Pusan Kyŏngnam Math. J. 10(1994), No 2, pp 405-408

WEAKLY COMPACT FUNCTIONS

V.P.SINGH, G.I.CHAE AND R.POONIWALA

1. Introduction

Throughout this note, spaces always mean topological spaces unless explicitly stated and we will denote a function f from a space X into Y by $f: X \to Y$, the graph of f by G_f , the closure of U by cl(U) and the set V containing x by V_x . For definitions and terminologies not explained, we will refer to [1,3,6].

A function $f: X \to Y$ is said to be compact [7] if for each closed and compact set $K \subset Y, f^{-1}(K)$ is closed and compact in X; to be Ccontinuous [3] if for each open set $V \subset Y$ having compact complement, $f^{-1}(V)$ is open in X; to have closed graph [5] (resp. strongly closed graph [6]) if for each pair $(x, y) \in X \times Y, y \neq f(x)$, there exist open sets U_x and V_y such that $f(U_x) \cap V_y = \emptyset$ (resp. $f(U_x) \cap cl(V_y) = \emptyset$).

In this note a new concept of a function called weakly compact is defined and investigate relationships between weakly compact functions, graph functions, known functions and the Co-compact space introduced in this note. We will know the fact (Confer to Theorem 2) that most (or more) of results in [3] will be obtained from weakly compactness.

2. W-compact functions and Co-compact spaces

DEFINITION 1. A function $f: X \to Y$ is said to be weakly compact (briefly W-compact) if for each closed and compact set K of Y, $f^{-1}(K)$ is closed in X.

Every continuous function is W-compact but its converse need not be true. For example, the identity $I: (R, U) \to (R, D)$ is W-compact (even compact) but not continuous where U and D are respectively the usual and discrete spaces of real numbers. It is interesting to note that weakly compact functions are C-continuous and vice-versa.

Received December 13,1994

We thank Dr D N Misra for his encouragements .

THEOREM 2. $f : X \rightarrow Y$ is W-compact if and only if f is C-continuous.

Proof. Let f be C-continuous and K a closed compact subset of Y. Then $Y \setminus K$ is open with compact complement. Thus $f^{-1}(Y \setminus K) = X \setminus f^{-1}(K)$ is open, i.e., $f^{-1}(K)$ is closed in X and hence f is W-compact. Conversely, let f be W-compact and V an open set of Y having compact complement. Then $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is closed, i.e., $f^{-1}(V)$ is open. Thus f is C-continuous.

THEOREM 3. If $f : X \to Y$ has the closed graph, then f is W-compact.

The proof follows directly from [4, Proposition 9, p.200] stating that for any compact subset $K \subset Y$, $f^{-1}(K)$ is closed in X whenever f has its graph closed. However, the converse of Theorem 3 need not be true as shown by the below example.

EXAMPLE 4. Let X be an infinite set with cofinite topology. Then the identity I on X is W-compact but its graph is not closed.

THEOREM 5. Let X be regular and Y compact Hausdorff. If $f : X \to Y$ is W-compact, then G_f is strongly closed and thus closed.

Proof. Let $(x,y) \notin G_f$. Then $y \neq f(x)$. Since Y is Hausdorff, there are open sets O_y and $W_{f(x)}$ such that $O_y \cap W_{f(x)} = \emptyset$. Since Y is compact Hausdorff and $y \in O_y$, there is an open set V_y such that $y \in V_y \subset cl(V_y) \subset O_y$. Since $cl(V_y)$ is closed compact (for Y is compact) and f is W-compact, $f^{-1}(cl(V_y))$ is a closed set of X not containing x. By regularity of X, there is an open set U_x such that $f^{-1}(cl(V_y)) \cap cl(U_x) = \emptyset$. Hence we have $f(U_x) \cap cl(V_y) = \emptyset$.

THEOREM 6. Let X be regular and Y be T_1 . If $f: X \to Y$ is closed and W-compact, then f has closed graph.

Proof. For any pair $(x, y) \notin G_f$, i.e., $x \notin f^{-1}(y)$, (or $y \neq f(x)$), $f^{-1}(y)$ is a closed set not containing x since f is W-compact and Y is T_1 . Since X is regular, there is an open sets U_x such that $f^{-1}(y) \cap cl(U_x)$ $= \emptyset$, i.e., $f^{-1}(y) \subset X \setminus cl(U_x)$. Since f is closed, from [2, Theorem 11.2, p.86] there exists an open set V_y such that $f^{-1}(y) \subset f^{-1}(V_y) \subset$ $X \setminus cl(U_x)$. So $V_y \cap f(U_x) = \emptyset$. So f has a closed graph.

Composition of W-compact functions need not be W-compact. Let X, Y and Z be cofinite, discrete and usual spaces of real numbers

respectively. Then $I_1 \circ I_2$ is not W-compact for identities $I_1 : X \to Y$ and $I_2 : Y \to Z$ even though I_1 and I_2 are W-compact. Relationships between W-compact functions and its graph functions are shown.

THEOREM 7. If $f : X \to Y$ is continuous and $g : Y \to Z$ is W-compact, then $g \circ f$ is W-compact.

The proof is obvious and is thus omitted. It is easy to prove that $g \circ f$ is W-compact if Y is a compact space where $f : X \to Y$ and $g: Y \to Z$ are W-compact functions.

THEOREM 8. Let $f: X \to Y$ be W-compact. Then $G_f: X \to X \times Y$ where $G_f(x) = \{(x, f(x)) : x \in X\}$ is W-compact.

Proof. By Theorem 2, it suffices to show that for any open set $U \times V$ in $X \times Y$ having compact complement, $G^{-1}(U \times V)$ is open in X. Let $K = X \times Y \setminus (U \times V) = K = (X \setminus U) \times Y \cup X \times (Y \setminus V)$. Since $X \times (Y \setminus V)$ is compact for it is a closed subset of the compact set K and so $P_Y(X \times (Y \setminus V)) = Y \setminus V$ is compact where P_Y is the projecton on Y. Since f is W-compact and hence $f^{-1}(V)$ is open, $G_f^{-1}(U \times V)$ $= U \cap f^{-1}(V)$ is open in X. Thus G_f is W-compact.

The converse of Theorem 8 need not be true. In the case that X is compact we have the following stronger result.

THEOREM 9. Let X be a compact space Then $f : X \to Y$ is W-compcat whenever G_f is W-compact.

Proof. Let V be an open set of Y having compact complement. Then it is enough to show that $f^{-1}(V)$ is open in X. Consider $X \times Y \setminus (X \times V)$ $= X \times (Y \setminus V)$ is compact, for X and $Y \setminus V$ are compact. Since G_f is W-compact, $G_f^{-1}(X \times V) = f^{-1}(V)$ is open in X.

THEOREM 10. Let X be normal and Y be T_1 . If $f : X \to Y$ is surjective and W-compact, then Y is T_2 .

Proof. Let $x, y \in Y, x \neq y$. Then $\{x\}, \{y\}$ are closed and compact subsets of Y and thus $f^{-1}(x), f^{-1}(y)$ are closed in X. By normality of X there are disjoint open sets U_1 and U_2 . Since f is closed, from [2, Theorem 11.2, p. 86] there are V_x and V_y such that $f^{-1}(x) \subset$ $f^{-1}(V_x) \subset U_1$ and $f^{-1}(y) \subset f^{-1}(V_y) \subset U_2$. Since $U_1 \cap U_2 = \emptyset, f^{-1}(V_x \cap$ $V_y) = \emptyset$. $V_x \cap V_y = \emptyset$. Y is a T_2 space. DEFINITION 11. A space X is said to be Co-compact if for each $x \in X$ and each open set U_x (containing x), there exists an open set V_x such that $x \in V_x \subset U_x$ and $X \setminus V_x$ consists of finite number of closed compact subsets of X.

EXAMPLE 12. Finite spaces, indiscrete spaces and an infinite space with cofinite topology are some of the examples of Co-compact spaces even though the usual space of real numbers is not Co-compact.

THEOREM 13. If $f: X \to Y$ is W-compact and Y is a Co-compact space, then f is continuous.

Proof. Let $x \in X$, y = f(x) and V be any open neighborhood of y. Since Y is Co-compact, there is an open set V_y such that $y \in V_y \subset V$ and $Y \setminus V_y$ consists of finite number of closed compact sets, say $C_1, C_2, C_3, \dots, C_n$. Since each C_k is closed and compact, each $f^{-1}(C_k)$ is closed by W-compactness of f. Let $\mathcal{C} = \bigcup_{k=1}^n f^{-1}(C_k)$. Then \mathcal{C} is closed in X and $W = X \setminus \mathcal{C}$ is an open set containing x such that $W = f^{-1}(Y) \setminus f^{-1}(\bigcup_{k=1}^n C_k) = f^{-1}(Y \setminus (Y \setminus V_y)) = f^{-1}(V_y) \subset f^{-1}(V)$. So $f(W) \subset V$. Hence f is continuous.

References

- 1. G I Chae and I J Sing, On Weakly θ -continuous functions, U.I T Report 14, no1. (1983), 133-137
- 2. J Dugundji, Topology, Allyn and Bacon, Boston Mass, 1966.
- 3 K R.Gentry and H B Hoyle, C-continuous functions, Yokohama Math.J. 18 (1970), 71-76
- 4. T.Husain, Topology and Maps, Plenum Press, New York, 1977
- 5. P.E Long, Functions with closed grphs, Amer. Math. Monthly 76 (1969), 930-932
- P E Long and L L.Herrington, Functions with strongly closed graphs, Boll Un-Mat Ital 12 (1975), 381-384.
- 7 G T.Whyburn, Dynamic Topology, Amer Math Monthly 77 (1970), 556-570

Department of Mathematics Regional College of Ed. Bhopal 462-013, India

Deptartment of Mathematics University of Ulsan Ulsan 680-749, Korea