Pusan Kyöngnam Math. J. 10(1994), No. 2, pp 385-387

HYPERSURFACE WITH UNIT NORMAL VECTOR FIELD OF $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})$

SHIN, YONG HO

1.Introduction

Yano [1] introduced the (f, g, u, v, λ) -structure on $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})$ as a submanifold of codimension 2 of a (2n + 2)-dimensional Euclidean space E^{2n+2} or hypersurface of a (2n + 2)-dimensional unit sphere $S^{2n+1}(1)$, that is, there exist a (1,1) type tensor field f_j^k , two vector fields u^k, v^k , two 1-forms u_i, v_j a function λ and a Riemannian metric g_j , satifying the conditions:

$$(1.2) \begin{cases} f_{j}^{t} f_{i}^{t} = -\delta_{j}^{t} + u_{j} u^{t} + v_{j} v^{t}, \\ u_{t} f_{j}^{t} = \lambda v^{j}, \quad f_{t}^{h} u^{t} = -\lambda v^{h}, \quad v_{t} f_{t}^{t} = -\lambda u_{j}, \\ f_{t}^{h} v^{t} = \lambda u^{h}, \quad u_{t} u^{t} = v_{t} v^{t} = 1 - \lambda^{2}, \quad u_{t} v^{t} = 0, \\ f_{j}^{t} f_{i}^{s} g_{ts} = g_{j1} - u_{j} u_{i} - v_{j} v_{i}. \end{cases}$$

In 1982 S.S. Eum ,U-H. Ki amd Y.H. Kim [2] prove the following theorems.

THEOREM A [2]. Let M be a hypersurface of $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})$ (n > 1) with the $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 =$ 1. If we take v^h as the unit normal vector, then M as a submanifold of codimension 3 of a Euclidean space E^{2n+2} is an intersection of a complex cone with generator C and a (2n + 1)-dimensional sphere $S^{2n+1}(1)$.

In this paper we improve Theorem A as follows:

Received December 9,1994.

Shin, Yong Ho

THEOREM B. Let M be a hypersurface of $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})(n > 1)$. If we take v^h as the unit normal vector, then M as a submanifold of codimension 3 of a Euclidean space E^{2n+2} is an intersection of a complex cone with generator C and a (2n+1)-dimensional sphere $S^{2n+1}(1)$.

2.Structure equations of hypersurfaces of $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})$

Let M be a hypersurfaces immersed isometrically in $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})$ and suppose that M is covered by the system of coordinate neighborhoods $\{\overline{V}; \overline{x}^a\}$, where here and in the sequel, the indices a, b, c, d, \cdots run over the range $\{1, 2, \cdots, 2n - 1\}$.

We put

(2.1) $B_c^h = \partial_c x^h$, $\partial_c = \partial/\partial y^c$.

Then B_c^h are 2n - 1 linearly independent vectors of $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})$ tangent to M. And denote by N^h the unit normal vector to M. Since the immersion $i: M \longrightarrow S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})$ is isometric, the induced metric g_{cb} on M is given by $g_{cb} = g_{ji}B_c^jB_b^i$. Next transformating B_c^j and N^j by f_j^h , we can express then respectively as follows:

(2.2) $f_j^h B_c^j = f_c^a B_a^h + w_c N^h, \quad f_j^h N^h = -w^a B_a^h,$

where f_c^a denotes the components of a tensor field of type (1.1), we 1-form and w^a vector field assciated with w_a given by $w^a = w_c g^{ca}, g^{ca}$ being the contravariant components of the induced metric tensor g^{cb} .

We also express the vector field u^h and v^h respectively as follows:

(2.3)
$$u^{h} = u^{a}B^{h}_{a} + \mu N^{h}, \quad v^{h} = v^{a}B^{h}_{a} + \nu N^{h},$$

where u^a and v^a are vector fields on M, μ and ν functions on M.

Applying the operator f_h^k to (2.2) and (2.3) respectively, and making use of (1.1), we obtain the so-called $(f, g, u, v, w, \lambda, \mu, \nu)$ -

structure given by

$$f_{b}^{e}f_{e}^{a} = -\delta_{b}^{a} + u_{b}u^{a} + v_{b}v^{a} + w_{b}w^{a},$$

$$(2.4)\begin{cases} f_{e}^{a}u^{e} = -\lambda v^{a} + \mu w^{a}, \\ f_{e}^{a}v^{e} = \lambda u^{a} + \nu w^{a}, \\ f_{e}^{a}w^{e} = -\mu u^{a} - \nu v^{a}, \end{cases}$$

or equivalently

386

Hypersurface with unit normal vector field of $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2}) = 387$

$$u_{e}f_{a}^{e} = \lambda v_{a} - \mu w_{a}, \qquad v_{e}f_{a}^{e} = -\lambda u_{a} - \nu w_{a}, \qquad w_{e}f_{a}^{e} \ \mu u_{a} + \nu v_{a},$$

$$(2.5) \begin{cases} u_{e}u_{e} = 1 - \lambda^{2} - \mu^{2}, \qquad u_{e}v^{e} = -\mu v, \qquad u_{e}w^{e} = -\lambda \mu, \\ v_{e}v^{e} = 1 - \lambda^{2} - \nu^{2}, \qquad v_{e}w^{e} = \lambda u \\ w_{e}w^{e} = 1 - \mu^{2} - \nu^{2}, \end{cases}$$

where u_a, v_a and w_a are 1-forms associated with u^a, v^a and w^a respectively.

3. Proof of Theorem B

Let M be a hypersurfaces of $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})$. If we take v^h as the unit normal vector field, then we may put $v^h = \nu N^h$ by the second equation of (2.3). This assumption implies that

(3.1) $v^{a} = 0$, $\nu^{2} = 1$, or, using (2.5) and $v_{e}v^{e} = 1 - \lambda^{2} - \nu^{2} = 0$, we find (3.2) $\lambda = 0$.

From the second equation of (2.4), (3.1), (3.2), we get

 $(3.3) \qquad w^{a} = 0$

or, using (2.5), $w_e w^e = 1 - \mu^2 - \nu^2 = 0$ and $\nu^2 = 1$, we have (3.4) $\mu = 0$.

 $So_{3,1}(3.2)$ and (3.4) show that

$$\lambda^2 + \mu^2 + \nu^2 = 0 + 0 + \nu^2 = 1$$

Hence, by the theorem A, M as a submanifold of codimension 3 of a Euclidean space E^{2n+2} is an intersection of a complex cone with generator C and a (2n + 1) - dimensional sphere $S^{2n+1}(1)$.

References

- 1. Yano.K., Differential geometry of $S^n \times S^n$, J. Diff. Geo. 8 (1973), 181-206
- 2. Eum, S.S., U-H.K1 and Y.H. Kim, On the hypersurfaces of $S^n(1/\sqrt{2}) \times S^n(1/\sqrt{2})$,

J Korean Math. Soc 18 (1982), 109-122

Department of Mathematics University of Ulsan Ulsan 680-749 ,Korea