINITION 2 ([3]). A nonempty subset I of X is called an ideal if
it satisfies

(1) 0 eI,
(1) zxy€e€Tandyelimplyz € 1.

The set of all the ideals of X is denoted by Z(X). The set of all
subalgebras of X is denoted by Sub(X). In general, a subalgebra need
not be an ideal. But T. D. Lei and C. C. Xi proved

LEMMA 3 ([10]). Suppose X is a p-semisimple BCl-algebra, then
Sub(X) C I(X).

Y. B. Jun and E. H. Roh {5] investigated the G-part of X.
DEFINITION 4 ([5]). For any subset § of X, define

GS)={z€S5:0xz =z}
In particular, if S5 = X then we call G(X) the G-part of X.

LEMMA 5 ([5]). IS € Sub(X) then G(S) € Sub(X).

The following corollary is obvious.
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COROLLARY 6. If § € Sub(X), then G(S) is an associative sub-
algebra of L(X), in particular, G(X) is an associative subalgebra of
L(X).

Now we have all the background needed to solve the problem {JR).

THEOREM 7. Let § € Sub(X). Then the following are equivalent:
(15) G(5) € I{X);
(18) for any z,y € B(X) and for any a,b € G(S)

z+*a=yx*bimpliesz =y anda=1¥
(17) for any z,y € B(X) and for any a € G(5)
T*a=y*a implies z = y;
(18) for any x € B(X) and any a € G(S)

xzxa={x*a impliesz = 0.

Proof. (15) = (16). See [5; Theorem 10).

(16) = (17) = (18) are trivial.

(18) = (15). Assume z * b € G(S) and b € G(S). Denote a =
0% (0 * ), then a € L(X). By (11) we have « * b € V(a * b), that is,
axb<z*be G(S). By (8),2+%b=a=b Thus

(zxa)xb=(z*bd)xa=(a*xbl*xa=(axa)xb=0xb.

Observe z * a € B(X) by (12), then using (18) we have £ *xa = 0, and
so z = a by (8). Hence z*b € G(S), b € G(S) and z € L(X). By
combining Corollary 6 and Lemma 3 we know that G(5) is an ideal of
L(X), it follows that z € G(S). This says that G(S) € I(X), proving
the theorem.

The implication (16) => (15) gives a positive answer of the problem
(JR). Below we will give further results.
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THEOREM 8. If S € Sub(X), then the following are equivalent:
(15) G(S) € Z(X),
(19) for any z,y € X and for any a € G(S),

T *a=y*almpliesx =y,
(20) for any z € X and for any a,b € G(S),

z ¥ a = bxa implies x = b,
(21) for any = € X and for any a € G(S)

zxa = (0 xa implies z = 0.

Proof. (15) = (19). Suppose G(S) € I(X ) and z * a = y * a where
t,y € X and a € G(S), then

(zry)ra=(z+a)xy=(yxa)xy=(y+xy)*xa=0xa€ G(I),
and so z *y € G(S) by (15). Hence by (9) and (7)
zry=ax{a*x(zxy))=a*x({(z+xy)+ra)=ax(0xa) =a*+xa=0.

[n the same argument, we have y * 2 = 0. Therefore z = y, (19) holds.
(19) = (20) = (21) are trivial.
(21) = (15). Obviously, (21) = (18). Combining Theorem 7 we
know that (15) is true. The proof is complete.

THEOREM 9. For a subalgebra S of X, G(S) € I(X) if and only if,
for any z € X and for any b € G(S)
(22) z=(z*b)*{0xb).

Proof. Suppose G(S) € I(X) and b € G(S). For any z € X, by
(14) and (9) we have

(z*x((z*b)*x(0xb))xb=(z+b)+((z xb)*(0x b)) =0xb,

hence by (21)
z*((z*b)«(0xd)) =0.
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On the other hand,
((zxd)*(0+b))*z =((z*x)xb) (0% b) = (0 %)+ (0 % b) = 0.

Thus z = (2 * b) * (0 * b}, namely, (22) holds.
Conversely, suppose (22) holds and z * b € G(5), b € G(S). Observe
0 *xbe G(S5), we have
z = (z+b)*(0+b) € G(S),
which says G(S) € Z(X). The proof is complete.
THEOREM 10. Suppose § € Sub(X). Then G(S) € I(X) if and
only if, for any z,y € X and for any a,b € G(S),
(23) (zxa)*(y*b)=(x*xy)*(a*b)
Proof. Suppose G(S5) € Z(X). Let a,b € G(S). Then for any z,y €
X
(((zxy)*(ax b))+ ((z xa)x(y + b)) xa
=({({z+a)*(axb)) *((z+a}*(y* b)) *y
S((y*b)x(axb))xy
S(y*a)*y
=0xa,

and by (8),

(((z*y)*(axb))x((zxa)*(yxb))) xa=0xa.

Using (21) we obtain
(24) {(z*xy)x(axb))x{((z*xa)x(y*b)=0.

On the other hand,
(((zra)*x(y* )+ ((zxy)*«(axd))) *(a*d)
={((zx(axd))x(y* b))« ((z+xy)* (axb))) *a
=(((zx(axb))x((z+y)*(a*b))) x(y*b))*a
S{(zx(z*xy))*(y*b)*a
<(y*(y*bd))*a
<bxa
=0+ (a*xb)
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hence

(((z * a) x (y ) * ((z +y) * (@ +5)) # (a*b) = 0+ (a*b).

By (21) we have

(25) ((z*a)(y+b))*((zxy)*(ash)=0.
Combining (24) and (25) we obtain

(z+a)*(yxb)=(z*xy) x(a*xb),

(23) holds.

Conversely, suppose (23) holds. If z 4+ ¢ = y * a where 2,y € X and
a € G(S), then by (23)

zxy=(zxy)*(a*xa)=(z*xa)x(y*xa)=0.

Likewise we have y * £ = 0, and so = = y. This shows that (19) holds.
By Theorem 8, G(S) € Z(X). The proof is complete.

Observe that if X is quasi-associative([11]), then G(X) = L(X),
hence from Theorems 7-10 we have

COROLLARY 11. If X is a quasi-associative BCI-algebra, then the
following are equivalent:
(26) L(X) € I(X),
(27) for any z,y € B(X) and for any a,b € L(X)
zxag=1yxbimpliesz =y and a = b,
(28) for any z,y € B(X) and for any a € L(X)
Txa=yx*a implies z = y,
(29) for any = € B(X) and any a € L(X)
z * ¢ = 0 * @ implies z = 0,

(80) for any z,y € X and for any a € L(X)

T % a =y *xa implies z = y,
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(31) for any z € X and for any a,b € L(X)
z * a = b+ a implies z = b,
(32) for any = € X and for any a € L(X)
z * a = 0*a implies z = 0,
(33) for any z € X and for any a € L(X)
z={(z*a)*(0*a),
(34) for any z,y € X and for any a,b € L(X)
(z*xa)*x(yxd) = (z+xy)*(axbh).
For a subset S of X, denote
L(S)y={zeS:z2=0x(0x2)}
in particular, when S = X, L(X) is precisely the set of all atoms of
X. S € Sub(X) then L(S) € Sub(L(X)); if L(S) € I(X) then
L(S) € Z(L(X)). To be motivated by Theorem 7, a natural question

arises: does the similar results for L(S) hold? In what follows we
respond this question.

THEOREM 12. Let § € Sub(X). Then the following are equivalent:
(85) L(S) € Z(X),
(36) for any x € X and for any a,b € L(S)
z *b=axbimplies z = a,
(37) for any z € X and a € L(S)
z%a=0xqa impliesz =0,

(38) for any =,y € X and for any a € L(S)

z*xa=yx*aimplieszr =y,
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(39) for any z,y € B(X) and for any a,b € L(S)
zxa=yxbimpliesz =y anda=215,
(40) for any z,y € B(X) and for any a € L(S)
T*a =1y +*a implies z =y,
(41) for any = € B(X) and for any a € L(S)

z*a=0%a immplies z = 0.

Proof. (35) = (36). Suppose L{S) € I(X). If ¢,b € L(S) then
a*xbe L(S) as L(S) € Sub{X). Hence forany z € X, b =axb
implies z +b € L(S), and furthermore, ¢ € L(S). Thus by (9) and (13),

z=bx(brz)=bx(0x(zxb)) =bx(0x(axb))=bx(bxa)=a,

namely, (36) holds.

(36) = (37). It is immediate as 0 € L(S).

(37) = (38). Suppose (37) holds and let z+a = y*a where z,y € X
and a € L(S), then

(rxy)ra=(y*a)+y=0%*a.

By (37), ¢ *y = 0. Likewise for y * z = 0. Hence z =y. (38) is true.
(38) = (39). Let x *a =y * b where z,y € B(X) and a,b € L(S).
Clearly, 0 x ¢ =0+ y = 0. By (9) and (4)

a = 0%{(0xa) = (0xz)*(0xa) = 0x(x*xa) = (0xy)«(0xb) = 0%(0b) = b.

Thus z * a = y ¥ a where a € L(S). (39) follows from {38).

(39) = (40) > (41) are trivial.

(41) = (35). Suppose ¥ a € L(S) and a € L(5). By (11) zxa =
b+ a where b = 0 % (0 xz) € L(X). Hence (z *b) xa = 0 * a. Since
zxb € B(X) by (12), we have z * b = 0 by (41), and so z = b. This
says £ € L(X). Observe that L(S) € Sub(L(X)), hence by Lemma
3 we have L(S) € Z(L(X)). Thus z *a € L(S) and a € L{S) imply
z € L(S) since z € L(X), that is, L(S) € I(X). The proof is complete.
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DEFINITION 13 ([8]). A BCl-algebra X is said to be of KL-product
if there exist a BCK-algebra Y and a p-semisimple BCl-algebra Z such
that X @Y x Z.

In the setting of S = X, we put Theorem 12, [8; Theorems 1 and 3]
and [6; Theorems 5, 6 and 7] together to obtain

THEOREM 14. In a BClalgebra X, the following are equivalent:
(42) L(X) € I(X),
(43) for any = € X and for any a,b € L(X)

zxb=ax*bimplies z = q,
(44) for any z € X and a € L(X)

zxa=0=*a implies ¢ =0,
(45) for any z,y € X and for any a € L{X)

zxa =y *aimplesx =y,
(46) for any =,y € B(X) and for any a,b € L(X)

zxa=yxbimplesz =y anda =1,

(47) for any z,y € B(X) and for any a € L(X)

t*a =y *qa implies ¢ =y,
(48) for any ¢ € B(X) and for any a € L(X)

z*a = 0+aimplies x =0,

(49) X is of KL-product,
(50) for any z € X and for any a € L(X)

z = (z*a)*(0*a),
(51) for any z,y € X and for any a,b € L{X)
(zxa)*x{y*b)=(zxy)x(axb),

(52) there exists an endomorphism f on X such that for any a €
L(X), flv(ay» the restriction of f to V(a), is a bijection from
V(a) onto B(X).

REMARK. The statement (42) = (46) is precisely W. P. Huang
[2; Theorem 1}.
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