ORTHOGONAL IMMERSIONS WITH CONSTANT MEAN CURVATURE

Changrim Jang

1.Introduction

Let $x: M^{n} \longrightarrow E^{m}$ be an isometric immersion of an n dimensional connected manifold into the m dimensional Euclidean space. Denote by Δ the Laplacian operator of M^{n}. The immersion x is of Finite Type $k[1]$ if the position vector x admits the following decomposition

$$
x=x_{0}+x_{1}+x_{2}+\cdots+x_{k}
$$

where $x_{0} \in E^{m}$ and $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{t} \in R$. For a k type immersion x, let $E_{\imath}(\imath \in\{1,2, \ldots, k\})$ denote the subspace of E^{m} spanned by $x_{\imath}(p), p \in M^{n}$. The immersion x is said to be linearly independent if the linear subspaces $E_{1}, E_{2}, \ldots, E_{k}$ are linearly independent. It is said to be an orthorgonal immersion if $E_{1}, E_{2}, \ldots, E_{k}$ are mutually orthogonal subspaces[3,4]. It is known[4] that if x is a linearly independent (resp. an orthogonal) immersion, then x satisfies the following equation

$$
\begin{equation*}
\Delta x=A x+b \tag{1.1}
\end{equation*}
$$

for a constant(resp. symmetric) $m \times m$ matrix A and $b \in E^{m}$. And it can be easily seen that if x is an orthogonal immersion, then there exist a coordinate system of E^{m} with respect to which x satisfies $\Delta x=A x$ for a diagonal matrix A. The classification problem for hypersurfaces satisfying the equation (1.1) is completely solved[4,5,9]. $\ln [8]$ Th.Vlachos and Th.Hasanis classified the compact submanifolds of codimension 2 satisfying the equation (1.1) for a diagonal matrix A and $b=0$. Recently O.Garay studied orthogonal surfaces with constant mean curvature in the 4 dimensional Euclidean space and obtain the following result:

[^0]Theorem A[7]. Let $x: M^{2} \longrightarrow E^{4}$ be an orthogonal immersion of a connected surface M^{2} into E^{4}, with constant mean curvature. Then it is an open part of one of the following surfaces:
(1) a minimal surface in E^{4}
(2) a minimal surface in S^{3}
(3) a helical cylinder
(4) a flat torus $S^{1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right)$ in a hypersphere $S^{3}(r)$.

In this paper we investigate orthogonal submanifolds of codimension 2 and obtain the following theorem.

Theorem B. Let $x: M^{n} \longrightarrow E^{n+2}$ be an orthogonal immersion of a connected n dimensional manifold into the ($n+2$)- dimensional Euclidean space, with constant mean curvature. Then M^{n} is one of the followings:
(1) a minimal submanifold of E^{n+2},
(2) a minimal hypersurface of some S^{n+1},
(3) an open part of an n dimensional sphere,
(4) an open part of a product of two spheres $S^{p}\left(r_{1}\right) \times S^{n-p}\left(r_{2}\right)$,

$$
p=1,2, \ldots, n-1,
$$

(5) an open part of a product of two spheres and a linear subspace of $E^{n+2}, S^{p}\left(r_{1}\right) \times S^{q}\left(r_{2}\right) \times E^{n-p-q}$, $2 \leqslant p+q \leqslant n-1, p, q \geqslant 1$,
(6) an orthogonal null 2-type submanifold.

2.Some preliminaries

Let $x: M^{n} \longrightarrow E^{m}$ be an isometric immersion. Then the metric tensor on M^{n} is naturally induced from that of E^{m}. We use the same notation \langle,$\rangle for metrics on M^{n}$ and E^{m}. Let $\bar{\nabla}$ and ∇ be the connections of M^{n} and E^{m} respectively. Then we have the so-called Gauss formula

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \tag{2.1}
\end{equation*}
$$

where X and Y are tangent vector fields of M^{n}, B denotes the second fundamental form of M^{n} in E^{m}. The following equation is well-known;

$$
\begin{equation*}
\Delta x=\operatorname{trace} B=\sum_{i=1}^{n} B\left(e_{2} . e_{i}\right) \tag{2.2}
\end{equation*}
$$

for a local orthonormal frame $e_{1}, e_{2}, \ldots, e_{n}$ of M^{n}. Suppose the position vector field x satisfies the equation $\Delta x=A x$ for some diagonal $m \times m$ matrix A. Then we have the following two lemmas.

LEMMA 2.1. The equation $(A x, x)=c$ holds for some constant c.
Proof. Let X be an arbitrary tangent vector of M^{n}. Differentiating $\langle A x, x\rangle$ in the direction X, we get

$$
X\langle A x, x\rangle=2\langle A x, X\rangle=0
$$

LEMMA2.2. For a local orthonormal frame $e_{1}, e_{2}, \ldots, e_{n}$ of M^{n}, the following holds

$$
\sum_{i=1}^{n}\left\langle A e_{i}, e_{i}\right\rangle=-\langle A x, A x\rangle
$$

Proof. Differentiating the equation $\left\langle A x, e_{i}\right\rangle=0$ in the direction e_{i}, we get

$$
\left\langle A e_{i}, e_{\imath}\right\rangle+\left\langle A x, \bar{\nabla}_{e_{1}} e_{\imath}\right\rangle=0
$$

From which and (2.1), we have

$$
\left\langle A e_{i}, e_{\imath}\right\rangle+\left\langle A x, B\left(e_{i}, e_{2}\right)\right\rangle=0
$$

By summation and (2.2), we get the desired result.

3.Proof of TheoremB

By assumption there exist a coordinate system of E^{n+2} and an ($n+$ 2) $\times(n+2)$ diagonal matrix A with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+2}$ such that

$$
\Delta x=A x
$$

Since M^{n} has a constant mean curvature, we have

$$
\begin{equation*}
\langle A x, A x\rangle=d \tag{3.1}
\end{equation*}
$$

for some constant, d. So we get $\left\langle A^{2} x, x\right\rangle=d$. This implies that $A^{2} x$ is a normal vector field of M^{n}. We only consider the case M^{n} is fuily
contained in E^{n+2}. If M^{n} is contained in a hyperplane of E^{n+2}, then we know from [6] that M^{n} is a minimal submanifold of E^{n+2} or an open part of n dimensional sphere or an open part of a spherical cylinder which is a null 2-type submanifold. From Lemma 2.1 we know that $\langle A x, x\rangle=c$ for some constant c. If the two normal vector fields $A x$ and $A^{2} x$ are linearly dependent at every point of M^{n}, then we may assume that $A^{2} x=\mu A x$ for some funtion μ, In this case, we have

$$
\begin{equation*}
d=\left\langle A^{2} x, x\right\rangle=\mu\langle A x, x\rangle=\mu c \tag{3.2}
\end{equation*}
$$

If $c=0$, then (3.2) that implies $A x$ is identically zero, i.e., M^{n} is a minimal submanifold of E^{n+2}. We proceed under the assumption $c \neq 0$. From (3.2) we get $\mu=\frac{d}{c}$ and $\lambda_{i}^{2} x_{i}=\frac{d}{c} \lambda_{i} x_{i}$, where x_{1} is the i th coordinate funtion of M^{n}. It follows that $\lambda_{2}=0$ or $\lambda_{2}=$ $\frac{d}{c}$. This means that M^{n} is a minimal hypersurface of a hypersphere in E^{n+2} or a orthogonzal mull 2-type submanifold. Suppose that $A x$ and $A^{2} x$ are linearly independent locally. Then $A x$ and $A^{2} x$ span the normal space of M^{n} locally. By a direct calculation, we know that $\frac{A x}{|A x|}$ and $\frac{d A^{2} x-\left\langle A^{3} x, x\right\rangle A x}{\left|d A^{2} x-\left\langle A^{3} x, x\right\rangle A x\right|}$ are orthonormal normal vector fields of M^{n}. Let $e_{1}, e_{2}, \ldots, e_{n}$ be a local orthonormal frame of M^{n}. Then $e_{1}, e_{2}, \ldots, e_{n}, \frac{A x}{|A x|}$ and $\frac{d A^{2} x-\left\langle A^{3} x, x\right\rangle A x}{\left|d A^{2} x-\left\langle A^{3} x, x\right\rangle A x\right|}$ consist a frame of E^{n+2} at each point of M^{n} at which $e_{1}, e_{2}, \ldots, e_{n}$ are defined. From some basic knowledge of linear algebra, we get

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\langle A e_{i}, e_{\imath}\right\rangle+\left\langle A \frac{A x}{|A x|}, \frac{A x}{|A x|}\right\rangle+ \\
& \left\langle A \frac{d A^{2} x-\left\langle A^{3} x, x\right\rangle A x}{\left|d A^{2} x-\left\langle A^{3} x, x\right\rangle A x\right|}, \frac{d A^{2} x-\left\langle A^{3} x, x\right\rangle A x}{\left|d A^{2} x-\left\langle A^{3} x, x\right\rangle A x\right|}\right\rangle=\operatorname{trace} A=\sum_{i=1}^{n+2} \lambda_{2}
\end{aligned}
$$

From the above equation and Lemma 2.2, we get

$$
\begin{align*}
& -\langle A x, A x\rangle+\left\langle A \frac{A x}{|A x|}, \frac{A x}{|A x|}\right\rangle+ \tag{3.3}\\
& \quad\left\langle A \frac{d A^{2} x-\left\langle A^{3} x, x\right\rangle A x}{\left|d A^{2} x-\left\langle A^{3} x, x\right\rangle A x\right|}, \frac{d A^{2} x-\left\langle A^{3} x, x\right\rangle A x}{\left|d A^{2} x-\left\langle A^{3} x, x\right\rangle A x\right|}\right\rangle=\sum_{i=1}^{n+2} \lambda_{i} .
\end{align*}
$$

Using (3.1), and after some calculations, we get the following equation from (3.3)

$$
d\left\langle A^{5} x, x\right\rangle-\left\langle A^{3} x, x\right\rangle\left(A^{4} x, x\right\rangle=\left(\sum_{1=1}^{n+2} \lambda_{2}+d\right)\left(d\left\langle A^{4} x, x\right\rangle-\left\langle A^{3} x, x\right\rangle^{2}\right) .
$$

So the following holds

$$
\begin{equation*}
\left\langle A^{3} x, x\right\rangle\left(e\left\langle A^{3} x, x\right\rangle-\left\langle A^{4} x, x\right\rangle\right)+d\left\langle A^{5} x, x\right\rangle-e d\left\langle A^{4} x, x\right\rangle=0, \tag{3.4}
\end{equation*}
$$

where $e=\sum_{i=1}^{n+2} \lambda_{2}+d$. Without loss of genenality, we may assume that M^{n} can be expressed as a graph

$$
\left(x_{1}, x_{2}, \ldots, f\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right)\right)
$$

locally. From the equation $\langle A x, x\rangle=c$ and (3.1) we get

$$
\begin{align*}
& \lambda_{1} x_{1}^{2}+\ldots+\lambda_{n} x_{n}^{2}+\lambda_{n+1} f^{2}+\lambda_{n+1} g^{2}=c, \\
& \lambda_{1}^{2} x_{1}^{2}+\ldots+\lambda_{n}^{2} x_{n}^{2}+\lambda_{n+1}^{2} f^{2}+\lambda_{n+1}^{2} g^{2}=d . \tag{3.5}
\end{align*}
$$

If $\lambda_{n+1}=\lambda_{n+2}$, then from (3.5) the following holds

$$
\lambda_{1}\left(\lambda_{1}-\lambda_{n+1}\right) x_{1}^{2}+\ldots+\lambda_{n}\left(\lambda_{n}-\lambda_{n+1}\right) x_{n}^{2}=d-\lambda_{n+1} c .
$$

Since $x_{1}, x_{2}, \ldots, x_{n}$ are arbitrary, we get $\lambda_{1}=0$ or $\lambda_{1}=\lambda_{n+1}$ for $i=1,2, \ldots, n$. This implies that $A x$ and $A^{2} x$ are linearly dependent, which is a contradiction. Hence we can see that $\lambda_{n+1} \neq \lambda_{n+2}$. If either λ_{n+1} or λ_{n+2} is zero, we also get a contradiction. So we may assume $\lambda_{n+1} \lambda_{n+2} \neq 0$. We get the following from (3.5)

$$
\begin{align*}
& f^{2}=\frac{1}{\lambda_{n+1}\left(\lambda_{n+2}-\lambda_{n+1}\right)}\left\{\lambda_{n+2}\left(c-\sum_{i=1}^{n} \lambda_{i} x_{i}^{2}\right)-\left(d-\sum_{i=1}^{n} \lambda_{i}^{2} x_{t}^{2}\right)\right\} \tag{3.6}\\
& g^{2}=\frac{1}{\lambda_{n+2}\left(\lambda_{n+2}-\lambda_{n+1}\right)}\left\{\left(d-\sum_{i=1}^{n} \lambda_{i} x_{i}^{2}\right)-\lambda_{n+1}\left(c-\sum_{i=1}^{n} \lambda_{i}^{2} x_{i}^{2}\right)\right\}
\end{align*}
$$

Substituting (3.6) into (3.4), and after some computations, we get the following identity

$$
\begin{equation*}
\sum_{i=1}^{n} C_{i} x_{i}^{4}+\sum_{i<j} D_{t} x_{i}^{2} x_{j}^{2}+\sum_{t=1}^{n} E_{t} x_{i}^{2}+F=0 \tag{3.7}
\end{equation*}
$$

where

$$
\begin{gather*}
C_{i}=\lambda_{i}^{2}\left(\lambda_{t}-\lambda_{n+1}\right)^{2}\left(\lambda_{t}-\lambda_{n+2}\right)^{2}\left(e-\lambda_{2}-\lambda_{n+1}-\lambda_{n+2}\right), \tag{3.8}\\
D_{i j}=\lambda_{i} \lambda_{j}\left(\lambda_{i}-\lambda_{n+1}\right)\left(\lambda_{t}-\lambda_{n+2}\right)\left(\lambda,-\lambda_{n+1}\right)\left(\lambda_{j}-\lambda_{n+2}\right) . \tag{3.9}\\
\left(2 e-\lambda_{2}-\lambda_{j}-2 \lambda_{n+1}-2 \lambda_{n+2}\right),
\end{gather*}
$$

$$
\begin{gather*}
E_{i}=\lambda_{3}\left(\lambda_{2}-\lambda_{n+1}\right)\left(\lambda_{t}-\lambda_{n+2}\right)\left[d e\left(\lambda_{n+1}+\lambda_{n+2}\right)-c e \lambda_{n+1} \lambda_{n+2}\right. \tag{3.10}\\
\left.+c \lambda_{n+1} \lambda_{n+2}\left(\lambda_{n+1}+\lambda_{n+2}\right)+d\left\{\lambda_{i}^{2}+\left(\lambda_{n+1}+\lambda_{n+2}\right) \lambda_{t}\right\}-d e^{2}\right] \\
+\lambda_{1}\left(\lambda_{2}-\lambda_{n+1}\right)\left(\lambda_{2}-\lambda_{n+2}\right)\left(e-\lambda_{2}-\lambda_{n+1}-\lambda_{n+2}\right) f
\end{gather*}
$$

for a constant number f, and

$$
\begin{align*}
& F=\lambda_{n+1} \lambda_{n+2}\left\{d^{2}\left(e-\lambda_{n+1}-\lambda_{n+2}\right)+\right. \tag{3.11}\\
& \left.\quad c\left(\lambda_{n+1}+\lambda_{n+2}\right)\left(d \lambda_{n+1}+d \lambda_{n+2}-e d-c\right)\right\} .
\end{align*}
$$

Since $x_{1}, x_{2}, \ldots, x_{n}$ are arbitrary, we have $C_{z}=D_{i}=E_{\imath}=F=0$ from(3.7). Hence from (3.8),(3.9),(3.10) and (3.11) we get $\lambda_{i}=\lambda_{n+1}$ or $\lambda_{2}=\lambda_{n+2}$ or $\lambda_{2}=0$ for $i=1,2, \ldots, n$. This means that M^{n} is null 3 -type or 2 -type. If M^{n} is null 3 -type, then from (3.1) and $\langle A x, x\rangle=c$ we can conclude that M^{n} is an open part of $S^{p}\left(r_{1}\right) \times S^{q}\left(r_{2}\right) \times E^{n-p-q}$. And if M^{n} is 2 -type, then we can see that M^{n} is contained in $S^{p}\left(r_{1}\right) \times$ $S^{n-p}\left(r_{2}\right)$.

Remark. Our result implies O.Garay's result. In [2], B-Y.Chen showed that if M^{2} is a null 2 -type surface with constant mean curvature in E^{4}, then M^{2} is a helical cylinder. So one can prove O.Garay's Theorem, combining our theorem and B-Y.Chen's result.

References

1. B-Y.Chen, Total mean curvature and Submanzfolds of finte type, World Sclentific Publisher, 1984.

2 B-Y Chen, Null 2-iype surfaces in Euchdean space, Algebra,Analysis and Geometry 1-18, World Scientific Publisher, 1989
3. B-Y Chen, Linearly zndependent, Orthogonal and equivariant immersions, Kodal J. Math 14 (1991), 341-349
4. B-Y Chen and M Petrovic, On spectral decomposstion of Immersions of finte type, Bull. Austral Math. Soc. 44 (1991), 117-129
5. Joonsang Park, Geometric and Analytic Characterızatıons of Isoparametric submanufpids, thesis (1992), Brandes Unversity.
6. O Garay, An extenston of Takahashi's theorem, Geometriae Dedicata 34 (1990), 105-112.
7. O.Garay, Orthogonal surfaces with constant mean curvature in the Euclidean 4 space, preprint
8. T.Hasanis and T Vlachos, Coordinate Finıte Type submanıfolds, Geometriae Dedicata 37 (1991), 155-165
9 T Hasams and TVlachos, Hypersurfaces of E^{n+1} satisfying $\Delta x=A x+b, \mathbf{J}$. Austral Math Soc. 53 (1992), 377-384.

Departinent of Mathmatics
University of Ulsan
Ulsan, 680-749, Korea

[^0]: Received December 13,1994.

