Pusan Kyŏngnam Math. J. 10(1994), No. 2, pp 397-403

ORTHOGONAL IMMERSIONS WITH CONSTANT MEAN CURVATURE

CHANGRIM JANG

1.Introduction

Let $x: M^n \longrightarrow E^m$ be an isometric immersion of an *n* dimensional connected manifold into the *m* dimensional Euclidean space. Denote by Δ the Laplacian operator of M^n . The immersion *x* is of Finite Type k[1] if the position vector *x* admits the following decomposition

$$x = x_0 + x_1 + x_2 + \dots + x_k$$

where $x_0 \in E^m$ and $\Delta x_i = \lambda_i x_i, \lambda_i \in R$. For a k type immersion x, let $E_i (i \in \{1, 2, \ldots, k\})$ denote the subspace of E^m spanned by $x_i(p), p \in M^n$. The immersion x is said to be linearly independent if the linear subspaces E_1, E_2, \ldots, E_k are linearly independent. It is said to be an orthorgonal immersion if E_1, E_2, \ldots, E_k are mutually orthogonal subspaces [3,4]. It is known[4] that if x is a linearly independent (resp. an orthogonal) immersion, then x satisfies the following equation

$$(1.1) \qquad \qquad \Delta x = Ax + b$$

for a constant(resp. symmetric) $m \times m$ matrix A and $b \in E^m$. And it can be easily seen that if x is an orthogonal immersion, then there exist a coordinate system of E^m with respect to which x satisfies $\Delta x = Ax$ for a diagonal matrix A. The classification problem for hypersurfaces satisfying the equation (1.1) is completely solved[4,5,9]. In [8] Th.Vlachos and Th.Hasanis classified the compact submanifolds of codimension 2 satisfying the equation (1.1) for a diagonal matrix Aand b = 0. Recently O.Garay studied orthogonal surfaces with constant mean curvature in the 4 dimensional Euclidean space and obtain the following result:

Received December 13,1994.

Changrim Jang

THEOREM A[7]. Let $x: M^2 \longrightarrow E^4$ be an orthogonal immersion of a connected surface M^2 into E^4 , with constant mean curvature. Then it is an open part of one of the following surfaces:

(1) a minimal surface in E^4

(2) a minimal surface in S^3

- (3) a helical cylinder
- (4) a flat torus $S^{1}(r_{1}) \times S^{1}(r_{2})$ in a hypersphere $S^{3}(r)$.

In this paper we investigate orthogonal submanifolds of codimension 2 and obtain the following theorem.

THEOREM B. Let $x: M^n \longrightarrow E^{n+2}$ be an orthogonal immersion of a connected *n* dimensional manifold into the (n + 2)-dimensional Euclidean space, with constant mean curvature. Then M^n is one of the followings:

- (1) a minimal submanifold of E^{n+2} ,
- (2) a minimal hypersurface of some S^{n+1} ,
- (3) an open part of an n dimensional sphere,
- (4) an open part of a product of two spheres $S^{p}(r_{1}) \times S^{n-p}(r_{2})$, p = 1, 2, ..., n-1,
- (5) an open part of a product of two spheres and a linear subspace of E^{n+2} , $S^p(r_1) \times S^q(r_2) \times E^{n-p-q}$,

 $2 \leq p+q \leq n-1, p,q \geq 1,$

(6) an orthogonal null 2-type submanifold.

2.Some preliminaries

Let $x: M^n \longrightarrow E^m$ be an isometric immersion. Then the metric tensor on M^n is naturally induced from that of E^m . We use the same notation \langle , \rangle for metrics on M^n and E^m . Let $\overline{\nabla}$ and ∇ be the connections of M^n and E^m respectively. Then we have the so-called Gauss formula

(2.1)
$$\overline{\nabla}_X Y = \nabla_X Y + B(X,Y),$$

where X and Y are tangent vector fields of M^n , B denotes the second fundamental form of M^n in E^m . The following equation is well-known;

(2.2)
$$\Delta x = traceB = \sum_{i=1}^{n} B(e_i.e_i)$$

398

for a local orthonormal frame e_1, e_2, \ldots, e_n of M^n . Suppose the position vector field x satisfies the equation $\Delta x = Ax$ for some diagonal $m \times m$ matrix A. Then we have the following two lemmas.

LEMMA 2.1. The equation (Ax, x) = c holds for some constant c.

Proof. Let X be an arbitrary tangent vector of M^n . Differentiating $\langle Ax, x \rangle$ in the direction X, we get

$$X\langle Ax, x \rangle = 2\langle Ax, X \rangle = 0.$$

LEMMA2.2. For a local orthonormal frame e_1, e_2, \ldots, e_n of M^n , the following holds

$$\sum_{i=1}^{n} \langle Ae_i, e_i \rangle = - \langle Ax, Ax \rangle.$$

Proof. Differentiating the equation $\langle Ax, e_i \rangle = 0$ in the direction e_i , we get

$$\langle Ae_i, e_i
angle + \langle Ax, \overline{
abla}_{e_i} e_i
angle = 0.$$

From which and (2.1), we have

$$\langle Ae_i, e_i \rangle + \langle Ax, B(e_i, e_i) \rangle = 0.$$

By summation and (2.2), we get the desired result.

3.Proof of TheoremB

By assumption there exist a coordinate system of E^{n+2} and an $(n+2) \times (n+2)$ diagonal matrix A with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_{n+2}$ such that

$$\Delta x = Ax.$$

Since M^n has a constant mean curvature, we have

$$(3.1) \qquad (Ax, Ax) = d$$

for some constant d. So we get $\langle A^2x, x \rangle = d$. This implies that A^2x is a normal vector field of M^n . We only consider the case M^n is fully

Changrim Jang

contained in E^{n+2} . If M^n is contained in a hyperplane of E^{n+2} , then we know from [6] that M^n is a minimal submanifold of E^{n+2} or an open part of *n* dimensional sphere or an open part of a spherical cylinder which is a null 2-type submanifold. From Lemma 2.1 we know that $\langle Ax, x \rangle = c$ for some constant *c*. If the two normal vector fields Axand A^2x are linearly dependent at every point of M^n , then we may assume that $A^2x = \mu Ax$ for some function μ . In this case, we have

(3.2)
$$d = \langle A^2 x, x \rangle = \mu \langle A x, x \rangle = \mu c.$$

If c = 0, then (3.2) that implies Ax is identically zero, i.e., M^n is a minimal submanifold of E^{n+2} . We proceed under the assumption $c \neq 0$. From (3.2) we get $\mu = \frac{d}{c}$ and $\lambda_i^2 x_i = \frac{d}{c} \lambda_i x_i$, where x_i is the *i*th coordinate function of M^n . It follows that $\lambda_i = 0$ or $\lambda_i = \frac{d}{c}$. This means that M^n is a minimal hypersurface of a hypersphere in E^{n+2} or a orthogonal null 2-type submanifold. Suppose that Axand A^2x are linearly independent locally. Then Ax and A^2x span the normal space of M^n locally. By a direct calculation, we know that $\frac{Ax}{|Ax|}$ and $\frac{dA^2x - \langle A^3x, x \rangle Ax}{|dA^2x - \langle A^3x, x \rangle Ax|}$ are orthonormal normal vector fields of M^n . Let e_1, e_2, \ldots, e_n be a local orthonormal frame of M^n . Then $e_1, e_2, \ldots, e_n, \frac{Ax}{|Ax|}$ and $\frac{dA^2x - \langle A^3x, x \rangle Ax}{|dA^2x - \langle A^3x, x \rangle Ax|}$ consist a frame of E^{n+2} at each point of M^n at which e_1, e_2, \ldots, e_n are defined. From some basic knowledge of linear algebra, we get

$$\sum_{i=1}^{n} \langle Ae_{i}, e_{i} \rangle + \langle A \frac{Ax}{|Ax|}, \frac{Ax}{|Ax|} \rangle + \langle A \frac{dA^{2}x - \langle A^{3}x, x \rangle Ax}{|dA^{2}x - \langle A^{3}x, x \rangle Ax|}, \frac{dA^{2}x - \langle A^{3}x, x \rangle Ax}{|dA^{2}x - \langle A^{3}x, x \rangle Ax|} \rangle = traceA = \sum_{i=1}^{n+2} \lambda_{i}$$

From the above equation and Lemma 2.2, we get

$$(3.3) - \langle Ax, Ax \rangle + \langle A \frac{Ax}{|Ax|}, \frac{Ax}{|Ax|} \rangle + \langle A \frac{dA^2x - \langle A^3x, x \rangle Ax}{|dA^2x - \langle A^3x, x \rangle Ax|}, \frac{dA^2x - \langle A^3x, x \rangle Ax}{|dA^2x - \langle A^3x, x \rangle Ax|} \rangle = \sum_{i=1}^{n+2} \lambda_i.$$

400

Using (3.1), and after some calculations, we get the following equation from (3.3)

$$d\langle A^5x,x\rangle-\langle A^3x,x\rangle\langle A^4x,x\rangle=(\sum_{1=1}^{n+2}\lambda_i+d)(d\langle A^4x,x\rangle-\langle A^3x,x\rangle^2).$$

So the following holds

$$(3.4) \\ \langle A^3x, x \rangle (e \langle A^3x, x \rangle - \langle A^4x, x \rangle) + d \langle A^5x, x \rangle - e d \langle A^4x, x \rangle = 0,$$

where $e = \sum_{i=1}^{n+2} \lambda_i + d$. Without loss of generality, we may assume that M^n can be expressed as a graph

$$(x_1, x_2, \ldots, f(x_1, \ldots, x_n), g(x_1, \ldots, x_n))$$

locally. From the equation (Ax, x) = c and (3.1) we get

(3.5)
$$\lambda_1 x_1^2 + \ldots + \lambda_n x_n^2 + \lambda_{n+1} f^2 + \lambda_{n+1} g^2 = c, \\ \lambda_1^2 x_1^2 + \ldots + \lambda_n^2 x_n^2 + \lambda_{n+1}^2 f^2 + \lambda_{n+1}^2 g^2 = d.$$

If $\lambda_{n+1} = \lambda_{n+2}$, then from (3.5) the following holds

$$\lambda_1(\lambda_1-\lambda_{n+1})x_1^2+\ldots+\lambda_n(\lambda_n-\lambda_{n+1})x_n^2=d-\lambda_{n+1}c$$

Since x_1, x_2, \ldots, x_n are arbitrary, we get $\lambda_i = 0$ or $\lambda_i = \lambda_{n+1}$ for $i = 1, 2, \ldots, n$. This implies that Ax and A^2x are linearly dependent, which is a contradiction. Hence we can see that $\lambda_{n+1} \neq \lambda_{n+2}$. If either λ_{n+1} or λ_{n+2} is zero, we also get a contradiction. So we may assume $\lambda_{n+1}\lambda_{n+2} \neq 0$. We get the following from (3.5)

(3.6)

$$f^{2} = \frac{1}{\lambda_{n+1}(\lambda_{n+2} - \lambda_{n+1})} \{\lambda_{n+2}(c - \sum_{i=1}^{n} \lambda_{i}x_{i}^{2}) - (d - \sum_{i=1}^{n} \lambda_{i}^{2}x_{i}^{2})\},$$

$$g^{2} = \frac{1}{\lambda_{n+2}(\lambda_{n+2} - \lambda_{n+1})} \{(d - \sum_{i=1}^{n} \lambda_{i}x_{i}^{2}) - \lambda_{n+1}(c - \sum_{i=1}^{n} \lambda_{i}^{2}x_{i}^{2})\}.$$

Changrim Jang

Substituting (3.6) into (3.4), and after some computations, we get the following identity

(3.7)
$$\sum_{i=1}^{n} C_{i} x_{i}^{4} + \sum_{i < j} D_{ij} x_{i}^{2} x_{j}^{2} + \sum_{i=1}^{n} E_{i} x_{i}^{2} + F = 0$$

where

$$(3.8) \quad C_{i} = \lambda_{i}^{2} (\lambda_{i} - \lambda_{n+1})^{2} (\lambda_{i} - \lambda_{n+2})^{2} (e - \lambda_{i} - \lambda_{n+1} - \lambda_{n+2}),$$

$$(3.9) \quad D_{ij} = \lambda_{i} \lambda_{j} (\lambda_{i} - \lambda_{n+1}) (\lambda_{i} - \lambda_{n+2}) (\lambda_{j} - \lambda_{n+1}) (\lambda_{j} - \lambda_{n+2}) \cdot (2e - \lambda_{i} - \lambda_{j} - 2\lambda_{n+1} - 2\lambda_{n+2}),$$

$$(3.10)$$

$$E_{i} = \lambda_{i}(\lambda_{i} - \lambda_{n+1})(\lambda_{i} - \lambda_{n+2})[de(\lambda_{n+1} + \lambda_{n+2}) - ce\lambda_{n+1}\lambda_{n+2}$$

$$+c\lambda_{n+1}\lambda_{n+2}(\lambda_{n+1} + \lambda_{n+2}) + d\{\lambda_{i}^{2} + (\lambda_{n+1} + \lambda_{n+2})\lambda_{i}\} - de^{2}]$$

$$+\lambda_{i}(\lambda_{i} - \lambda_{n+1})(\lambda_{i} - \lambda_{n+2})(e - \lambda_{i} - \lambda_{n+1} - \lambda_{n+2})f$$

for a constant number f, and

(3.11)
$$F = \lambda_{n+1}\lambda_{n+2} \{ d^2(e - \lambda_{n+1} - \lambda_{n+2}) + c(\lambda_{n+1} + \lambda_{n+2})(d\lambda_{n+1} + d\lambda_{n+2} - ed - c) \}.$$

Since x_1, x_2, \ldots, x_n are arbitrary, we have $C_i = D_{ij} = E_i = F = 0$ from (3.7). Hence from (3.8),(3.9),(3.10) and (3.11) we get $\lambda_i = \lambda_{n+1}$ or $\lambda_i = \lambda_{n+2}$ or $\lambda_i = 0$ for $i = 1, 2, \ldots, n$. This means that M^n is null 3-type or 2-type. If M^n is null 3-type, then from (3.1) and $\langle Ax, x \rangle = c$ we can conclude that M^n is an open part of $S^p(r_1) \times S^q(r_2) \times E^{n-p-q}$. And if M^n is 2-type, then we can see that M^n is contained in $S^p(r_1) \times S^{n-p}(r_2)$.

REMARK. Our result implies O.Garay's result. In [2], B-Y.Chen showed that if M^2 is a null 2-type surface with constant mean curvature in E^4 , then M^2 is a helical cylinder. So one can prove O.Garay's Theorem, combining our theorem and B-Y.Chen's result.

References

1. B-Y.Chen, Total mean curvature and Submanifolds of finite type, World Scientific Publisher, 1984.

402

- 2 B-Y Chen, Null 2-type surfaces in Euclidean space, Algebra, Analysis and Geometry 1-18, World Scientific Publisher, 1989
- 3. B-Y Chen, Linearly independent, Orthogonal and equivariant immersions, Kodai J. Math 14 (1991), 341-349
- 4. B-Y Chen and M Petrovic, On spectral decomposition of Immersions of finite type, Bull. Austral Math. Soc. 44 (1991), 117-129
- 5. Joonsang Park, Geometric and Analytic Characterizations of Isoparametric submanifolds, thesis (1992), Brandeis University.
- O Garay, An extension of Takahashi's theorem, Geometriae Dedicata 34 (1990), 105-112.
- 7. O.Garay, Orthogonal surfaces with constant mean curvature in the Euclidean 4 space, preprint
- 8. T.Hasanis and T Vlachos, Coordinate Finite Type submanifolds, Geometriae Dedicata 37 (1991), 155-165
- 9 T Hasanis and T Vlachos, Hypersurfaces of E^{n+1} satisfying $\Delta x = Ax + b$, J. Austral Math Soc. 53 (1992), 377-384.

Department of Mathmatics University of Ulsan Ulsan, 680-749, Korea