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ON THE SPECTRAL GEOMETRY OF
CLOSED MINIMAL TOTALLY REAL

SUBMANIFOLDS IN A COMPLEX SPACE FORM

Tae Ho Kang

1. Introduction
The spectral geometry for the second order operators arising in Rie- 

mannian geometry has been studied by many authors [1,3,4,5,7,10,11]. 
Among them, the spectral geometry of the normal Jacobi operator 
for minimal submanifolds was studied in [1,4,5,6]. The normal Ja
cobi operator arises in the second variation formula for the functional

Thi으 立皿1富 can be expre^eiin 七史口끄로 of aik
operator J (called the normal Jacobi operator) defined on the cross 
section T(NM) of the normal bundle of the isometric minimal immer
sion. f : M ——> N、which is defined by J = A + 反一S)where A is 
the rough Laplacian on NM and R and S are linear transformations 
of NM defined by means of a partial Ricci operator R of N and of the 
second fundamental form and its transpose, respectively.

The purpose of the present paper is to study the spectral geometry 
for totally real submanifolds in a manifold of constant holomorphic 
sectional curvature.

The spectral geometry for the Jacobi operator of the energy of a 
harmonic map was studied in [8,10,11].

2. Preliminaries
For a Riemannian manifold M which is isometrically immersed in a 

Riemannian manifold N with the Riemannian metric g, the formulas 
of G허iss and Weingarten are respectively given by

(2.1) = vxr + B(x,y), N\/Xv = -avx + dxv
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for vector fields X，Y tangent to M and a normal vector field V, where 
V be the Levi-Ci vita connection on Af, and A and B are called the 
second fundamental forms of which are related by g(匕 B(X、K))= 
g⑷(X),Y).

Furthermore, we can consider A as a cross section of the Riemannian 
vector bundle Hom(NM^ SM\ where SM is the bundle of symmetric 
transformations of 난le tangent bundle TM and NM is the normal 
bundle of M in N, Then S Ao A e where
r(e) denotes the space of smooth sections of •. Henceforth we adopt 
the following notations ;

o ：= the trace of o A(z.e., the square norm of A ),

ln 二二 the trace of S o the square norm of S ),

kn := the square nxjrm of the curvature tensor of 
connection,

t ：= the square norm of the covariant derivative of 
the second fundamental form A,

A submanifold Af of an almost complex manifold (N, J) is said to 
be totally real provided that the almost complex structure J of N 
maps tangent vectors to M into normal vectors. A Kaehler manifold 
is a complex space form of constant holomorphic sectional curvature 
A：, denoted by N(k\ if its curvature tensor R satisfies

R(X, Y)z = §{g(匕 Z)X 一 g(X, Z)Y + g{JY, Z}JX

-g(JX, Z)JY + 2g(X, JY)JZ},

where X)匕 Z are vector fields in N*
We denote by CPn(k) the complex projective space of real dimRA 

sion 2n with constant holomorphic sectional curvature ky and RP”(§) 
the 호eal projective space with constant sectional curvature 亭. Then 
there is a natural embedding of real projective space KPn( j) as to
tally real, totally geodesic submanifold of CPn(k).
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Now we introduce the Weyl conformal curvature tensor C and the 
Einstein tensor G on which axe respectively defined by

C(X, Y)Z =氏(X, Y)Z + 一丄{p(X, Z)Y 一 p(y, Z)X + g(X, Z)QY

-g(匕 Z)QX}-(云二 i)»_2){g(x，Z)Y - g(K z)x},

G(X,Y) = p(X,Y) — \(X,Y)t
n

for any vector fields X"匕 Z on M, where g(QX, K) = p(X, F), and for 
a local orthonormal frame field 佃”…〉环} Q(X, F):=史二】g^R^X) 
匕 勺)and r are the Ricci tensor and the scalar curvature on. Af, re
spectively. Then we have

(2.2) i 이 2= 园2——W_gj2 --------2--------丁2
丿 ''11 n-2in 十(n- l)(n-2)'

(2.3) |(기2 = 仙2 _ 丄丁2
n

G = 0 holds if and only if M is Einstein. (7 = 0 and G = 0 hold if and 
only if M has a constant sectional curvature (n > 4).

Let R be the partial Ricci transformation, which is defined by

n
花(V) ：=£{K(eU 丄，

1=1

where V is a normal vector field and 丄 denotes the normal part of a 
vector with respect to the metric g.

Now we consider the differential operator J、which is usually called 
the normal Jacobi operator^ defined by

0 = A + 丘 - S,

where A = - £：顼為玖,-以…)

Throughout this paper M will denote a closed (compact without 
boundary) manifold. In fact the operator J arising from the second 
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variation formula of M is self-adjoint, elliptic of second order, and has 
a discrete spectrum as consequence of compactness of M.

From now on we assume that M denotes an n-dimensional totally 
real submanifold of a 2n-dimensional Kaehler manifold. Then we ob
tain from (2.1)

(2.4) Qx(JY) = Ex 匕

(2.5) JB(X,Y) = -AjyX,

(2.6) g(B(X, K), JZ) = g(硏 X, Z), JY)

for any vector fields X」匕 Z tangent to M.
If an n-dnneH^oiKd Et훪曲md submamfoM M of a 2n-<fanen^anal 

complex space form is minimal, then the Simon's type formula 
[cf.12] is given by

1 ~ 〜 k
(2.7) 5 氏7 = t — kn — ln + —(n + 1)<t,

匕 으

where kn := 一 昼(丄4% A6]2), Aa := ACa, {ea ： a = n + 1, • • - ,2n} 
a local orthonormal basis of the normal space NXM at x 6 M, [Aa, A6]= 
Aa o Ab ~ Ab o Aa.

3. The calculation of spectral invariants
In this section we apply the normal Jacobi operator J acting on 

T(NM) to the Gilkey's results.
Now consider the semigroup given by

e~tJV(x) = f K(t,x,y,J)V(y)dvg(y),
JM

where 饥 J。E Hom(NyM^ NXM) is the kernel function and 
dvg denotes the volume element of M with respect to g. Then we have 
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asymptotic expansions for Z2-trace
8 OO

(3.1) Tr(e-^) = £eT*' ~ (4混)-끅 £"印0) (t 1 0+),
t=l j=0

where 2n denotes the real dimension TV, and each 印(3) is the spectral 
invariants of 3、which depends only on the discrete spectrum ;

Spec(M〉g) = {Ai < A2 < • • • f +oo}.
Applying the normal Jacobi operator J to the Gilkey's results [4,p.327] 

,we obtain
Theorem

(i)

(ii)

節）

[cf. 3,4].
«o(J) = q-Vol(M.g).

= § [ rdvg + I TT(E)d% 
b Jm Jm

a2(J) = §為 L伽2 - 2|p|2 + 2]•히2)如

+ 云航[{—30En + 7毕(60丁E + 180归2)}(加g,

where q is the codimension n and E :二二—R + S.
If M is an n-dimensional, minimal, totally real submanifold of a

complex space form N(k) with dimension 2n, then we obtain

(3-2)

(3-3)

(3-4)

r = —n(n — 1) — <7,

Tr(E) = —n(n + 1) — r, 
乙

끄「(矽) = —n(n + 3)2 + —(n + 3)(7 + Zn,
10 z

r k2
kn = kn — —n(n 一 1) + kr.(3-5)

where (3.2) follows from the equation of Gauss, (3.3) and (3.4) from 
the definition of 玖 and (3.5) from the equation of Ricci, (3.2) and (2.6)

Substituting (3.2)〜(3.5) into THEOREM, we get
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THEOREM 1. Let M be an n-dimensional compact, minimal, to
tally real submaniR>ld of a 2n-dimensional complex space form N(k) 
with constant holomorphic sectional curvature k. Then the coefficients 
ao(y), ai(^7) and <丑(。)of the asymptotic expansion for the normal 
Jacobi operator J are respectively given by

(3.6) «o(J) = nVol(M,g),

A I*
(3.7) ai(<7) = — / Tdvg + -n(n + l)Vol(M,g),

b JM Z

(3.8) fl2(J) = $6 /J?끼KI? - 2n|p|2

+ 5(n 一 12)丁2 — 30fcn + 180，n]血g
+ 흔/ (n2 - 2n - lQ)rdvs + a0Vol(M,g),

where aQ is a number determined by n and 如

COROLLARY 1. Under the same situations as stated in Theorem 1, 
the following quantities are its spectral invariants when n is not equal 
to 6.

(1) dimM. Vol(M,g), / rdvg, I (kn + ln - t)dvg, 
JM Jm

⑵ / advg,
Jm

⑶ 烏 •小끼2 - \p\2)dvg + 크3쯔//2血g + (弘 - 础如,

(4) i疝 [ (I이2 + -一이2)血 g + 申 / 수 dVg + ~ [ (64 - kn)dvg,
Jm n — 2. 12

(5) 須石 / (|C|2 + -一一；|G『)dug+ai [ T2dvg + -^ /" (6t - 7kn)dvg,
况 U n~ 2 12 JM

, 5n2 — 67n + 66
where =--------------------

360(n - 1)
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Proof. (1) and (2) follow from (2.7), (3.1), (3.6) and (3.7). Substi
tuting (2.2) and (2.3) into (3.8), we obtain (4). (5) follows from (4) 
and the fourth spectral invariant of (1). Q.E.D.

4. Some Results
From now on, we consider n-dimensional, compact, mini ami, totally 

real submanifolds M and Mf of N(k) with dimension 2n.
First of all we have from (2) of Corollary 1

Proposition 1. Assume that Spec(M^ J7) = Spec(M‘ W Then 
if M is totally geodesic, so does Mf.

PROPOSITION 2. Assume that Spec(M^) = Spec(M\J‘) and
— t)dvg < 一 t')dvg、Then the second fundamental forms 

on M commute each other if and only if the second fundamental forms 
on M1 commute each oiher^id fM(In — f)dvg = —七八位妒.

Proof. This follows from (1) of Corollary 1. Q.E.D.

We get from ⑸ of Corollary 1

PROPOSITION 3. Let M and M1 be Einstein. Assxmie that Spec(My J) 
=Spec{M\ fM(6t ~7kn)dvff < — 7kfn)dvgf. Then M has a
constant curvature k if and only if Mf has the same constant cubature 
k and fM(6t 一 7kn~)dvg = - 7思)如,.

Proposition 4. Assume that Spec(M,S) — Spec(M,,^/). If M 
has a constant curvature k, and Mf is Einstein and if fM(6ln — kn)dvff < 
Jm」이k 一 七 then M‘ has the same constant cur^ture k and
，扇(6Zn — KQdvg = J"⑹：—贮)du"

Proof. It follows from (4) of Corollary 1. Q.E.D.

PROPOSITION 5. Let M be an n-dimensional compact minimal, to- 
laJly real submanifold of CPn(k) Assume that Spec(M^ = Spec 
(RP"G),，). Then M is a totally geodesic EPn(|).

Proof. Proposition 1 implies that M is totally geodesic in CPn(k). 
Then M is J?Pn(|)(cf.[ 9 ]). Q.E.D.



396 Tae Ho Kang

References
1. H.Donnelly, Spectral invariants of the second tuna说on operator} Illinois J.Math. 

21 (1977), 185-189
2. P B.Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index 

theorem, Publish or Perish, 1984.
3 P.B.Gilkey, The spectral Geometry of a Rtemannian manifold^ J DifF.Geometry 

10 (1975), 601-608.
4. T.Hasegawa, Spectral Geometry of closed minimal submanifolds m a space 

form, real and complex^ Kodai Math.J. 3 (1980), 224-252
5. T.H.Kang and H.S Kim, On the spectral geometry of closed mimmal submani

folds m a Sasaktan or cosymlettc manifold with constant <f)-sectzonal curvature, 
preprint.

6. T H.Kang and H S Kim, On the spectral geometry of the Jacobi operator of 
harmonic maps into a Sasaktan or cosympleizc mam fold of corisiant ^-sectional 
curvature, preprint

7. T H.Kang and J.S.Pak, Some remarks for the spectrum of the p~Laplacian on 
Sasakian mamfolds, to appear in J. of K.M.S .

8. T H.Kang and J S.Pak, On the spectral geometry of the Jacobi operator of 
harmonic maps into a quaiemtontc protective space, preprint

9. M Kimura, Real hypersurfaces and complex submanifolds 힙n complex projective 
space, Trans of A M.S. 296 (1986), 137-149.

10. S Nishikawa, P.Tondeur and L.Vanhecke, Spectral Geometry for Riemannian 
FohationSj Annals of Global Analysis and Geometry 10 (1992), 291-304.

11. H Urakawa, Spectral Geometry of the second 힝amaZzon operator of harmonic 
maps, Illinois J Math. 33(2) (1989), 250-267.

12. K Yano and M Kon, Structures on manifolds^ vol. 3, Series in Pure Math., 
World Scientific, Singapore, 1984

Departments of Mathematics
University of Ulsan
Ulsan, 680-749, KOREA


