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ORTHOGONAL IMMERSIONS WITH
CONSTANT MEAN CURVATURE

CHANGRIM JANG

1.Introduction

Let z: M™ — E™ be an isometric immersion of an n dimensional
connected manifold into the m dimensional Euclidean space. Denote
by A the Laplacian operator of M. The immersion z is of Finite Type
k{1] if the position vector z admits the following decomposition

T=z0+x+x2+ -+ g

where o € E™ and Az, = A\z,,\, € R. For a k type immersion
z, let E.(» € {1,2,...,k}) denote the subspace of E™ spanned by
z.(p),p € M™. The immersion z is said to be linearly independent if the
linear subspaces Ey, E,, ..., E; are linearly independent. It is said to
be an orthorgonal immersion if Ey, E,, ..., E; are mnutually orthogonal
subspaces(3,4]. It is known[4] that if z is a linearly independent (resp.
an orthogonal) immersion, then z satisfies the following equation

(1.1) Az = Az + b

for a constant{resp. symmetric) m X m matrix A and b € E™. And it
can be easily seen that if x is an orthogonal immersion, then there
exist a coordinate system of E™ with respect to which x satisfies
Az = Az for a diagonal matrix A. The classification problem for
hypersurfaces satisfying the equation (1.1} is completely solved([4,5,9].
In {8] Th.Vlachos and Th.Hasanis classified the compact submanifolds
of codimension 2 satisfying the equation (1.1) for a diagonal matrix A
and b = 0. Recently O.Garay studied orthogonal surfaces with con-
stant mean curvature in the 4 dimensional Euclidean space and obtain
the following result:
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THEOREM A[7]. Let z: M? — E* be an orthogonal immersion of
a connected surface M? into E*, with constant mean curvature. Then
it 1s an open part of one of the following surfaces:
(1) a minimal surface in E*
(2) a minimal surface in S*
(3) a helical cylinder
(4) a flat torus S'(ry) x S'(ry) in a hypersphere S3(r).

In this paper we investigate orthogonal submanifolds of codimension
2 and obtain the following theorem.

THEOREM B. Let z : M™ — E™*? be an orthogonal immersion
of a connected n dimensional manifold into the (n + 2)- dimensional
Euclidean space , with constant mean curvature. Then M™ is one of
the followings:

(1) a minimal submanifold of E*+?

(2) a minimal hypersurface of some S™*1,

(3) an open part of an n dimensional sphere,

(4) an open part of a product of two spheres SP(r1) x 5" 7P(ry),
p=12...,n-1,

(5) an open part of a product of two spheres and a linear

subspace of E**2 §P(r)) x S(ry) x E*~P7Y,

2<ptgsn—-1,pg21,

(6) an orthogonal null 2-type submanifold.

2.Some preliminaries

Let 2 : M™ — E™ be an isometric immersion. Then the metric
tensor on M " is naturally induced from that of E™. We use the same
notation {, ) for metrics on M™ and E™. Let V and V be the connec-
tions of M™ and E™ respectively. Then we have the so-called Gauss
formula

(2.1) VxY = VxY + B(X,Y),

where X and Y are tangent vector fields of M™, B denotes the second
fundamental form of M™ in E™. The following equation is well-known;

(2.2) Az = traceB = ZB(e,.e,)

=1
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for a local orthonormal frame €, ¢5,... ,e, of M™. Suppose the posi-
tion vector field = satisfies the equation Az = Az for some diagonal
m x m matrix A. Then we have the following two lemmas.

LEMMA 2.1. The equation {(Az,z) = ¢ holds for some constant c.
Proof. Let X be an arbitrary tangent vector of A™. Differentiating
{Az,z) in the direction X, we get

X{Az,z) = 2(Az, X) = 0.

LEMMAZ2.2. For a local orthonormal frame ey, €2,... e, of M™, the
following holds

n

Z(Ae,,e,) = —(Az, Az).

=1

Proof. Differentiating the equation (Az,e,} = 0 in the direction e,
we get

(Ae,,e) + (Az,V e,) = 0.
From which and (2.1) , we have

{Ae,,e,) + (Az, B{e,,e,)} =0.

By summation and (2.2), we get the desired result.

3.Proof of TheoremB

By assumption there exist a coordinate system of E"*? and an (n +
2) x {n + 2) diagonal matrix A with diagonal entries Ay, As, ..., Apg2
such that

Axr = Aﬂ?.

Since M™ has a constant mean curvature, we have
(3.1) (Az, Az} = d

for some constant d. So we get {A%z,x) = d. This implies that A%z
is a normal vector field of M™. We only consider the case M™ is fully
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contained in E**2. If M™ is contained in a hyperplane of E**%, then
we know from [6] that M™ is a minimal submanifold of £**? or an open
part of n dimensional sphere or an open part of a spherical cylinder
which is a null 2-type submanifold. From Lemma 2.1 we know that
(Az,z) = ¢ for some constant ¢. If the two normal vector fields Az
and A%z are linearly dependent at every point of M™, then we may
assume that A%’z = pAz for some funtion g, In this case , we have

(3.2) d=(A%z,z) = p{Az,2) = pc.

If ¢ = 0, then (3.2) that implies Az is identically zero, i.e., M™ is
a minimal submanifold of E"*2. We proceed under the assumption
¢ # 0. From (3.2) we get = 2 and X2z, = %\, where z, is
the zth coordinate funtion of M™. It follows that A, = 0 or A, =
¢ This means that M" is a minimal hypersurface of a hypersphere
m E"*? or 2 orthogomal mull 2+4ype submanifold. Suppose that Ax
and A%z are linearly independent locally. Then Az and A%z span
the normal space of M™" locally. By a direct calculation, we know
that Tﬁ—:—i and lﬁ::éﬁi:i;xl are orthonormal normal vector fields

of M". Let e1,eq,...,e, be a local orthonormal frame of M™. Then
2,443
€1,€2,..- 4 €n, lﬁil d o :—(ﬁ r’:)ﬁl consist a frame of E™*? at each

point of M™ at which ey,ey,... ,¢, are defined. From some basic
knowledge of linear algebra, we get

n

D (dened H AT fp

=1
2. _ (43 2. 143 nt2
dA*z — (A°z,z)Ax  dA°z — (A’2,2)Az — traced — Z)\z

A
( |dA%z — {A%z, ) Az|’ |[dA%z ~ {A3x,x)Az])

From the above equation and Lemma 2.2, we get
(3.3) Az, Az) + (AT

dA%z — A33:,1: Ar  dA%z — (A%z,z)Axr . W2
7 B
[dA2x — (A%z,2)Az|’ |dA2z — {A%z,2) Az|

——
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Using (3.1), and after some calculations, we get the following equation

from (3.3)
n+2
d(A%z,z) — (A%z, 2} (A'z,z) = () A + d)(d(A%e, ) — (4%, 2)?).
1=1
So the following holds
(3.4)
(A%z,z)(e{A’x,2) — (A*z,z)) + d{A®z, z) — ed{Az, ) = 0,

where ¢ = Z?:lz A, + d. Without loss of genenality, we may assume
that M™ can be expressed as a graph

(:213,3:2,,.. af(xh"- )xn)»g(xh*“ )xﬂ))
locally. From the equation (Az,z) = c and (3.1) we get
/\1.’1,‘? +...+ /\n.'l:i + ’\n+lf2 + /\n+lg2 =,
(3:5) 2.2 2.2 2 g2 2 2
’\lxl +...+ )‘nxn + ’\n-}-lf + Aru}-lg = d

If A1 = Ang2, then from {3.5) the following holds
/\I(Al - /\‘n-}-i)m% + ...+ An(An - A,H_[)l‘i =d- )‘n-}-l C.

Since ),%2,...,Zn are arbitrary, we get A, = 0 or A, = A,4q for
¢ =1,2,...,n. This implies that Az and A%z are linearly dependent,
which is a contradiction. Hence we can see that A, 1 # Apy2. I either

Ant1 OF A,yqo 18 zero, we also get a contradiction. So we may assume
Ant1rnt2 7# 0. We get the following from (3.5)

(3.6)

f? = !

Ant1(Ant2 — Anga

PAnta(e - S hal)—(d-Y_ Az,

2 1

g" = {(d—Z)\;Jf?)_)‘ni—l(c_ZAfxf)}'

/\n—i—?(/\n—i—‘Z - f\\n—{-l)

=1 =1
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Substituting (3.6) into (3.4), and after some computations, we get the
following i1dentity

(3.7) iC,:rf + Z D,,z?z% + Zn: Bzl +F =90
=1

1<) =1

where

(3.8) Ci =AM\ — A1)’ (s — Ang2)?(e = Ay = Ang1 — Anga)s
(3‘9) DtJ = ’\1)‘)(’\: - An-&-l)()“t - ’\n+2)(’\3 - )‘n+l)()‘1 ~ Ans2):
(2e = A = Ay — 2has1 — 2nga), |
(3.10)
E, = M = Anr A = Ang)lde(Rnr + Ang) — cednprtnga
FeAnt1Ans2(Ant1 + Anga2) + A% + Qpir + Aug2) N} — de?]
FA(A = Ang1)(A = Aaga)(e = A = Ang1 — Ang2)f

for a constant number f, and

(311) F= ’\n+] /\n+2{d2(e - ’\ﬂ'l-l - ’\n+2)+
C(An.g.} + ’\n+2)(d’\n+1 + d/\n+2 —ed — C)}

Since z1,%2,...,%, are arbitrary, we have C, = D,, = E, = F = 0
from(3.7). Hence from (3.8),(3.9),(3.10) and (3.11) we get A, = A4y
or A\, = Apjoor A, =0forz=1,2,...,n. This means that M™ is null
3-type or 2-type. If M™ is null 3-type, then from (3.1) and (Az,z) =
we can conclude that M™ is an open part of SP(r;) x S%(ry) x E"~P~9,
And if M™ is 2-type, then we can see that M™ is contained in S$?(r;) x
S7=P(r,).

REMARK. Our result implies O.Garay’s result. In (2|, B-Y.Chen
showed that if M? is a null 2-type surface with constant mean curvature
in E* then M? is a helical cylinder. So one can prove O.Garay’s
Theorem, combining our theorem and B-Y.Chen’s result.
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