Pusan Kyöngnam Math. J 10(1994), No 2, pp 389-396

ON THE SPECTRAL GEOMETRY OF CLOSED MINIMAL TOTALLY REAL SUBMANIFOLDS IN A COMPLEX SPACE FORM

TAE HO KANG

1. Introduction

The spectral geometry for the second order operators arising in Riemannian geometry has been studied by many authors [1,3,4,5,7,10,11]. Among them, the spectral geometry of the normal Jacobi operator for minimal submanifolds was studied in [1,4,5,6]. The normal Jacobi operator arises in the second variation formula for the functional area. This formula can be expressed in terms of an elliptic differential operator \mathcal{J} (called the normal Jacobi operator) defined on the cross section $\Gamma(NM)$ of the normal bundle of the isometric minimal immersion $f: M \longrightarrow N$, which is defined by $\mathcal{J} = \tilde{\Delta} + \tilde{R} - S$, where $\tilde{\Delta}$ is the rough Laplacian on NM and \tilde{R} and S are linear transformations of NM defined by means of a partial Ricci operator \tilde{R} of N and of the second fundamental form and its transpose, respectively.

The purpose of the present paper is to study the spectral geometry for totally real submanifolds in a manifold of constant holomorphic sectional curvature.

The spectral geometry for the Jacobi operator of the energy of a harmonic map was studied in [8,10,11].

2.Preliminaries

For a Riemannian manifold M which is isometrically immersed in a Riemannian manifold N with the Riemannian metric g, the formulas of Gauss and Weingarten are respectively given by

(2.1)
$$^{N}\nabla_{X}Y = \nabla_{X}Y + B(X,Y), \quad ^{N}\nabla_{X}V = -A^{V}X + D_{X}V$$

Received December 10,1994.

The Present Studies were Supported (in part) by the Basic Science Research Institute Program, Ministry of Education, (1994) Project No. BSRI- 94-1404 and TGRC-KOSEF.

for vector fields X, Y tangent to M and a normal vector field V, where ∇ be the Levi-Civita connection on M, and A and B are called the second fundamental forms of M, which are related by $g(V, B(X, Y)) = g(A^V(X), Y)$.

Furthermore, we can consider A as a cross section of the Riemannian vector bundle Hom(NM, SM), where SM is the bundle of symmetric transformations of the tangent bundle TM and NM is the normal bundle of M in N. Then $S := {}^{t}A \circ A \in \Gamma(Hom(NM, NM))$, where $\Gamma(\bullet)$ denotes the space of smooth sections of \bullet . Henceforth we adopt the following notations;

- σ := the trace of ${}^{t}A \circ A(i.e., \text{ the square norm of } A)$,
- l_n := the trace of $S \circ S(i.e., \text{ the square norm of } S)$,
- k_n := the square norm of the curvature tensor of the normal connection,
- t := the square norm of the covariant derivative of the second fundamental form A.

A submanifold M of an almost complex manifold (N, J) is said to be *totally real* provided that the almost complex structure J of Nmaps tangent vectors to M into normal vectors. A Kaehler manifold is a complex space form of constant holomorphic sectional curvature k, denoted by N(k), if its curvature tensor R satisfies

$$R(X,Y)Z = \frac{k}{4} \{g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY + 2g(X,JY)JZ\},\$$

where X, Y, Z are vector fields in N.

We denote by $CP^n(k)$ the complex projective space of real dimension 2n with constant holomorphic sectional curvature k, and $RP^n(\frac{k}{4})$ the real projective space with constant sectional curvature $\frac{k}{4}$. Then there is a natural embedding of real projective space $RP^n(\frac{k}{4})$ as totally real, totally geodesic submanifold of $CP^n(k)$.

390

Now we introduce the Weyl conformal curvature tensor C and the Einstein tensor G on M, which are respectively defined by

$$C(X,Y)Z = R(X,Y)Z + \frac{1}{n-2} \{\rho(X,Z)Y - \rho(Y,Z)X + g(X,Z)QY - g(Y,Z)QX\} - \frac{1}{(n-1)(n-2)} \{g(X,Z)Y - g(Y,Z)X\},$$
$$G(X,Y) = \rho(X,Y) - \frac{1}{n}g(X,Y)\tau$$

for any vector fields X, Y, Z on M, where $g(QX, Y) = \rho(X, Y)$, and for a local orthonormal frame field $\{e_1, \dots, e_n\} \rho(X, Y) := \sum_{i=1}^n g(R(e_i, X) Y, e_i)$ and τ are the Ricci tensor and the scalar curvature on M, respectively. Then we have

(2.2)
$$|C|^2 = |R|^2 - \frac{4}{n-2} |\rho|^2 + \frac{2}{(n-1)(n-2)} \tau^2,$$

(2.3)
$$|G|^2 = |\rho|^2 - \frac{1}{n}\tau^2.$$

G = 0 holds if and only if M is Einstein. C = 0 and G = 0 hold if and only if M has a constant sectional curvature $(n \ge 4)$.

Let $\tilde{\mathcal{R}}$ be the partial Ricci transformation, which is defined by

$$\tilde{\mathcal{R}}(V) := \sum_{i=1}^{n} \{ R(e_i, V) e_i \}^{\perp},$$

where V is a normal vector field and \perp denotes the normal part of a vector with respect to the metric g.

Now we consider the differential operator \mathcal{J} , which is usually called the normal Jacobi operator, defined by

$$\mathcal{J}=\tilde{\Delta}+\tilde{R}-S,$$

where $\tilde{\Delta} = -\sum_{i=1}^{n} (D_{e_i} D_{e_i} - D_{\nabla_{e_i} e_i})$

Throughout this paper M will denote a closed (compact without boundary) manifold. In fact the operator \mathcal{J} arising from the second

variation formula of M is self-adjoint, elliptic of second order, and has a discrete spectrum as consequence of compactness of M.

From now on we assume that M denotes an *n*-dimensional totally real submanifold of a 2n-dimensional Kaehler manifold. Then we obtain from (2.1)

$$(2.4) D_X(JY) = J\nabla_X Y,$$

$$(2.5) JB(X,Y) = -A^{JY}X,$$

$$(2.6) g(B(X,Y),JZ) = g(B(X,Z),JY)$$

for any vector fields X, Y, Z tangent to M.

If an *n*-dimensional totally real submanifold M of a 2*n*-dimensional complex space form N(k) is minimal, then the Simon's type formula [cf.12] is given by

(2.7)
$$\frac{1}{2}\tilde{\Delta}\sigma = t - \tilde{k_n} - l_n + \frac{k}{4}(n+1)\sigma,$$

where $\tilde{k_n} := -\sum_{a,b} Tr([A^a, A^b]^2), A^a := A^{e_a}, \{e_a : a = n + 1, \dots, 2n\}$ a local orthonormal basis of the normal space $N_x M$ at $x \in M, [A^a, A^b] = A^a \circ A^b - A^b \circ A^a$.

3. The calculation of spectral invariants

In this section we apply the normal Jacobi operator \mathcal{J} acting on $\Gamma(NM)$ to the Gilkey's results.

Now consider the semigroup $e^{-t\mathcal{J}}$ given by

$$e^{-t\mathcal{J}}V(x) = \int_M K(t, x, y, \mathcal{J})V(y)dv_g(y),$$

where $K(t, x, y, \mathcal{J}) \in Hom(N_yM, N_xM)$ is the kernel function and dv_g denotes the volume element of M with respect to g. Then we have

392

asymptotic expansions for L^2 -trace

(3.1)
$$Tr(e^{-t\mathcal{J}}) = \sum_{i=1}^{\infty} e^{-t\lambda_i} \sim (4\pi t)^{-\frac{2\pi}{2}} \sum_{j=0}^{\infty} t^j a_j(\mathcal{J}) \quad (t \downarrow 0^+),$$

where 2n denotes the real dimension N, and each $a_j(\mathcal{J})$ is the spectral invariants of \mathcal{J} , which depends only on the discrete spectrum ;

$$Spec(M,g) = \{\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_r \cdots \uparrow +\infty\}$$

Applying the normal Jacobi operator ${\cal J}$ to the Gilkey's results [4,p.327] , we obtain

Тнеовем [cf. 3,4].

(i)
$$a_0(\mathcal{J}) = q \cdot Vol(M,g),$$

(ii)
$$a_1(\mathcal{J}) = \frac{q}{6} \int_M \tau dv_g + \int_M Tr(E) dv_g.$$

(iii)
$$a_{2}(\mathcal{J}) = \frac{q}{360} \int_{M} (5\tau^{2} - 2|\rho|^{2} + 2|R|^{2}) dv_{g} + \frac{1}{360} \int_{M} \{-30k_{n} + Tr(60\tau E + 180E^{2})\} dv_{g},$$

where q is the codimension n and $E := -\tilde{R} + S$.

If M is an n-dimensional, minimal, totally real submanifold of a complex space form N(k) with dimension 2n, then we obtain

(3.2)
$$\tau = \frac{k}{4}n(n-1) - \sigma$$

(3.3)
$$Tr(E) = \frac{k}{2}n(n+1) - \tau,$$

(3.4)
$$Tr(E^2) = \frac{k^2}{16}n(n+3)^2 + \frac{k}{2}(n+3)\sigma + l_n,$$

(3.5)
$$k_n = \tilde{k}_n - \frac{k^2}{8}n(n-1) + k\tau,$$

where (3.2) follows from the equation of Gauss, (3.3) and (3.4) from the definition of E, and (3.5) from the equation of Ricci, (3.2) and (2.6)

Substituting $(3.2) \sim (3.5)$ into THEOREM, we get

Tae Ho Kang

THEOREM 1. Let M be an n-dimensional compact, minimal, totally real submanifold of a 2n-dimensional complex space form N(k)with constant holomorphic sectional curvature k. Then the coefficients $a_0(\mathcal{J}), a_1(\mathcal{J})$ and $a_2(\mathcal{J})$ of the asymptotic expansion for the normal Jacobi operator \mathcal{J} are respectively given by

$$(3.6) a_0(\mathcal{J}) = nVol(M,g),$$

(3.7)
$$a_1(\mathcal{J}) = \frac{n-6}{6} \int_M \tau dv_g + \frac{k}{2} n(n+1) Vol(M,g),$$

(3.8)
$$a_2(\mathcal{J}) = \frac{1}{360} \int_M [2n|R|^2 - 2n|\rho|^2$$

+
$$5(n-12)\tau^2 - 30k_n + 180l_n]dv_g$$

+ $\frac{k}{12}\int_M (n^2 - 2n - 10)\tau dv_g + a_0 Vol(M,g),$

where a_0 is a number determined by n and k.

COROLLARY 1. Under the same situations as stated in Theorem 1, the following quantities are its spectral invariants when n is not equal to 6.

$$(1) \dim M, \ Vol(M,g), \ \int_{M} \tau dv_{g}, \ \int_{M} (\tilde{k}_{n} + l_{n} - t) dv_{g},$$

$$(2) \ \int_{M} \sigma dv_{g},$$

$$(3) \ \frac{n}{180} \int_{M} (|R|^{2} - |\rho|^{2}) dv_{g} + \frac{n - 12}{72} \int_{M} \tau^{2} dv_{g} + \frac{1}{12} \int_{M} (6l_{n} - \tilde{k}_{n}) dv_{g},$$

$$(4) \ \frac{n}{180} \int_{M} (|C|^{2} + \frac{6 - n}{n - 2} |G|^{2}) dv_{g} + a_{1} \int_{M} \tau^{2} dv_{g} + \frac{1}{12} \int_{M} (6l_{n} - \tilde{k}_{n}) dv_{g},$$

$$(5) \ \frac{n}{180} \int_{M} (|C|^{2} + \frac{6 - n}{n - 2} |G|^{2}) dv_{g} + a_{1} \int_{M} \tau^{2} dv_{g} + \frac{1}{12} \int_{M} (6l_{n} - \tilde{k}_{n}) dv_{g},$$
where $a_{1} = \frac{5n^{2} - 67n + 66}{360(n - 1)}.$

394

Proof. (1) and (2) follow from (2.7), (3.1), (3.6) and (3.7). Substituting (2.2) and (2.3) into (3.8), we obtain (4). (5) follows from (4) and the fourth spectral invariant of (1). Q.E.D.

4. Some Results

From now on, we consider *n*-dimensional, compact, miniaml, totally real submanifolds M and M' of N(k) with dimension 2n.

First of all we have from (2) of Corollary 1

PROPOSITION 1. Assume that $Spec(M, \mathcal{J}) = Spec(M', \mathcal{J}')$. Then if M is totally geodesic, so does M'.

PROPOSITION 2. Assume that $Spec(M, \mathcal{J}) = Spec(M', \mathcal{J}')$ and $\int_{M} (l_n - t) dv_g \leq \int_{M'} (l'_n - t') dv_{g'}$. Then the second fundamental forms on M commute each other if and only if the second fundamental forms on M' commute each other and $\int_{M} (l_n - t) dv_g = \int_{M'} (l'_n - t') dv_{g'}$.

Proof. This follows from (1) of Corollary 1. Q.E.D.

We get from (5) of Corollary 1

PROPOSITION 3. Let M and M' be Einstein. Assume that $Spec(M, \mathcal{J}) = Spec(M', \mathcal{J}'), \int_{M} (6t - 7\tilde{k}_n) dv_g \leq \int_{M'} (6t' - 7\tilde{k}'_n) dv_{g'}$. Then M has a constant curvature \tilde{k} if and only if M' has the same constant curvature \tilde{k} and $\int_{M} (6t - 7\tilde{k}_n) dv_g = \int_{M'} (6t' - 7\tilde{k}'_n) dv_{g'}$.

PROPOSITION 4. Assume that $Spec(M, \mathcal{J}) = Spec(M', \mathcal{J}')$. If M has a constant curvature \tilde{k} , and M' is Einstein and if $\int_{M} (6l_n - \tilde{k}_n) dv_g \leq \int_{M'} (6l'_n - \tilde{k}'_n) dv_{g'}$, then M' has the same constant curvature \tilde{k} and $\int_{M} (6l_n - \tilde{k}_n) dv_g = \int_{M'} (6l'_n - \tilde{k}'_n) dv_{g'}$.

Proof. It follows from (4) of Corollary 1. Q.E.D.

PROPOSITION 5. Let M be an n-dimensional compact minimal, tolally real submanifold of $CP^n(k)$ Assume that $Spec(M, \mathcal{J}) = Spec$ $(RP^n(\frac{k}{4}), \mathcal{J}')$. Then M is a totally geodesic $RP^n(\frac{k}{4})$.

Proof. Proposition 1 implies that M is totally geodesic in $CP^{n}(k)$. Then M is $RP^{n}(\frac{k}{4})(\text{cf.}[9])$. Q.E.D.

Tae Ho Kang

References

- 1. H.Donnelly, Spectral invariants of the second variation operator, Illinois J.Math. 21 (1977), 185-189
- 2. P B.Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish or Perish, 1984.
- 3 P.B.Gilkey, The spectral Geometry of a Riemannian manifold, J Diff.Geometry 10 (1975), 601-608.
- 4. T.Hasegawa, Spectral Geometry of closed minimal submanifolds in a space form, real and complex, Kodai Math.J. 3 (1980), 224-252
- 5. T.H.Kang and H.S Kim, On the spectral geometry of closed minimal submanifolds in a Sasakian or cosymletic manifold with constant ϕ -sectional curvature, preprint.
- 6. T H.Kang and H S Kim, On the spectral geometry of the Jacobi operator of harmonic maps into a Sasakian or cosympletic manifold of constant φ-sectional curvature, preprint
- 7. T H.Kang and J.S.Pak, Some remarks for the spectrum of the p-Laplacian on Sasakian manifolds, to appear in J. of K.M.S.
- 8. T H.Kang and J S.Pak, On the spectral geometry of the Jacobi operator of harmonic maps into a quaternionic projective space, preprint
- 9. M Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans of A M.S. 296 (1986), 137-149.
- 10. S Nishikawa, P.Tondeur and L.Vanhecke, Spectral Geometry for Riemannian Foliations, Annals of Global Analysis and Geometry 10 (1992), 291-304.
- 11. H Urakawa, Spectral Geometry of the second variation operator of harmonic maps, Illinois J Math. 33(2) (1989), 250-267.
- 12. K Yano and M Kon, Structures on manifolds, vol. 3, Series in Pure Math., World Scientific, Singapore, 1984

Departments of Mathematics University of Ulsan Ulsan, 680-749, KOREA